
ShellOnYou: learning by doing Unix command line
Vincent Berry∗

LIRMM - Univ Montpellier, CNRS
Montpellier, France

vincent.berry@umontpellier.fr

Arnaud Castelltort
LIRMM - Univ Montpellier, CNRS

Montpellier, France
Arnaud.Castelltort@umontpellier.fr

Chrysta Pelissier
LHUMAIN - Univ Paul Valéry

Montpellier 3
Montpellier, France

chrysta.pelissier@umontpellier.fr

Marion Rousseau
Fondation Polytech
Nantes, France

marion.rousseau@polytech-
reseau.org

Chouki Tibermacine
LIRMM - Univ Montpellier, CNRS

Montpellier, France
Chouki.Tibermacine@umontpellier.fr

ABSTRACT

In this paper we present both a new tool for computing education
and an analysis of its use over four successive student cohorts.

The tool was developed to help instructors manage large num-
bers of students learning the Unix system. It is an autonomous web
app that can also be integrated in an LMS platform with the LTI
protocol. It offers exercises combining specific practical knowledge
about using a Unix-like operating system from the command line.
The basic principle is that students can submit as many answers
they want to an available exercise and get each time both a score
and a specific feedback, almost instantly. In practice, this encour-
ages students to resubmit and ultimately improve their procedural
knowledge. The learning tool can also deliver slightly individual-
ized statements, hence favoring situations where students grow
in skills by combining personal research and peer learning. Being
online, this tool offers flexibility to students and it naturally fits dis-
tance learning programs or periods. We found it particularly useful
in a context of students with heterogeneous prior knowledge.

Successive cohorts were proposed a learning situation involv-
ing the tool. We combine qualitative and quantitative methods to
analyze their answers to surveys. We aim at characterizing their
rise in procedural knowledge and the building of a group dynamics.
Several emerging dimensions are: benefits of the tool and the learn-
ing situation, reassurances in their engagement, playful aspects
and grading system as a source of motivation in their daily work,
the chosen learning pace. These are characteristics of a learning by
doing practice, but we also noticed the importance to encourage
their reflexive and meta-cognitive processes.

CCS CONCEPTS

• Software and its engineering → Operating systems; Operat-
ing systems; • Social and professional topics→ Computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE ’2022, July 08–13, 2022, Dublin, Ireland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

education; Computer science education; Computing educa-

tion; Computer science education; • Applied computing →
Distance learning; Distance learning.

KEYWORDS

learning by doing, practical knowledge, Unix command line inter-
face, automated feedback, student perception.

ACM Reference Format:

Vincent Berry, Arnaud Castelltort, Chrysta Pelissier, Marion Rousseau,
and Chouki Tibermacine. 2022. ShellOnYou: learning by doing Unix com-
mand line. In Proceedings of (ITiCSE ’2022). ACM, New York, NY, USA,
7 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

A Unix introductory course aims at providing students with con-
ceptual and practical knowledge to efficiently interact with this
ubiquitous system and in particular to do it from the command line
interface (CLI) [23]. Such a course appears in almost each Com-
puter Science program, usually in its first academic year. Students
from many other fields (mathematics, physics, natural and social
sciences, e.g., see [16]) are also concerned by such courses due to
the predominance of the Unix system in computing facilities. As
a result, many universities have to tutor large cohorts of students
that need to acquire basic Unix practical knowledge, and more
particularly to learn how to manage Unix from the CLI.

In our case we prepare students to computer science (CS) ca-
reers by proposing a program they follow from their third to fifth
academic year to obtain an engineering degree. We propose an
Operating System (OS) course right at the beginning of their first
term in our curriculum. This course starts by presenting students
with material on a Unix system, the CLI being at the forefront.
Indeed, as in other CS curriculum, knowing one’s way on this sys-
tem is a prerequisite to many other courses and students with a
deficit on this topic will have problems in graduating in the end.
Students entering our curriculum have an heterogeneous back-
ground, some having never eared of Unix systems, most have used
it in a strictly minimal way during a programming course in a
multidisciplinary curriculum, while some have used it on a regular
basis in a purely CS undergraduate curriculum. This echoes the
observations of Moy [19] in a similar context. Moreover, very few
students know each other at first since they reach us by succeeding

https://orcid.org/0000-0001-7271-4027
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ITiCSE ’2022, July 08–13, 2022, Dublin, Ireland Berry et al.

at a national examination procedure irrigating our network of en-
gineering schools. Furthermore, for various institutional reasons,
we have a relatively small number of instruction hours to dedicate
to this topic. On the other hand, we only handle cohorts of 40 to 50
students, while it is common that an introductory OS course is also
proposed in programs followed by several hundred students. In the
latter case, another difficulty is to find enough qualified instructors.
This is pushed to an extreme in computer literacy courses [12]
where survival skills on a Unix system are sometimes sought for,
and that concern all first year students entering a faculty.

To favor the learning of practical knowledge of the Unix CLI in
this context, we needed a dedicated learning situation. Among other
learning approaches, the hands-on approach most often obtains
good feedback from students and is advocated for being efficient
and well suited to engage students [18, 21, 25]. Thus, we wanted
practical activities to be at the center of the learning situation we
would design. However, this approach tends to have the annoying
particularity to generate a large number of student works to be ex-
amined by instructors. Among others, Kendon and Stephenson [13]
provide hands-on instruction on the use of the Linux CLI and report
that the single biggest challenge that the instructors faced with this
course was the volume of work that needed to be graded. Having the
possibility to only spend a few hours with the students, we aimed
at finding a tool to examine students’ proposals in an automated
way. Though the Unix CLI can be envisioned in a programming
perspective (shell scripts), we believe it can only be grasped by
using it interactively in a Unix environment. Following Doane et al.
[8], we want to measure the students’ performance in tasks requiring
them to comprehend and produce Unix commands. For this reason,
assessment websites or plugins in learning management systems
(LMS) plugins centered on programming skills were ruled out of
the tools we could rely on [10, 15]. Only a small number of hours
being funded, we could not engage ourselves neither in paid plans
of websites which also ruled out e-recruitment platforms [1–3] and
publishers’ tools [4, 20].

Not finding any tool on which we could rely on we decided to
develop a web-based tool tailored to our needs and in particular
allowing us to provide automated feedback to students learning the
Unix CLI. This tool, called ShellOnYou, will be freely distributed.
It can be easily installed as an autonomous website thanks to the
docker technology. Moreover, its exercises can also be integrated
as activities in an LMS, leading to a seamless use. We describe it in
more detail in Section 2 below.

Having such a tool at our disposal, we then integrated it in a
learning situation with two underlying goals: i) mainly, obtaining
a students’ rise in practical, i.e., procedural [17] knowledge (hard
skills) on the Unix CLI but also ii) the constitution of a group
dynamics that will benefit the cohort in the subsequent learning
phases of the curriculum (in our case, students have 80% of their
courses in common during the 3 years to graduation). The learning
situation is described below in Section 3.1.

We applied this situation on four successive student cohorts, in
the fall term, from 2018 to 2021. We questioned the learning situa-
tion by analyzing students’ answers to surveys and interviews. Our
main focus question is: “How such a tool and learning situation favors
the learning of practical knowledge in computer science?”, keeping in
mind that we handle students with heterogeneous backgrounds and

have few hours and instructors at our disposal. Section 4 reports
our findings in this direction when analyzing students’ answers.

2 THE TOOL AT THE CENTER OF THE

LEARNING SITUATION

2.1 Principles of the exercising platform

Instructors propose exerciseswhich consist of a template (i.e., generic)
statement (plain text or html format), a template archive (i.e., a
tarball), and two Python programs: a code to randomly individual-
ize student statements and a code to analyze their answers. This
template approach allows instructors to give slightly different ver-
sions of the same exercise to different students. By providing them
with different versions, instructors handling student groups limit
plagiarism as a simple copy/paste approach will then be unfruitful.
The goal is not at all to impede communication between students,
but rather to ensure it leads to an interaction between peers on the
understanding of the instructions, to share useful tips and tricks
to solve the exercise, instead of exchanging final complete solu-
tions. In our experiments, we actually encouraged students to share
thoughts and work next to one another, even booking a lab room
for them, or referring to social networks for exchanges. This both
helped knowledge transfer between peers and the appearance of a
group dynamics.

Students access exercises on the ShellOnYou web platform by
registering to an exercising session settled by their instructor. Such
a session is available for a defined time period and possibly requires
a password to enter. A session consists of an ordered list of exercises
that the instructor can make available all at the same time, or one
exercise a day, or only when obtaining a score (success rate) above
some threshold to the previous exercise.

To solve an exercise, a student first downloads a tar archive con-
sisting of a small file structure to explore while following instruc-
tions given on the exercise page. These instructions ask him/her to
perform some tasks in this file structure or to complete an answer
file it contains. Then the student submits his/her work by creating
an archive of the modified file structure and uploading it on the
ShellOnYou platform. The platform then gives a detailed feedback
to the student on the different points mentioned in the exercise
statement, and provides him/her with an overall score. The feed-
back informs the student on his/her particular misconceptions and
wrong answers. The student can then learn from previous errors
and come back to his/her work and later submit an improved an-
swer, and so on until the exercise is not available anymore (when
reaching the deadline of the exercise or of the session). Obtaining
a personalized feedback allows students to gradually improve and
ultimately reach the planned skills. Of course, this happens when
the exercise level is aligned with the tutoring experience delivered
outside the platform [5]. From our experiments, the overall score
they obtain on each attempt, combined to the possibility to retry
within some minutes is quite engaging for students as they get
caught in a game-like spiral, all the more they exchange on their
respective scores. In our experience, this works best when the exer-
cise is decomposed in several intermediary questions and when a
student can obtain a first attempt within a few dozen minutes.

The feedback given to students is obtained by running the code
proposed by the creator of the exercise, which behaves as a series

ShellOnYou: learning by doing Unix command line ITiCSE ’2022, July 08–13, 2022, Dublin, Ireland

of unit tests in the software development industry (an approach
common with the Code runner plugin [15]). Usually, instructors
know common pitfalls they have to look for in students answers
to a particular exercise they consider. Transferring this knowledge
into the code that analyses students answers allows their expertise
to be useful to hundreds of students at the same time or to time
and places where instructors are not available, yet when and where
students are ready to improve. And indeed, our experiments reveal
that students work in various different places and at greatly varying
time slots, including evenings and nights.

The tool provides instructors with basic analytics. For each ses-
sion they organize, instructors can know which student submitted
an answer, when this happened and can access the obtained feed-
back and score.

2.2 Advantages and drawbacks of the

ShellOnYou tool

ShellOnYou favors a process where each student learns at his/her
own pace (auto-regulated learning). When used in a classroom, this
allows students to test their understanding of concepts by them-
selves and validate knowledge on their own, giving the instructor
more time to assist students having difficulties. Moreover, students
benefit with ShellOnYou from the flexibility offered by online tools.
They can then choose the most suited time, place and conditions
for them to work, as all that is required is an internet connection
and most students nowadays have access to one e.g., by sharing
their smartphone connection.

ShellOnYou shares objectives with other tools allowing a hands-
on approach to CS, such as program assessment environments or
plugins. Yet, ShellOnYou allows students to submit incomplete
answers and still obtain feedback, thus allowing them to gradually
build and improve their answers. In comparison, programming
assessment tools usually give a frustrating null grade to a student’
proposal containing only a single syntax error, not accounting for
correct parts in the proposal. In comparison, ShellOnYou offers
instructors the possibility to detect any positive element.

The fact that a students obtain an overall score (a success rate,
rather than a grade) and are offered multiple attempts to improve
on their score gives their training a game-like flavor (as a signifi-
cant number of them reported in the final survey). Even advanced
students are driven forward by these elements, competing to finish
their current exercise before other advanced students.

Although we think ShellOnYou has many advantages, it suffers
from twomain drawbacks. The first one is that students need at least
a minimal familiarity with tarball archives (each exercises comes
with an accompanying tree structure of files to manipulate while
solving the exercise, and that each solution has to be submitted in
the form of an archive). Though GUI of Unix systems nowadays
allow to make one’s way out of this problem by only a few mouse
clicks, this prerequisite needs some attention. We chose to propose
10mn lecture time on this topic to our less advanced students and
proposed them a 30mn lab with the presence of an instructor.

A second drawback of the current system is a direct consequence
of the will to propose students with a useful feedback of their an-
swers to exercises. This requires a careful analysis of the archive

they submit as an answer. In particular, when expecting some an-
swers to be written in a given text file, care must be taken when
analyzing its lines as students can incorporate the expected an-
swer in the midst of a sentence or sometimes a paragraph, or with
a spelling different from that expected, or enclosed in a variable
number of surrounding spaces or with astonishing punctuation
characters. Though, the worst nightmare can be avoided and the
number of situations be drastically reduced by proposing in the
question archive an answer file to be completed by the student,
jointly with precise instructions in the exercise statement. This
special care allows to greatly reduce the size of the Python script
analyzing answer archives submitted by students. Yet, such a script
often still contains between 200 and 300 lines due to the need to
examine different points: current exercises usually contain three
to ten questions, each one leading to one or several tests. For each
test, a code aiming at a useful feedback needs to consider various
common student mistakes as well as distinguish correct answers
from partially correct ones. Though such a script contains some
boilerplate code, the proposal of a new exercise can take up to two
working days including making it bullet-proof. This investment
must be put into perspective as it avoids manual inspection, written
feedback and email by an instructor to each attempt submitted by
each student over each year the exercise is used. In our case, this
was cost-effective from the first year as each of the 46 students
we tutored did 2.28 attempts per exercise on average. Moreover, to
lessen the burden of proposing a new exercise, a Python library
is made available to instructors that handles the repetitive parts.
Finally, instructors can access scripts of existing exercises to re-use
some code and learn from examples.

3 METHODS

3.1 The learning situation

For the past four years we settled the same learning situation at
the beginning of the OS course, proposed to cohorts of 40 to 50
students. During the first week of their curriculum, students at-
tend 4.5h hours of introductory lectures on Unix systems – among
which roughly 1 hour is dedicated to shell commands, interleaved
with 4.5h hours of lab sessions during which students with low
to poor prior Unix knowledge are tutored in a classroom, while
other students work in autonomy. Links to external resources (text-
books, websites, command dictionaries, etc) are also provided to
students during the lectures and reported on an LMS course page,
so that they can refer to them when looking for complementary
information or help on the CLI. The last day of the week they are
asked to register on the ShellOnYou tool and provided with a basic
exercise whose only role is to allow them to get familiar with the
way the tool works. The following week, ShellOnYoumakes a new
exercise available to them every working day and they are given 24
hours to do it, being allowed to submit as many answers they want
during this time lapse. Each student submits answers separately
(and indeed student statements are sometimes individualized), as
the goal is that each one of them improves or re-activates the tar-
geted practical knowledge. Though, we explicitly encourage them
to work in group, by oral inducement, by booking a lab room they
can use outside of class hours, and by making sure that every day
they have a free common time slot during working hours. Though,

ITiCSE ’2022, July 08–13, 2022, Dublin, Ireland Berry et al.

Table 1: Profiles of students from studied cohorts.

Cat. 2018 2019 2020 2021

A 16 10 15 15
B 21 25 23 23
C 1 3 4 1
D 8 4 4 2

Tot. 46 42 46 41
Categories indicate students that depending on their prior

curriculum (A) are familiar with Unix systems, (B) had mod-

erate to no exposure to Unix, (C) had low to no exposure to

Unix and (D) never met Unix previously.

students also exchange by social networks. Indeed, the 24h delay
they have to produce answers allows them to work at the time
they prefer or to adapt to the availability of other students. The OS
course then continued for the rest of the term on other topics than
the CLI but building on the practical knowledge they have at the
end of this two weeks period.

3.2 Assumptions at the end of the learning

situation

We tried to measure whether the ShellOnYou tool and the chosen
learning situation answer our primary objectives (as exposed at
the end Section 1) or sometimes exceeds them. We postulate four
assumptions on student cohorts after they lived the two first weeks
of their program, orchestrated as detailed in the previous section:

(1) Students have increased their level of procedural knowledge
on the Unix CLI (hard skills);

(2) a group dynamics has been created to solve problems;
(3) Students perceive the improvement of their procedural knowl-

edge;
(4) Further, students can identify facilitating factors that inl-

fuence their learning.

3.3 Collected feedback and analysis guideline

We based our work on the Design-Based Research (DBR) paradigm
[24, 27]. This approach makes it possible to instantiate theoretical
models in the form of digital / computer applications that can be
used by identified actors who will carry out contextualized uses.
The results that we present reflect the training system as it has
been evaluated over four cohorts of successive academic years.

Table 1 indicates the profiles of students we hosted during the
four years of the study. Students of the B category are difficult to sort
out: they followed a supposedly similar undergraduate curriculum
with courses from various scientific fields but with a large variance
in practice: depending on their host university during these study
years, they took from one to four CS courses (mainly computer
literacy and programming courses). Besides, only some of them
have been confronted to the Unix system before.

We followed a classical methodological approach of didactic en-
gineering based on the Theory of Didactic Situations (TSD) [7].
During the evaluation phase, we proposed students with as survey

available on the LMS course page. It was clearly stated that this
was an anonymous survey and the LMS activity was settled ac-
cordingly. The goal of this survey was to collect students’ feelings
and comments on the learning situation they lived for the two first
weeks of their new curriculum. The survey contains 11 closed and 2
open questions. The return rates are 52%, 48%, 57% resp. 59% for the
2018 to 2021 years. Lastly, an analysis of ShellOnYou’s database
provided us with learning analytics for the last two cohorts. Before
using the tool as well as answering surveys and interviews, stu-
dents were informed that collected data would be used for research
purposes, and they approved this use.

We carried out a quantitative analysis of these data (closed ques-
tions) associated with a qualitative analysis (open questions). The
combination of these two analyzes makes it possible to highlight the
learning situation components as well as the implemented strate-
gies (learners’ actions). The analysis of the open questions took
place in two phases. First, we analyzed the statements made by stu-
dents answers to the survey thanks to the QDAMiner Lite software
(v2.09) [14]. Its text segment encoding system allows each corpus
element to be labeled, independently, according to categories that
emerge during the encoding. Categories first appeared in isolation,
then were grouped, leading to the definition of subcategories.

4 RESULTS

A closed question of the survey informs us on how answering stu-
dents situate themselves, which complements data from Table 1:
≈ 11% had never heard of Unix before; ≈ 14%were greatly worrying
to study this system; ≈ 34% felt a bit of apprehension to be con-
fronted to it; ≈ 33% were comfortable with this system, and ≈ 12%
were quite confident with it. Though these perceptions concern
only half of the students (recall return rates), they nevertheless
confirm the heterogeneity of their profiles.

4.1 Students improve their procedural

knowledge

Recall that exercises are designed to be succeeded by students,
as each one contains hints on its resolution (both initially and
in feedback to their first trials) and as we encouraged students
to share their knowledge. Indeed, almost all students of the four
cohorts regularly obtain a maximum score at each exercise they
consider. In particular, the learning analytics indicate that 99.4%
(2020), resp. 99.8% (2021), of all the students obtain a maximum
score (on average over all exercises they considered). Interestingly,
there is a contrast between these high final success rates and the
fact that only 14.3% (2020), resp. 20.54% (2021), students obtained
a maximum score on their first trial at an exercise on average.
This seems to indicate that students improved their procedural
knowledge in the process of resolving the exercises.

Another result that we see as an indirect hint that they improved
their skills is that 64% (in 2018), 70% (2019), 42% (2020), 72% (2021)
of them declare to have benefited form the help of other students
for resolving some exercises. So the increased scores obtained at ex-
ercises are partly explained by exchanges between students, which
indicates that some peer-learning took place, both helping less ca-
pable students to rise in knowledge and consolidating the learning
of more knowledgeable ones.

ShellOnYou: learning by doing Unix command line ITiCSE ’2022, July 08–13, 2022, Dublin, Ireland

Table 2: Types of assistance between students.

Cat. 2018 2019 2020 2021

Does not apply 39% 30% 62% 24%
Question explanation 11% 15% 4% 8%

Error explanation 18% 15% 12% 48%
Answer explanation 29% 30% 23% 4%

What to type as an answer 4% 10% 0% 12%
Answers to the survey question:When another student helped
me, what sort of interaction did you usually got? The “Does
not apply” option stands for students indicating they usually

solved exercises without help.

Further, learning analytics show that on average 20.93% (in 2020)
to 25.58% (in 2021) students went on proposing answers to exer-
cises for which they already had reached a maximum score. Besides
showing a clear motivation, this seems to indicate that these stu-
dents (maybe predominantly at ease with the Unix CLI) spent time
discovering other ways to achieve tasks asked by exercises, maybe
in part as a result of exchanges between peers. The Unix playground
has the potential for such a scenario as shell commands and mech-
anisms such as redirections and pipes often offer different paths
to reach a same goal. This kind of practice can only improve their
procedural knowledge of such systems.

Lastly, when presented (after the experience) with a set of 10
procedural knowledge, in 2021, 38,8% of the answering students
thought they had such knowledge before the experience while 78,2%
of them thought they such knowledge after. This twofold increase
factor can be subjective but was also observed for the other cohorts.

4.2 A group dynamics is observed

During our experiments, all students were asked to solve the ex-
ercises, including those already familiar with Unix. As we wanted
these resource students to stay in the lab room, exercises statements
as well as feedback sometimes mentioned an unusual flag or com-
plementary command to explore or challenged them to answer a
question in a more tricky (or mysterious) way. Overall, this helped
keeping them in the lab room while less capable students were
struggling with their own versions of the exercise. This promoted
mutual help and indeed experienced students reported to have of-
ten answered questions of other students, sometimes staying in the
room after having solved their exercise.

We reported above that more than 50% students benefited form
the help of other students. Table 2 reports on the type of assistance
they received. This shows that students interactions about exercises
most often involved explanations and not just what to type to
answer correctly. These explanation phases are traces of a group
dynamics building from the situation were very few students knew
one another at the start of the term.

Six 2021 students relate in video interviews (data not shown)
that most students started by working by themselves and sought
help when blocked, through various communications channels.

Table 3: Learning situation aspects raised by students items.

Type # Student items

General aspects 25 (11.16%)
Knowledge acquisition 79 (35.26%)

Facilitating factors 120 (53.57%)
Answers to the survey question:What are the positive and
negative aspects of the learning situation you experienced
during these weeks?

This group dynamics is important for us, since we follow Booth
who states that “The experience of learning in a group and the stage
of maturity as a knower appear to be closely related” [6].

4.3 Students perceive their progress

Results reported here are obtained by an analysis of the students’
answers to the two open questions of the anonymous survey: “What
are the positive aspects” (resp. “negative aspects”) “of the learning
situation you experienced during these weeks?”. Overall, 224 student
items were identified and categorized with the QDA Miner Lite soft-
ware. A student item relates to any word or group of words a student
has written to answer the above questions. Table 3 shows the dis-
tribution of student items between three categories we identified.
The last two rows directly relate to assumptions (3) and (4).

Student items entering the General aspects of Table 3 indicate,
for instance that students liked the learning situation, finding it e.g.,
“globally positive” (5/25 items), “fully playing its role” and that (3/25)
“positive aspects outweigh negative ones” (2/25). Negative comments
indicate for instance that the exercise week asked them a consistent
work effort, unlike following labs of the OS course (2/25).

When analyzing further the student items falling in the Knowl-
edge acquisition category of Table 3, the perception they have of the
learning situation can be encompassed more precisely (Table 4). For
instance, strategic individual benefits they identify are e.g., “review
the basics” (7/30 items), “remember commands” (6/30), “get back on
track” (5/30), “learn and get familiar with Unix commands” (7/30),
“train” (1/30), or “assess oneself ” (1/30). The three first of these items
stem from the knowledge reinforcement idea, hence mostly origi-
nate from students with prior knowledge of the Unix CLI. Though
this represents only 18 on 224 expressed items, the fact that it is the
major concept expressed among other individual strategic benefits
seems to indicate that having a prior knowledge helps reflecting
about one’s learning process. This reflective thinking – also present
in other student items – is a good point in itself, as “reflection is
linked to elements that are fundamental to meaningful learning and
cognitive development” [22].

As for strategic collective benefits (5 items), students express
“catching up”, or “leveling” (4/5) and “give basics to all students”
(1/5). Thus, some students are aware of their cohort’s heterogeneity
and maybe some perceive the usefulness of building a learning
community. Unfortunately, current survey questions do not allow
to dig further in this direction.

ITiCSE ’2022, July 08–13, 2022, Dublin, Ireland Berry et al.

Table 4: Knowledge acquisition perceived by students.

Category # Student items Inner distrib.

Strategic benefit 35 (44.30%)

individual 85.71%
collective 14.28%

Confidence 25 (31.65%)

self-confidence 32%
owning skills (“I can”) 32%

owning knowledge (“I know”) 28%
learning utility 8%

Assessment method 10 (12.66%)

playful aspects 70%
scores 30%

Learning pace 9 (11.39%)

efficiency 33.33%
time freedom 33.33%

1-week exercising period 33.33%
Categories of knowledge acquisition perception from student

answers to the survey. For each category, the number (and

percentage over 79) of student items is indicated, together

with the relative percentage going to subcategories inside

the category.

The Confidence entry in Table 4 shows that the learning situation
reassured students on four levels: self-confidence (“I could gain self-
confidence ”, “I feel more independent/autonomous”); on the “skills”
or procedural knowledge they own in the end; on their conceptual
knowledge (“Now I know basic Unix commands” / “new commands”,
“I know how to use Unix now”); the utility of their practical knowledge
(“widely used system in CS”).

Students also identify the Assessment method as a knowledge
acquisition factor, pointing at the playful aspects of the tool (4/10
items), i.e., getting hints in feedback, being able to improve their
score (“it is challenging”, “I learned without having the impression
to work, which is the most important”). The fact that we used scores
(from 0 to 100%) as in some games rather than grades also seem to
motivate them (3/10), they like being able to retry and reach a better
performance. This highly correlates with the learning analytics
showing than > 85% (2020), resp. > 79% (2021), students improved
the score of their first trial at an exercise.

Some students points at the learning pace efficiency (3/9 items)
(“allows to quickly learn basic commands” with a “a rather efficient
learning rhythm for me as beginner”). They highlight the time free-
dom (3/9) left to answer an exercise (“we can work when we want”).
The duration of the one-week exercise part seems appropriate to
some students (3/9) (“Doing exercises over one week to anchor skills
is a very good thing”).

4.4 Students identify facilitating factors

We identified 14 factors in student items that relate to assumption
(4), i.e., to the identification by students of factors influencing their
learning. We grouped these factors in four categories (Table 5).

Table 5: Facilitating factors identified by students.

Category # Student items Inner dist.

Exercise components 79 (65.83%)

difficulty level 22.78%
exercise type 22.78%

exercise timing 20.25%
assessment modality 18.99%

statement formulation 15.19%
Assistance 19 (15.84%)

mutual aid 57.89%
hints contribution 42.11%

Technical aspects 14 (11.66%)

tool usability 28.59%
access device 21.42%
availability 21.42%

remote access 21.42%
special characters 7.15%

Availibilty of lab rooms 8 (6.66%)

Categories of facilitating factors reported by student answers.

For each category, the number (and percentage over 120) of

student items is indicated, together with the relative percent-

age going to subcategories inside the category.

A most recurring factor (18/79) is the difficulty level of the ex-
ercises, expressed comments being mostly that exercises are too
easy. In contrast, students highlight good points of the exercises,
praising them for their progressive (11/79) and varied (6/79) nature.
This highlights once more the heterogeneity among students in the
cohort but also hints that exercises are more tailored to novices than
knowledgeable students. Indeed, at this point in the OS course, our
main goal is that all students get a minimal procedural knowledge
at the end of this 2-week learning situation. Though, this indicates
that we need to rework some of the current exercises to increase
their challenging aspect for advanced students or to propose ad-
ditional exercises targeting them. Items concerning assessment
modalities welcome the possibility to do multiple trials at exercises
and to obtain feedback on their answers (9/79). Students appreciate
the assistance they get both from mutual aid possibilities (11/19)
as well as hints given in statements and feedback (8/19). Technical
aspects of the learning tool concern difficulties to choose a device
to connect (3/14) or in contrast the ease of access (4/14).

5 DISCUSSION

We presented above both a new web-based exercising tool to foster
the practical learning of the Unix system and an in-depth analysis
of its use in a learning situation with four successive cohorts.

The tool offers a short list of auto-gradable exercises, each cen-
tered around specific procedural skills. When submitting their work,
students get detailed feedback on their answers, including explana-
tions on some of their errors, hints to improve and a score. Both
these elements encourage them to enhance their proposals and to
grow in skills. Instructors can set up sessions for their students on

ShellOnYou: learning by doing Unix command line ITiCSE ’2022, July 08–13, 2022, Dublin, Ireland

our deployed instance of the tool, and propose new exercises. They
can also deploy their own instance as the tool is freely distributed.
Lastly, the tool can be integrated with LMS platforms.

The analysis of a learning situation relying on the tool teaches
us that it actually allows students to improve their procedural
knowledge. Though rudimentary, the playful aspects of the tool put
them in a game-like situation motivating them to retry and then
improve. The results also show that a group dynamics emerged
after the two-weeks learning situation and that they are able to
perceive a re-activation or a gain of procedural knowledge. The
strategic benefits of the experience and the confidence they get
from it are the most frequent feedback. They also indicate that
exercise components (difficulty level, statement, timing, . . .) were
the predominant facilitating factors.

This feedback gives insight on the way students react to such
tools and on their potential for hybrid or distance learning. More-
over, the learning situation and the survey that followed helped
students develop metacognitive capabilities [9, 26], i.e., their ability
to think about their thinking and to self-evaluate, an important
quality that will allow them to do better work in the future [22].

As a whole, these analyses lead us to consider the learning situa-
tion related here as an enabling environment, i.e., a technical and
social environment providing individuals with the opportunity to
develop new procedural knowledge and skills, to increase their
action possibilities and degree of control over their tasks, and to
widen their operating methods, i.e. their autonomy [11].

ACKNOWLEDGMENTS

This work was funded by Fondation Polytech, the Polytech Network
in the IDEFI AVOSTTI ANR project. It was supported by the Comité
Numérique pour la Formation of Université Montpellier and by the
IT service of Polytech Montpellier, in particular we thank Luca
Cimini.

REFERENCES

[1] [n.d.]. https://www.codingame.com/. Online; accessed September 2018.
[2] [n.d.]. https://tech.io/. Online; accessed September 2019.
[3] [n.d.]. https://www.hackerrank.com/. Online; accessed November 2021.
[4] [n.d.]. https://www.katacoda.com/. Online; accessed January 2021.
[5] J. Biggs. 1996. Enhancing Teaching Through Constructive Alignment. Higher

Education 32 (10 1996), 347–364. https://doi.org/10.1007/BF00138871
[6] S. Booth. 2001. Learning Computer Science and Engineering in Context.

Computer Science Education 11, 3 (Sept. 2001), 169–188. https://doi.org/10.
1076/csed.11.3.169.3832

[7] G. Brousseau. 1988. Théorie des situations didactiques. La Pensée Sauvage,
Grenoble.

[8] S.M. Doane, J.W. Pellegrino, and R.L. Klatzky. 1990. Expertise in a Computer
Operating System: Conceptualization and Performance. Human–Computer
Interaction 5, 2-3 (June 1990), 267–304. https://doi.org/10.1080/07370024.1990.
9667156

[9] Anastasia Efklides. 2001. Metacognitive Experiences in Problem Solving.
Springer Netherlands, Dordrecht, 297–323. https://doi.org/10.1007/0-306-47676-
2_16

[10] C. Estler and N. Nordio. [n.d.]. https://codeboard.io/. Online; accessed January
2018.

[11] P. Falzon. 2005. Ergonomics, knowledge development and the design of enabling
environments. In HWWE.

[12] R.M. Hoar. 2014. Generally Educated In The 21st Century: The Importance Of
Computer Literacy In An Undergraduate Curriculum. In WCCCE.

[13] T. Kendon and B. Stephenson. 2016. Unix Literacy for First-Year Computer
Science Students. In Proceedings of the 21st Western Canadian Conference
on Computing Education, WCCCE ’16, Kamloops, BC, Canada, May 6-7, 2016,
Surinder Dhanjal and Faheem Ahmed (Eds.). ACM. https://doi.org/10.1145/
2910925.2910930

[14] R.B. Lewis and S.M. Maas. 2007. QDA Miner 2.0: Mixed-Model Qualitative Data
Analysis Software. Field Methods 19, 1 (Feb. 2007), 87–108. https://doi.org/10.
1177/1525822x06296589

[15] R. Lobb and J. Harlow. 2016. Coderunner: a tool for assessing computer program-
ming skills. Inroads 7, 1 (2016), 47–51.

[16] S. Mangul, L. S. Martin, A. Hoffmann,M. Pellegrini, and E. Eskin. 2017. Addressing
the Digital Divide in Contemporary Biology: Lessons from Teaching UNIX.
Trends Biotechnol 35, 10 (10 2017), 901–903.

[17] R. McCormick. 1997. Conceptual and Procedural Knowledge. International
Journal of Technology and Design Education 7, 1-2 (Jan. 1997), 141–159. https:
//doi.org/10.1023/a:1008819912213

[18] G. Molinari, B. Poellhuber, J. Heutte, E. Lavoué, D. Sutter Widmer, and P.-A.
Caron. 2016. L’engagement et la persistance dans les dispositifs de formation
en ligne : regards croisés. Distances et médiations des savoirs (online) 13 (2016).
https://doi.org/10.4000/dms.1332

[19] M. Moy. 2011. Efficient and playful tools to teach Unix to new students. In
Proceedings of the 16th annual joint conference on Innovation and technology
in computer science education - ITiCSE '11. ACM Press. https://doi.org/10.1145/
1999747.1999776

[20] Pluralsight. [n.d.]. https://www.pluralsight.com/codeschool. Online; accessed
November 2021.

[21] B. Poellhuber, N.G. Roy, and I. Bouchoucha. 2019. Understanding Participant’s
Behaviour in Massively Open Online Courses. The International Review of
Research in Open and Distributed Learning (2019).

[22] C. Rolheiser, N. C. Rolheiser-Bennett, B. Bower, and L. Stevahn. 2000. The
portfolio organizer: Succeeding with portfolios in your classroom. ASCD.

[23] M. Suppa, O. Jariabka, A. Matejov, and M. Nagy. 2021. TermAdventure: In-
teractively Teaching UNIX Command Line, Text Adventure Style. In ITiCSE
2021: 26th ACMConference on Innovation and Technology in Computer Science
Education, Virtual Event, Germany, June 26 - July 1, 2021, C. Schulte, B.A. Becker,
M. Divitini, and E. Barendsen (Eds.). ACM, 108–114. https://doi.org/10.1145/
3430665.3456387

[24] The Design-Based Research Collective. 2003. Design-Based Research: An Emerg-
ing Paradigm for Educational Inquiry. Educational Researcher 32, 1 (Jan. 2003),
5–8. https://doi.org/10.3102/0013189x032001005

[25] K. von Hausswolff. 2017. Hands-on in Computer Programming Education.
In Proceedings of the 2017 ACM Conference on International Computing
Education Research (Tacoma,Washington, USA) (ICER ’17). Association for Com-
putingMachinery, New York, NY, USA, 279–280. https://doi.org/10.1145/3105726.
3105735

[26] L.S. Vygotsky. 1978. Mind and society: The Development of Higher Mental
Processes. Harvard University Press, Cambridge, MA. http://www.learning-
theories.com/vygotskys-social-learning-theory.html

[27] F. Wang and M.J. Hannafin. 2005. Design-based research and technology-
enhanced learning environments. Educational Technology Research and
Development 53, 4 (Dec. 2005), 5–23. https://doi.org/10.1007/bf02504682

https://www.codingame.com/
https://tech.io/
https://www.hackerrank.com/
https://www.katacoda.com/
https://doi.org/10.1007/BF00138871
https://doi.org/10.1076/csed.11.3.169.3832
https://doi.org/10.1076/csed.11.3.169.3832
https://doi.org/10.1080/07370024.1990.9667156
https://doi.org/10.1080/07370024.1990.9667156
https://doi.org/10.1007/0-306-47676-2_16
https://doi.org/10.1007/0-306-47676-2_16
https://codeboard.io/
https://doi.org/10.1145/2910925.2910930
https://doi.org/10.1145/2910925.2910930
https://doi.org/10.1177/1525822x06296589
https://doi.org/10.1177/1525822x06296589
https://doi.org/10.1023/a:1008819912213
https://doi.org/10.1023/a:1008819912213
https://doi.org/10.4000/dms.1332
https://doi.org/10.1145/1999747.1999776
https://doi.org/10.1145/1999747.1999776
https://www.pluralsight.com/codeschool
https://doi.org/10.1145/3430665.3456387
https://doi.org/10.1145/3430665.3456387
https://doi.org/10.3102/0013189x032001005
https://doi.org/10.1145/3105726.3105735
https://doi.org/10.1145/3105726.3105735
http://www.learning-theories.com/vygotskys-social-learning-theory.html
http://www.learning-theories.com/vygotskys-social-learning-theory.html
https://doi.org/10.1007/bf02504682

	Abstract
	1 Introduction
	2 The tool at the center of the learning situation
	2.1 Principles of the exercising platform
	2.2 Advantages and drawbacks of the ShellOnYou tool

	3 Methods
	3.1 The learning situation
	3.2 Assumptions at the end of the learning situation
	3.3 Collected feedback and analysis guideline

	4 Results
	4.1 Students improve their procedural knowledge
	4.2 A group dynamics is observed
	4.3 Students perceive their progress
	4.4 Students identify facilitating factors

	5 Discussion
	Acknowledgments
	References

