Sarch-Knows: A Knowledge Graph for Modeling Security
Scenarios at the Software Architecture Level

Jeisson Vergara-Vargas!-2[0000—0001-5498—6619]
Sadon2[0000—0001—8961—3142]

, Felipe Restrepo-Calle! [0000-0003—4226-1324] ' ga]51)
3[0000—0002—2063—0291]

, and Chouki Tibermacine
! Universidad Nacional de Colombia, Bogota, Colombia
{javergarav, ferestrepoca}@unal.edu.co
2 IRISA & CNRS, Université Bretagne Sud, Vannes, France
salah.sadou@irisa.fr
3 LIRMM & CNRS, Univ Montpellier, Montpellier, France
chouki.tibermacine@lirmm.fr

Abstract. Security, as a software quality attribute, needs to be addressed from different
perspectives and at different levels of the software life-cycle. One of these perspectives is the
one that focuses on design decisions at the highest level, that is, at the architectural level. This
paper presents a knowledge graph, called "Sarch-Knows", that models security scenarios based
on the architectural design of a software system. The knowledge graph is based on different
paths called scenarios, where each scenario covers the fundamental elements to meet a security
property and the architectural elements on which the properties fall. This knowledge graph is
being implemented as a Neo4j database on which queries can be issued to extract aggregated
knowledge about security and architecture. This knowledge is scattered over many sources of
documentation, like NIST, MITRE, databases, books and papers; which is why this graph
can be considered as a starting option to establish an ordered scheme of this knowledge.

Keywords: Software Architecture - Security - Modeling - Knowledge Graph - Sarch.

1 Introduction

The architecture of a software system is defined from a series of elements and relationships, which
constitute the most important structures of the system, fundamental to reason about it [1, 13]. These
structures are essential to ensure compliance with the functional and non-functional requirements
of the system. However, from the non-functional point of view, these structures are essential when
it comes to ensuring quality attributes [12]. Although there is a wide variety of quality attributes,
there are some that are indisputably relevant to all types of software systems. One of these is
security. Security is the ability of a software system to protect the elements of the system, including
data, from unauthorized access [1, 18]. Likewise, it is the ability to provide access to the different
system actors that are authorized (users, components and external systems). Security as a software
quality attribute is covered by the same fundamental elements of cybersecurity, among which are
threats, weakness, attacks and risks. It can be identified that some contributions have been made
in the identification of specific elements, at the architecture level, that can affect the security of
a software system, among them the classifications of architectural weaknesses and vulnerabilities
related to the application of security tactics [14, 16]. Although some methodological proposals have
been presented to support the secure software development process, as in [20], there is currently no
comprehensive contribution that provides a transversal description of the essential security concepts

2 Jeisson Vergara-Vargas et al.

as well as specific concepts related to the architecture of a software system. In this context, this paper
presents a knowledge graph where it is possible to model a complete security scenario, involving
elements associated with cybersecurity and elements associated with software architecture. This
conceptual modeling approach makes it possible to identify the flow of a possible security risk, from
the identification of the threat and the respective weakness, to the architectural elements that are
subject to this risk.

The remainder of this paper is structured as follows. Section 2 describes the related work to the
context of the proposed work. Section 3 specifies and details the characteristics of the knowledge
graph proposed. In Section 4 the approach of security scenarios is presented. Section 5 analyzes the
applicability of the proposed work. Finally, Section 6 presents the conclusions and future work.

2 Related Works

Software architecture, as a field of knowledge, poses different strategies when designing and building
a software system. On the one hand, architecture is responsible for defining the structure of the
system, that is, the elements that make it up and the way in which they are related [13]. On
the other hand, the architecture is responsible for defining mechanisms to meet non-functional
requirements, particularly quality attributes. Security, as a software quality attribute, is addressed
from the architectural point of view through two fundamental concepts. In the first place, the use of
architectural tactics has been proposed [4, 11], as sets of design decisions that seek to guarantee the
quality attribute. In the case of security, architectural tactics have been classified in different ways;
however, the taxonomy is highlighted where the moment on which the tactic acts in the system to
deal with an attack is taken into account [8, 1]. In this case, this can be seen at the level of detection,
resistance, reaction and recovery. Moreover, the use of architectural patterns is also proposed to
address recurring design problems. For security, these patterns seek to specify a concrete solution
on the architecture, through the implementation of a particular architectural tactic [1, 5, 19].

At the level of the basic elements of cybersecurity, several works have been proposed, in which
a relationship between these elements and the elements of the architecture of a software system
is considered [15,17,10, 14, 16]. In this case, the information registered by NIST in the National
Vulnerability Database (NVD) is identified as one of the most relevant [9], where specific records
can be found on vulnerabilities identified over time, associated with multiple types of computer
systems, including software systems. In the same way, the information published by MITRE is
highlighted, through the Common Weakness Enumeration (CWE) [6], where a particular mapping
of architectural concepts is presented with a set of weaknesses identified over time, associated with
poor implementation (or null) of an architectural tactic in a software system [7].

3 Sarch-Knows: Knowledge Graph

The proposed knowledge graph is modeled from two fundamental perspectives: the field of knowledge
and the level of detail. In the first place, the perspective by field of knowledge divides the graph
into two parts; the first that includes the elements associated with software architecture, and the
second that includes the elements associated with cybersecurity.

On the other hand, the level of detail perspective divides the graph into two other parts; the
first that includes the abstract elements (lower level of detail), and the second that includes specific
elements, corresponding to instances of the abstract elements (higher level of detail).

Sarch-Knows 3

Fig. 1. Knowledge graph overview (SA: Software Architecture, CS: Cybersecurity).

Figure 1 presents a general overview of the knowledge graph structure, taking into account
the two described perspectives. The green region corresponds to the field of knowledge: Software
Architecture (SA), and the blue region corresponds to the field of knowledge: Cybersecurity (CS).
Likewise, each region by field of knowledge presents the two levels of detail. SA1 and CS1 corre-
spond to the minimum level of detail (abstract elements), and SA2 and CS2 correspond to the
maximum level of detail (specific elements). The details of the graph are described below, based
on the fields of knowledge. It is important to mention that both the abstract elements and the
specific elements are presented in the graph as nodes. Likewise, the relationships between the ab-
stract elements and specific elements are presented in the graph as edges/arcs. Abstract elements
establish conceptual relationships between them. Abstract elements and specific elements establish
instantiation relationships between them. While the specific elements establish security scenarios
between them.

3.1 Software Architecture (SA)

The first part of the graph groups the relationships between different concepts related to the archi-
tecture of a software system. To comprehend the principles of software architecture, it is important
to understand the generalities of the related abstract elements:

— Architectural Element: The fundamental unit of construction of a software system. Among its
basic characteristics are: a set of responsibilities, a boundary, and a set of interfaces. These
elements can include components, connectors, modules, layers, services, and messages [13].

— System Structure: A particular organization and arrangement of architectural elements within
a software system. It can be considered as a set of architectural elements and their respective
relationships [1, 13].

— Component-and-Connector Structure: structure of the system that groups those architectural
elements that are present at runtime [2].

— Component: a computational element or data store that is present at runtime. [18, 2].

— Connector: a path of interaction at runtime between two or more components. [18,2].

— Architectural Tactic: a design decision that influences the fulfillment of a quality attribute [8,
1].

— Architectural Pattern: an architectural solution to solve a recurring software design problem [18].

Figure 2 (a) presents the abstract elements associated with the software architecture perspective
in the graph.

4 Jeisson Vergara-Vargas et al.

The software architecture perspective presents the basic idea of architecture responsibility. On
the one hand, it presents the definition of the system structures, composed of a set of architectural el-
ements and emphasizing the structure of components and connectors. On the other hand, it presents
architectural tactics and architectural patterns, fundamental to achieving quality attributes; in this
case, security.

3.2 Cybersecurity (CS)

The second part of the graph groups the relationships between the basic concepts of cybersecurity.
These concepts are essential to understand and attend to the aspects related to the security quality
attribute, from any point of view, including the architectural. Thus, to comprehend the principles
of security, it is important to understand the generalities of the related abstract elements [9]:

— Weakness: a defect or deficiency in the design, construction or configuration of a software system.

— Risk: the possibility of an undesired occurring event or incident that has a negative impact on
the security of a software system.

— Attack: a malicious attempt to compromise the security of a software system.

— Threat: any event, action or entity that has the potential to cause damage or compromise the
security of a software system.

— Countermeasure: A measure or action taken to prevent, mitigate or neutralize an identified
threat or risk. Its main objective is to protect a software system against possible attacks or
security incidents.

— Security Property: a system’s ability to protect the elements that compose the system, including
data, from any event that may mainly generate a confidentiality, integrity and availability risk.

Figure 2 (a) presents the abstract elements associated with the cybersecurity perspective in the
graph.

The security perspective presents the basic idea of treatment of the security quality attribute
from the general perspective of cybersecurity. On the one hand, it presents the concept of weakness
of a software system, which can affect a security property. This weakness can be exploited by an
attack, and therefore can cause a risk. Attack that will always be associated with a threat. On the
other, the concept of countermeasure is presented, as the element that can prevent the attack and
therefore remedy the weakness so that the risk does not become effective.

3.3 SA-CS Connection

From the two perspectives presented (Software Architecture and Cybersecurity) the graph presents a
main characteristic related to the connection point between the two fields of knowledge. Particularly,
the concepts of architectural tactic and architectural pattern are taken, both for the security quality
attribute, which support decisions and design solutions at the architectural level. In this way, both
a tactic and a pattern can be considered as forms of implementation of countermeasures at the
architecture level to guarantee security properties. Figure 3 presents the connection between the
two perspectives and their respective elements.

This figure shows the relationship that exists between the two perspectives. Fundamentally, the
relationship is given in terms of the concept of countermeasure, which is what will allow to remedy
the vulnerability (a weakness instance) in the system, and therefore, mitigate the risk. Since the
graph has a focus on the architecture of the system, in addition to providing the specification of

Sarch-Knows 5

AN AFFECT
DEFINES.

@ Is,

iAS

\ INVOLVES
@ H
Is.

(@

LEADS TO

m e

CAN BE MITIGATED BY

DEFINES

CAN EXPLOIT n[er]:s

DEFINES. RELATED TO

DEFINES

(b)

Fig. 2. First perspective: Software Architecture (a), and second perspective: Cybersecurity (b).

CAN BE IMPLEMENTED BY
CAN BE IMPLEMENTED BY

Fig. 3. Connection between the abstract elements of the two perspectives of the graph: Software Architec-
ture (SA1) and Cybersecurity (CS1).

the architectural elements on which the possible risk falls, the graph also provides the definition
of security tactics and security patterns that can be taken to address some security requirement.
Thus, the graph works on the idea that tactics and patterns support the necessary countermeasures
to address security requirements. In conclusion, the relationship between the two perspectives is
created from the analysis of architectural tactics and patterns that can be taken at the design stage,
in order to ensure a software system before and during its implementation.

4 Security Scenarios

4.1 Scenario Overview

Based on the general characteristics of the knowledge graph presented, the concept of security
scenario is presented below. The security scenarios are based on the general scenario model for
quality attributes presented by Bass et al. [1], which is composed of the following parts:

— Source: a threat.

— Stimulus: an attack that seeks to exploit a vulnerability (associated with a weakness).

— Artifact: the system structure (or part of it), composed by a set of architectural elements.

— Environment: normal execution of the system.

— Response: Countermeasures defined from architectural tactics and architectural patterns. Mech-
anisms used to control response.

— Response Measure: Evidence of the effectiveness of the applied countermeasures. Evidence
that the risk became effective or not.

6 Jeisson Vergara-Vargas et al.

Based on the above, the knowledge graph presented allows the description of a security scenario
from a subgraph composed of a initial set of nodes, associated with the abstract elements of the
two perspectives: software architecture (SA1) and cybersecurity (CS1); and a second set of nodes,
associated with the specific elements defined from the abstract elements. This last set of nodes
represents a specific security case on the architecture of a software system (SA2, CS2). Specific
elements are classified as SASE (Software Architecture Specific Elements) and CCSK (Current
Common Security Knowledge).

4.2 Using Neo4j for Knowledge Modeling

With the purpose of making use of the knowledge graph, it has been modeled by means of a Neo4;j
database 4. It is a database management system oriented to persistence and data query, through
an approach of graph-based data model. Neodj offers several advantages for graph databases. It
provides efficient storage and retrieval of complex, interconnected data, enabling flexible, high-
performance queries. With its native graph processing capabilities, Neo4j enables easy relationship
traversal and analysis, making it ideal for applications involving knowledge graphs [3].

For the creation of the database, the characteristics of the knowledge graph described in Section 3
were taken into account. In this way, the database is made up of a set of nodes (and their respective
relationships) associated with the abstract elements, both at the software architecture level and
at the cybersecurity level. These nodes belong to a category (a label in Neo4j) called abstract. In
addition, the complementary nodes of the database are created from the specific elements, that is,
from the specific elements for each concept and that describe the security scenario. This means
that a single node of an abstract element, can have multiple relationships with nodes that represent
specific elements. These nodes belong to a category (a label in Neod4j) called specific.

In this way, a security scenario corresponds to a subgraph, formed from a logical relationship
between specific elements of the software architecture and specific elements of cybersecurity. Thus,
through the Neo4j query language (Cypher ®) it is possible to filter a security scenario, and to obtain
its respective subgraph, looking for all nodes corresponding to specific elements that have a logical
relationship. A particular example of a security scenario is presented below. Table 1 summarizes the
relationship between the abstract elements and the specific elements associated with the security
scenario to be described.

The presented security scenario is related to a common weakness in different software systems de-
signed as a Service-Oriented Front-End Architecture (SOFEA). This architecture (system structure)
is generally composed of the following elements: a front-end component (presentation), a back-end
component (business logic), a database component (data persistence), an HTTP connector for com-
municating a web browser with the front-end component, a REST connector for communicating the
front-end component with the back-end component, and a database connector for communicating
the back-end component with the database component. In this case, the weakness is related to the
HTTP connector and refers to the fact that the protocol may not have a mechanism that allows
verifying the integrity of the message that travels through that channel.

The weakness, called "Missing Support for Integrity Check" 6 is part of the Common Weakness
Enumeration (CWE) published by MITRE, in its mapping on Architectural Concepts. In this case,
the weakness falls on an architectural element of the architecture: the HT'TP connector, which allows

* https://neodj.com/
5 https://neodj.com/docs/getting-started/cypher-intro/
6 https://cwe.mitre.org/data/definitions/353.html

Sarch-Knows 7

Table 1. Example of a particular security scenario for a software system with a Service-Oriented Front-End
Architecture (SOFEA).

Perspective Abstract Specific
Element(s) Element(s)
Software System Structure SOFEA (Service Oriented Front-End Architecture)
Architecture |Architectural HTTP connector between a web browser component and
(SA) Element the Front-End component of the system sasel
Weakness CWE-353: Missing Support for Integrity Check ccskl
.. |Security Property Integrity ccsk2
?g;))ersecurlty Attack CAEEC—3$9: Content Spoofing Via Application API cesk3
Manipulation
Threat Malicious User ccsk4
Risk A08:2021 — Software and Data Integrity Failures ccskb
Countermeasure Implement a Mechanism for Verifying Message Integrity |ccsk6
SA/CS Architectural Tactic |Detect Attacks >Verify Message Integrity sase2
Architectural Pattern|Intercepting Validator sase3

communication between a web browser and the front-end component, connector in charge of sending
messages coming from the client. Additionally, this scenario poses the threat of a malicious user
attempting an attack called "Content Spoofing Via Application API Manipulation" 7 and which
is part of the Common Attack Pattern Enumeration and Classification (CAPEC), also published
by MITRE. The weakness leads to a risk called "Software and Data Integrity Failures" ® mapped
in the OWASP Top Ten classification.

Finally, the scenario presents an architectural tactic and an architectural pattern that serve as
countermeasures to mitigate the risk generated by the weakness. In this case, the architectural
tactic "Verify Message Integrity" proposes the use of techniques such as checksum and hash values
to verify the integrity of the messages that travel through the HT'TP connector. It is important to
mention that this tactic is part of the "Detect Attacks" category. On the other hand, the architec-
tural pattern "Intercepting Validator" is based on the addition of a new software element upfront
the destination of messages (the front-end component), whose responsibility is to implement the
described architectural tactic. Figure 4 presents the subgraph associated with the described secu-
rity scenario, based on a query made on the Neo4j database. Here, the yellow nodes represent the
abstract elements and the nodes with different colors represent the specific elements of the security
scenario. See Table 1 for details of these elements.

The Cypher (Neo4j’s graph query language) request made to return the described security
scenario is:

MATCH p =
(a:sase {short name: "HTTP"})-[*]-(b:ccsk {name: "Missing Support for Integrity Check"})
RETURN p;

This means that the database is being searched the subgraph (p) containing all interrelated

nodes that have the "HTTP" architectural element and the weakness "Missing Support for Integrity
Check" in its path.

7 https://capec.mitre.org/data/definitions/389.html
8 https://owasp.org/Topl10/A08 2021-Software and Data_Integrity Failures/

8 Jeisson Vergara-Vargas et al.

Weakne-
ss
Risk

Cor:)r;ect— s Hyperte- Softwar-
xt Trans... eandD...

sasel ceskb

2 L Security
Integrity Property

Architec- e
tur... S
sase? cesk2
o Missing

Suppor.... Maliciou-
Implem-

ceskl ~ey e
entaMe...
cesk4

Content

Spoofin...

Architec- sase3 Threat
tur... Counter-

measur... Attack
Fig. 4. Security scenario subgraph as a Neo4j database query.

5 Discussion

Guaranteeing the quality of a software system involves dealing with different quality attributes,
among which security is one of the most important, and the architecture of the software system is
essential to meet the related requirements. In this way, due to the complexity when dealing with
this attribute and the number of possible scenarios that fall on a software system and where it is
necessary to meet the security requirements, it is very important to have a source that synthesizes
the fundamental elements. That contributes to the treatment of these security scenarios.

However, despite the fact that there are different sources of information where the elements
that contribute to the description of a security scenario are related, there is no single resource that
comprehensively covers and relates all the elements. For this reason, our knowledge graph proposal
comprehensively conceives all the fundamental elements necessary to fully describe a scenario in
which security in the architecture of a software system is sought to be addressed. The knowledge
graph is implemented manually, from different sources of information, where the following stand
out: the Common Weakness Enumeration (CWE) and the Common Attack Pattern Enumeration
and Classification (CAPEC), provided by MITRE, the official documentation and the National
Vulnerability Database (NVD) by NIST, different databases and the main bibliographical references
on software architecture and cybersecurity.

At the implementation level, the base model of the graph is highlighted, which includes abstract
elements of the two fields: software architecture and cybersecurity. This guarantees that all security
scenarios are structured in the same way, keeping the formalism between the elements of the archi-
tecture and the solidity of the control scheme over the security of the software system. In the same
way, each specific element is rigorously described, based on the identified sources of information
and a corresponding analysis that allows the generation of logical relationships between each part
of the scenario.

Based on the above, the applicability of the knowledge graph can be observed as follows. In the
first place, the knowledge graph allows analyzing a security scenario at the level of the architecture

Sarch-Knows 9

of a software system. In analysis, it is based on the contribution of the graph when it comes to
identifying vulnerabilities in a set of elements of the architecture. This can generate a security risk
in the system, as well as the countermeasures that can be applied in the system to mitigate this
risk. This is based on the point of view of a set of architectural tactics and patterns. In second
place, all the specific elements modeled in the graph, based on the abstract elements, can have
one or more security scenarios associated to them. This allows multiple security scenarios to be
consulted, performing a filter by the scenario identifier, allowing multiple specific elements to be
part of multiple security scenarios.

It is important to mention that vulnerabilities are not modeled in the knowledge graph since they
are considered instances of weaknesses, that is, weaknesses identified or reported in real software
systems.

The proposed knowledge graph can be used as a primary tool when carrying out the architectural
design of a software system that requires meeting a set of security requirements, and therefore, serves
as a basis to guide the construction of the system. The maintenance of the knowledge graph is based
on the appearance of new reports of vulnerabilities and weaknesses in the sources of information
taken as reference. The addition to the database is done using the Cypher query language, building
the query from the abstract elements and the specific elements analyzed, equivalent to a new security
scenario.

Finally, the works presented in Section 2 generally describe independent classifications when
dealing with security. On the one hand, precise classifications of weaknesses at the architectural
level are presented, but without a deep level of detail towards the architectural elements involved.
On the other hand, works are presented that describe the different design decisions that can be taken
to deal with security, but do not delve into the vulnerabilities that are sought to be remedied. For
this reason, our knowledge graph proposes a joint perspective where, under the concept of security
scenario, it is possible to detect vulnerabilities in a more precise way, thanks to the structure of the
graph and the knowledge vocabulary that it incorporates.

6 Conclusions and Future Work

In this paper, we presented a knowledge graph for modeling security scenarios from the point
of view of a software system architecture. This graph, implemented as a Neo4j database, models
abstract elements in two fields: software architecture and cybersecurity, as well as specific elements
that allow describing a security scenario in a software system architecture. The scenarios start
from the weakness that can be exploited and that falls on a set of architectural elements, up to the
countermeasures that can be applied to the system to mitigate the risk generated in terms of tactics
and architectural patterns for security. The graph is created from different sources of information
and allows a general overview of the elements involved when dealing with a security requirement at
the software system architecture level.

As a future work, three paths are proposed. The first one is related to the definition of the
strategy so that relevant security scenarios at the architectural level can be loaded into the database
in a collaborative way, guaranteeing the rigor of the concepts involved, the guarantee of the sources
of information and the precision of the new data. Secondly, it is pertinent to include a detailed
and comparative evaluation of the proposed approach with other approaches, in order to analyze
the real utility of this approach for decision-making at the architectural level, both in small and
large software systems. This is due to the fact that in large software systems the number of security
scenarios will grow exponentially and it is important to complement the proposal with data loading

10

Jeisson Vergara-Vargas et al.

schemes and more automated data analysis, which make this tool very useful for a software architect.
Finally, the possibility of extending this same knowledge graph idea to other quality attributes such
as scalability, availability, among others, is raised.

References

Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, vol. 4th Edition (2022)

2. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord, R., Stafford,

11.

12.
13.

14.

15.

16.

17.

J.: Documenting Software Architectures - Views and Beyonds, vol. 2nd Edition (2011)
Fernandes, D., Bernardino, J.: Graph databases comparison: Allegrograph, arangodb, infinitegraph,
neodj, and orientdb (2018). https://doi.org/10.5220/0006910203730380

. Fernandez, E.B., Astudillo, H., Pedraza-Garcia, G.: Revisiting architectural tactics for security. Lec-

ture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 9278, 55-69 (10 2015). https://doi.org/10.1007,/978-3-319-23727-
5 5/COVER

Fernandez, E.B., Yoshioka, N., Washizaki, H.: Evaluating the degree of security of a sys-
tem built using security patterns. ACM International Conference Proceeding Series (8 2018).
https://doi.org/10.1145/3230833.3232821, https://dl.acm.org/doi/10.1145/3230833.3232821

MITRE: Common weakness enumeration (cwe), https://cwe.mitre.org/data/index.html

MITRE: Common weakness enumeration (cwe) - architectural concepts,
https://cwe.mitre.org/data/definitions/1008.html

Marquez, G., Astudillo, H., Kazman, R.: Architectural tactics in software architecture:
A systematic mapping study. Journal of Systems and Software 197, 111558 (3 2023).
https://doi.org/10.1016/J.JSS.2022.111558

NIST: Nvd - national vulnerability database, https://nvd.nist.gov/

. Orellana, C., Villegas, M.M., Astudillo, H.: Mitigating security threats through the use

of security tactics to design secure cyber-physical systems (cps). ACM International Con-
ference Proceeding Series 2, 109-115 (9 2019). https://doi.org/10.1145/3344948.3344994,
https://dl.acm.org/doi/10.1145/3344948.3344994

Pedraza-Garcia, G., Astudillo, H., Correal, D.: A methodological approach to ap-
ply security tactics in software architecture design. 2014 IEEE Colombian Conference
on Communications and Computing, COLCOM 2014 - Conference Proceedings (2014).
https://doi.org/10.1109/COLCOMCON.2014.6860432

Richards, M., Ford, N.: Fundamentals of Software Architecture: an Engineering Approach (2020)
Rozanski, N., Woods, E.: Software Systems Architecture. Addison-Wesley, 2nd edn. (2012).
https://doi.org/10.1017/CB09781107415324.004

Santos, J.C., Peruma, A., Mirakhorli, M., Galstery, M., Vidal, J.V., Sejfia, A.: Understanding software
vulnerabilities related to architectural security tactics: An empirical investigation of chromium, php
and thunderbird. Proceedings - 2017 IEEE International Conference on Software Architecture, ICSA
2017 pp. 69-78 (5 2017). https://doi.org/10.1109/ICSA.2017.39

Santos, J.C., Suloglu, S., Ye, J., Mirakhorli, M.: Towards an automated approach for detect-
ing architectural weaknesses in critical systems. Proceedings - 2020 IEEE/ACM 42nd Inter-
national Conference on Software Engineering Workshops, ICSEW 2020 pp. 250-253 (6 2020).
https://doi.org/10.1145/3387940.3392222, https://dl.acm.org/doi/10.1145/3387940.3392222

Santos, J.C., Tarrit, K., Mirakhorli, M.: A catalog of security architecture weaknesses. Proceedings -
2017 IEEE International Conference on Software Architecture Workshops, ICSAW 2017: Side Track
Proceedings pp. 220-223 (6 2017). https://doi.org/10.1109/ICSAW.2017.25

Santos, J.C., Tarrit, K., Sejfia, A., Mirakhorli, M., Galster, M.: An empirical study
of tactical vulnerabilities. Journal of Systems and Software 149, 263-284 (3 2019).
https://doi.org/10.1016/J.JSS.2018.10.030

Sarch-Knows 11

18. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture - Foundations, Theory, and Prac-
tice. Wiley (2009)

19. That, M.T.T., Sadou, S., Oquendo, F.: Using architectural patterns to define architectural decisions.
pp. 196-200 (2012). https://doi.org/10.1109/WICSA-ECSA.212.28

20. Uzunov, A.V., Fernandez, E.B., Falkner, K.: Assessing and improving the quality of security
methodologies for distributed systems. Journal of Software: Evolution and Process 30, ¢1980 (11
2018). https://doi.org/10.1002/SMR.1980, https://onlinelibrary.wiley.com/doi/full/10.1002/smr.1980
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1980 https://onlinelibrary.wiley.com/doi/10.1002/smr.1980

