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Abstract—Checking the security properties of a software sys-
tem during design is essential to enable the construction of a
foundationally secure system. However, combining design tasks
with security checks leads to a difficult and error-prone activity.
This paper presents a checking method for security properties,
called Sarch-Checks. This method allows analyzing the context
of architectural elements in terms of an expected security
property and identifying the presence of countermeasures and
vulnerabilities. It uses an architectural description of the system
to be analyzed, through the use of a modeling language. It also
uses a knowledge graph, modeled and built from the elements
of the software architecture, and cybersecurity elements taken
from official information sources such as NIST and MITRE.
This solution is an aide to the architect to design more secure
architectures. Additionally, a validation process of the proposed
method is presented through a case study based on a real report
of a vulnerability in an open-source software system.

Index Terms—Security property, software architecture descrip-
tion, checking method, knowledge graph.

I. INTRODUCTION

The architectural design of a software system encompasses
different approaches, which enable the software requirements
to be satisfied [4]. On the one hand, the architectural design
supports decisions about the different structures of the system,
comprised of different types of architectural elements, their
relationships and their properties [13]. On the other hand, the
architectural design also supports those decisions related to
non-functional properties of a system, such as security, scala-
bility, reliability, among others. These properties are generally
known as software quality attributes [4]. One of the most
relevant quality attributes today is security. This attribute is
described as the ability of a software system to protect system
elements, including data and components, from situations that
may affect their confidentiality, integrity and availability [4].

Given the importance of this quality attribute, ensuring that
a software system is secure is a fairly difficult task, which
must be addressed at different points within the software
development life cycle. This is the basis of the Secure by
Design approach. Indeed, Secure by Design approach seeks
to make early design decisions that allow certain security

properties to be guaranteed before implementation [6]. One
of these early moments is at design time, where architectural
design plays a fundamental role. In addition, the architect
is not always aware of architectural vulnerabilities, as these
are only defined once they have been identified and reported
via CVE (Common Vulnerabilities and Exposures1). So, the
architect has to simultaneously deal with the design of the
system and check for possible existing vulnerabilities. The
latter involves exploring a huge database and combining these
two tasks is difficult and error-prone.

Based on the above, it is essential to have methods, models
and/or tools that enable to verify that the system design is
faithful to the security requirements, and therefore that a
fundamentally secure system can be built on the basis of that
design. In this way, there are several approaches that have
been proposed that allow these verification tasks to be carried
out [18]. Some of them at the detailed design level or the
implementation of the system, that is with decisions around the
coding process [12], [21], and others at the architectural design
level, that is with decisions around the system structure [1],
[2], [7].

Therefore, we propose an approach that combines the clas-
sical representation of an architecture, through an architecture
description or modeling language, with a knowledge graph-
based representation of security weaknesses and the archi-
tectural tactics that mitigate them. The latter allows us to
use languages that are powerful enough to express queries
concerning vulnerabilities at the architectural level. We have
implemented this approach using Neo4j, which we used to
define the knowledge graph along with queries specified
using the Cypher2 language. To validate our approach, we
carried out a case study on a system (Apache Airflow) whose
vulnerabilities have already been reported by the National
Vulnerability Database (NVD), concerning the confidentiality
security property.

1https://cve.mitre.org/
2Neo4j’s graph query language.

https://cve.mitre.org/


This paper is organized as follows: Section II introduces the
proposed approach for verifying security properties through
the use of a knowledge graph and software architecture
descriptions. Section III describes the implementation aspects
of the checking method. Section IV presents the validation of
the approach using a case study. Section V brings the related
work. Finally, Section VI presents the conclusions and some
directions for future work.

II. GENERAL OVERVIEW OF THE CHECKING METHOD

The proposed checking method, called Sarch-Checks, has
a scheme based on three fundamental elements: the inputs,
the checking process and the outputs. Sarch-Checks performs
an analysis process on a particular architectural element and
the security property to be verified, with the objective of
checking whether the property is met or not. Checking criteria
include: the identification of possible weaknesses associated
with the architectural element, and the presence or absence of
architectural design decisions, as countermeasures, to mitigate
the weaknesses.

Figure 1 shows the main steps of the proposed checking
method, which are described in detail below.

Sarch-Checks

1. Identification of architectural
elements

2. Identification of possible
weaknesses

3. Analysis of the context of the
architectural elements

5. Verification of presence of
countermeasures

4. Search of architectural tactics
details

6. Reporting of checking results

Inputs Outputs

Fig. 1. General scheme of the proposed method.

A. Inputs

For Sarch-Checks, inputs refer to the elements that are
required to carry out the checking process: a software archi-
tecture description and a security property to be verified.

1) Description of software architecture: following the ide-
als of Secure by Design, we seek to make decisions at
design time that ensure security before implementation.
The architecture description should include: architec-
tural elements, architectural relationships and properties
of both. In the case of Sarch-Checks, the component
and connector structure is used, which contains those
architectural elements that are present in the system at
runtime.

2) Security property to check: Security is a fairly broad
quality attribute, so it covers different properties [3]. In
the case of Sarch-Checks, the three fundamental char-
acteristics of security, known as the triad in the field of
Cybersecurity, are taken as a reference: Confidentiality,
Integrity and Availability (CIA). Confidentiality refers to
the system’s ability to protect its elements, primarily its
data, from access or disclosure by unauthorized actors.
Integrity refers to the system’s ability to guarantee that
its elements, especially its data, have not been altered in

an unauthorized manner: guarantee of completeness and
correctness. Finally, availability refers to the system’s
ability to guarantee that its elements will be available at
the time they are required.

B. Checking Process

Sarch-Checks proposes a checking process based on the
described inputs where it carries out a set of internal steps.
Each step requires some inputs and produces some outputs.
Below are the different steps:

1) Identification of architectural elements: it consists of
the automatic analysis of the architectural description
received as input, in order to identify each of the
architectural elements to be analyzed. Input: description
of the architecture, output: architectural elements.

2) Identification of possible weaknesses: for each architec-
tural element identified in the previous stage, and with
the security property to be verified, a search is performed
in the knowledge graph, in order to find both the possible
security weaknesses that the architectural element may
have in relation to the specified security property, as
well as possible architectural tactics that can be applied
to mitigate these weaknesses. The knowledge graph
is a complementary element to Sarch-Checks, which
contains information related to software architecture and
cybersecurity, modeled and related from different official
sources in these areas. Input: architectural elements,
security property, output: weaknesses and related archi-
tectural tactics.

3) Analysis of the context of the architectural elements:
after identifying the possible weaknesses and the re-
spective architectural tactics that can be used as counter-
measures, an analysis of the context of the architectural
elements in the global architecture of the system is
carried out. This analysis consists of identifying the
conditions in which this element is found in the ar-
chitecture: interactions with other elements, interaction
characteristics and internal properties. Input: weaknesses
and related architectural tactics, output: context of the
architectural elements.

4) Search of architectural tactics details: a new search is
performed in the knowledge graph to retrieve the im-
plementation details of the related architectural tactics.
Input: related architectural tactics, output: architectural
tactics details.

5) Verification of presence of countermeasures: an inspec-
tion process is executed on the context of the architec-
tural element to identify whether or not there is evidence
of the presence of the related tactics. Input: architectural
tactics details, output: presence or not presence of archi-
tectural design decisions that correspond to the tactics.

6) Reporting of checking results: finally, after the inspec-
tion process, according to the result:

• If there are design decisions (application of coun-
termeasures): the security property is guaranteed.



• If there are no design decisions (absence or poor ap-
plication of countermeasures): the security property
is not guaranteed. In this case, the vulnerabilities
are reported as instances of the related weaknesses.

III. IMPLEMENTATION

For the implementation of the proposed checking method,
called Sarch-Checks, an information analysis process was
carried out, as well as the use and construction of software
methods and tools that allow interacting with each of the
elements needed by our checking method. Figure 2 gives
a general overview on the implementation of the checking
method. Below we describe the elements of the method in
detail.

A. Architecture Modeling Language

For the representation of the software system’s architecture,
an architecture modeling language called Sarch [5], [19] is
used, which allows the design of software architectures empha-
sizing the different structures that make up a software system.
Sarch has the ability to model the structure of components
and connectors in a generic way, using only the elements and
relationships formally defined in the domain.

1) Components: are those architectural elements that are
present at runtime and constitute the fundamental units
or building blocks of the architecture of a system. They
are mainly associated with computational elements, such
as components built with general-purpose programming
languages that process data, and data stores, such as
databases.

2) Connectors: are those architectural elements that serve
as a communication bridge between two components.
Generally, connectors have the function of transmitting
the data that transits from one component to another,
guaranteeing interaction flows within the system archi-
tecture.

3) Ports: they are secondary architectural elements, associ-
ated with the components. Ports refer to the interfaces
that the components have, in order to interact with their
surroundings, that is, with other components or systems.

4) Roles: they are secondary architectural elements associ-
ated with the connectors. The roles can be considered as
the interfaces of the connectors, and their function is to
determine the way in which the connector can be used
by the components for their interaction.

5) Attachments: relations that allows communication be-
tween a components and connectors. The relationship
can be denoted as the association between the port of
the component and the role of the connector.

B. Knowledge Graph

Our method is based on a knowledge graph, called Sarch-
Knows, which is modeled from the elements of two domains:
software architecture and cybersecurity. This knowledge graph
is implemented as a database in Neo4j and consists of nodes
classified into two main categories: abstract elements and

specific elements. Figure 3 shows a general representation of
the knowledge graph structure.

The abstract elements refer to fundamental concepts of each
of the two domains involved that are required for the proposed
checking method:

• The Software Architecture field encompasses the follow-
ing elements: system structure, architectural element, ar-
chitectural relationship, component and connector struc-
ture, components, connectors, ports, roles, and design
decisions. Design decisions are classified as: architectural
tactics [4], which refer to those decisions that influence
the achievement of a quality attribute response to some
stimulus, and architectural patterns [8], which refer to
those decisions that describe recurring problems in a
particular design context, presenting an appropriate ar-
chitectural solution to solve the problem.

• The Cybersecurity field encompasses the following ele-
ments: risk, threat, weakness, attack and countermeasure.

On the other hand, specific elements can be considered as
instances of abstract elements, in the following way:

• The specific elements of the part of the graph associ-
ated with software architecture are categorized as SASE
(Software Architecture Specific Elements). They are cre-
ated from the literature in the field, emphasizing the
architectural elements that are part of the structure of
components and connectors and that are frequently used
in the architectural design of different types of software
systems.

• The specific elements of the part of the graph associated
with cybersecurity are categorized as CCSK (Current
Common Security Knowledge) which are created from
different official sources of information in the field,
mainly the NVD (National Vulnerability Database) and
the following MITRE classifications: CWE (Common
Weakness Enumeration) and CAPEC (Common Attack
Pattern Enumeration and Classification).

The knowledge graph is defined as follows:

• Both abstract and specific elements are modeled as nodes.
• The nodes of each domain (software architecture and

cybersecurity) are connected by logical links based on
their conceptual relationships.

• There are also logical links that connect nodes of the
two domains. These links are based on the relationship
that exists between an architectural element, the asso-
ciated security elements (weakness, threat, attack, risk)
and possible countermeasures in terms of architectural
tactics, implemented as patterns. This information was
extracted from the description of CWEs associated with
weaknesses in software architectures [15].

The graph receives queries using the Cypher language and,
according to the parameters received, uses the attributes of the
nodes to return a subgraph associated with a security scenario
involving elements of the software architecture. Likewise, it
is important to mention that the software architecture domain
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modeling in Sarch-Knows is consistent with the grammar of
Sarch language.

C. Checker

Based on the above, the proposed checking method is
implemented using both Sarch and the Sarch-Knows knowl-
edge graph. Roughly speaking, Sarch-Checks will look at
each node, representing a concrete architectural element, and
search for any links to nodes representing weaknesses. The
result is a list of architectural elements, each linked to a
list of weaknesses. Knowing that in our knowledge graph
we have links between weaknesses and architectural patterns,
representing the countermeasure, the check for the existence of
a vulnerability is as follows: for each weakness found, check
whether the architectural element to which it is linked is part
of a structure that conforms to the countermeasure pattern
recommended for the weakness in question. If the pattern is
not implemented in the architecture, we suspect that there is
a vulnerability associated with that weakness.

The implementation details based on the steps of the method
are described below:

• Identification of the architectural elements: The archi-
tectural description is read in Sarch, obtaining a list of
architectural elements.

• Identification of possible weaknesses: For each archi-
tectural element identified, the following Cypher query
is made, to the Sarch-Knows knowledge graph to find
possible related weaknesses:

MATCH subgraph =
(a:specific {KEY: ’VALUE’})-
[:RELATIONSHIP*]-(b)
RETURN subgraph;

KEY: attribute to search (e.g., name), VALUE: architectural element

(e.g., Database, REST), RELATIONSHIP*: possible relationships (e.g.,

CanAffect, IsRelatedTo, CanBeMitigatedBy).
As a result, a subgraph with the following data is ob-
tained: architectural element, possible weaknesses, possi-
ble countermeasures, related attacks, associated security
properties, related architectural tactics and related archi-
tectural patterns.
Figure 4 shows an example of the subgraph obtained from
the query. This example concerns the REST architectural
element. This element is associated with two weaknesses
(Improper Authentication, Missing Authorisation). Each
of the obtained weaknesses is related to some security
properties (sp2 and sp3 in the figure) and, at the same
time, with some countermeasures (c1 and c2). From the
countermeasures we can deduce the needed architectural
tactic (e.g. at2) and its example of implementation as a
pattern (e.g. ap2).

• Verification of presence of countermeasures: Based on
the weakness found, we have the associated tactic as
a countermeasure and its various implementations as
architectural patterns. Each pattern has a Cypher query
that can be applied to the architecture to identify its
presence. Thus, if the pattern is identified in the analysed
architecture, and the architectural element linked to the
weakness is part of the pattern, then we can consider
that the architecture in question holds an architectural
decision that implements the tactic countermeasuring
the weakness found. Otherwise, if no pattern is found
that implements the countermeasure tactic, then we can
suspect the existence of a vulnerability linked to this
weakness in the architecture.
Below is a general presentation of the structure of a
Cypher generic query to obtain check the presence of
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an architectural pattern in the described software archi-
tecture.

//Part 1
WITH [’element_1’, ..., ’element_n’]
AS architecture_subgraph
CREATE (arch_element:ArchitecturalElement{})
-[:RELATIONSHIP*]->
(arch_element:ArchitecturalElement})
//Part 2
MATCH (n:entity_pattern)
-[:RELATIONSHIP*]->(m:entity_pattern)
WITH COLLECT(n) AS pattern_subgraph
//Part 3
FOREACH (entity_pattern

IN COLLECT(pattern_subgraph)
FOREACH (arch_element
IN COLLECT(architecture_subgraph) |

WHERE arch_element
<> entity_pattern

MATCH (n:arch_element)
DELETE n

)
)
RETURN CASE WHEN SIZE(nodosColeccion) = 0
THEN ’ The graph is empty,
the pattern is applied.’
ELSE ’ The graph is not empty, the pattern
is not applied.’
END AS result

Part 1 creates a new subgraph with the architecture
elements. Part 2 obtains the subgraph containing the
implementation details of the architectural pattern. And
finally, part 3, compares each element (node) of the
architecture (architecture subgraph) with each element
of the pattern (pattern subgraph). If the elements are
equivalent, the element of the architecture subgraph is
removed, if not, the element is kept. In the end, if the
architecture subgraph is empty, it means that the pattern is
present in the architecture. Overall, this query extracts the
structure of the pattern in question from the knowledge
graph to try to find it in the architecture part of the graph.

• Reporting of checking results: The analysis report
presents all the weaknesses in the architecture, with the

architectural element concerned, specifying the security
property not satisfied for each of them. In addition, it sug-
gests the recommended tactic and examples of patterns
implementing the tactic to achieve the countermeasure.
All these elements are present in the knowledge graph.

IV. CASE STUDY

In order to validate the proposed checking method, we
conducted a case study using an open-source software system
called Apache Airflow 3. To carry out the execution of the case
study, the steps presented by Wohlin et al. in [20] are taken
as reference and described below. Applied to our case study
this corresponds to the following steps: Design and planning,
preparation and collection of data, data analysis and discussion
on the results.

A. Design and Planning

The objective of this case study is to validate if the proposed
method is effective in identifying the guarantee of a security
property and the possible vulnerabilities at the software system
architecture level.

To achieve this objective, we used an open-source software
system, called Apache AirFlow, which has a report of vulner-
abilities in CVE and NVD. This system is a platform created
by the community to programmatically author, schedule and
monitor workflows. Thus, after a reverse engineering process
carried out on the software system from its public repository
and its official documentation, we seek to abstract its archi-
tecture in order to apply the proposed checking method and
compare the results. Thus, we applied the checking method
based and our implementation and answer the following re-
search question:

RQ: Is it possible to have evidence of a guarantee of a
security property from the architectural description of a
software system?

To concretely carry out this case study, the following steps
were followed: 1) identification and selection of a reported

3https://airflow.apache.org/

https://airflow.apache.org/


vulnerability, 2) reverse engineering the software system to
abstract the architecture, 3) execution of the checking process,
and 4) analysis of the results.

B. Preparation and Collection of Data

The preparation and collection of data mainly covers the
first three steps mentioned above.

1) Identification and Selection of a Reported Vulnerability:
Apache Airflow is a web-based software system. Web-based
software systems are among those with the largest attack
surface and therefore the greatest security risks. For this
reason, a reported real vulnerability of Apache Airflow is
used: CVE-2020-13927 4, which was reported in the Common
Vulnerabilities and Exposures (CVE) program, whose function
is to identify, define, and catalog publicly disclosed cyberse-
curity vulnerabilities. This CVE report is supported by the
CVE-2020-13927 Detail 5 entry in the National Vulnerability
Database (NVD). This vulnerability is mapped from a weak-
ness classified in the Common Weakness Enumeration (CWE)
as CWE-287: Improper Authentication 6.

It should be noted that the description in CVE indicates
several security properties. However, in the context of this
case study we only consider the triad of security properties
best known and accepted by the community, namely Confi-
dentiality, Integrity and Availability (CIA).

The objective of this selection is to have a reference of a
software system with a real reported vulnerability, which can
be compared with the automatic checking by Sarch-Checks
and in this way to be able to validate the checking method
through the case study.

2) Reverse Engineering the Software System to Abstract the
Architecture: Although the vulnerability has already been mit-
igated, the official documentation of Apache Airflow project
makes it possible to identify and analyze the characteristics of
the system at the time the vulnerability was found.

Based on the above, a reverse engineering process is per-
formed, starting from the publicly available source code 7 and
the official documentation 8 published on the Apache Airflow
website. The aim of this reverse engineering is to abstract the
architecture at the level of components and connectors.

3) Description of the Software System Architecture: At this
point, having completed the process of identifying and select-
ing the vulnerability and abstracting the system architecture,
we proceed to describe this architecture in Sarch.

Figure 5 represents the architecture obtained after the anal-
ysis, as well as its representation in Sarch language.

4) Execution of the Checking Process: The checking pro-
cess is executed on the architecture without specifying a
special security property. Therefore, it is expected to obtain as
a result guarantees of the properties of confidentiality, integrity

4https://www.cve.org/CVERecord?id=CVE-2020-13927
5https://nvd.nist.gov/vuln/detail/CVE-2020-13927
6https://cwe.mitre.org/data/definitions/287.html
7https://github.com/apache/airflow/
8https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/

overview.html
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sarch { 
   architectural_views: 
      component_and_connector_view :: 
         elements { 
            types -> ... 
            attributes -> ... 
            // Components: internal/external component type name (properties) 
            int component database airflow_db ( 
               db_type relational 
            ) 
            int component monolith airflow_mo ( 
               programming_language python 
            ) 
            ext component shell any_sh 
            ext component web_browser any_wb 
            ext component http_client any_httpc 
            // Connectors: connector type name (properties) 
            connector rdbc airflow_rdbc 
            connector pc airflow_pc 
            connector http airflow_http (authorization: false) 
            connector rest airflow_rest (authorization: false) 
         } 
         relations { // attachment: component.port, connector.role 
            // airflow_db – airflow_mo 
            attachment: airflow_db.server, airflow_rdbc.solve_query 
            attachment: airflow_mo.client, airflow_rdbc.send_query 
            // airflow_mo – any_sh 
            attachment: airflow_mo.answerer, airflow_pc.answer 
            attachment: any_sh.caller, airflow_pc.call 
            // airflow_mo – any_wb 
            attachment: airflow_mo.server, airflow_http.respond_to_request 
            attachment: any_wb.client, airflow_http.send_request 
            // airflow_mo – any_httpc 
            attachment: airflow_mo.server, airflow_rest.provide_service 
            attachment: any_httpc.client, airflow_rest.invoke_service 
         } 
      ::    
   : 
} 
 

Fig. 5. Apache Airflow architecture (component ports, connector roles).

and availability, for all the architectural elements that are part
of the system.

Consequently, as the main mechanism for data collection in
this case study, different observations were made during the
execution of the checking process.

According to the elements present in the architectural de-
scription that is taken as input, nine elements can be observed,
of which five are components (airflow db, airflow mo, any sh,
any wb and any httpc,) and four are connectors (airflow rdbc,
airflow sh, airflow http and airflow rest). In this way, after
the identifying the architectural elements, Sarch-Checks is
applied in order to carry out the respective checking process.
According to the proposed method, its execution allows us
to observe: 1) the possible weaknesses associated with the
Apache AirFlow architecture, 2) the countermeasures associ-
ated with the identified weaknesses, 3) the related architectural
tactics and patterns as countermeasures, 4) the presence or
absence of related tactics and patterns in the Apache AirFlow
architecture, and 5) in cases of non-presence of tactics and
patterns in the architecture, the resulting vulnerabilities.

C. Data Analysis

After executing the verification process based on the Apache
Airflow architecture, it is possible to observe the obtained
findings summarized in Table I. Firstly, a set of possible weak-
nesses is identified, according to the architectural elements
of Apache Airflows and the respective security properties
that can be verified in Sarch-Checks. Likewise, a set of
architectural tactics and patterns are also identified, associated
as countermeasures to these weaknesses. And finally, a result
that indicates whether the security properties are guaranteed
or not. It is important to highlight again that the guarantee
on security properties corresponds to the presence of the
corresponding architectural patterns in the system architecture.

Elements from Table I having a value No (bold) correspond
to suspected vulnerabilities. That is, they are associated with
a weakness without being covered by the implementation

https://www.cve.org/CVERecord?id=CVE-2020-13927
https://nvd.nist.gov/vuln/detail/CVE-2020-13927
https://cwe.mitre.org/data/definitions/287.html
https://github.com/apache/airflow/
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/overview.html
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/overview.html


TABLE I
RESULTS OF THE CHECKING PROCESS OF SARCH-CHECKS

Architectural
Element

Architectural
Element Type Weakness Security

Properties
Architectural

Tactic
Architectural

Pattern Guarantee

airflow http HTTP
Connector

CWE-287:
Improper

Authentication

Confidentiality
Integrity

Availability

Authenticate
Actors Authenticator Yes

CWE-862:
Missing

Authorization

Confidentiality
Integrity

Authorize
Actors Authorization Yes

CWE-353:
Missing Support

for Integrity Check
Integrity Verify Message

Integrity
Transport Layer

Securiy Yes

CWE-354:
Improper Validation
of Integrity Check

Value

Integrity Verify Message
Integrity

Transport Layer
Securiy Yes

airflow rest REST
Connector

CWE-287:
Improper

Authentication

Confidentiality
Integrity

Availability

Authenticate
Actors Authenticator No

CWE-862:
Missing

Authorization

Confidentiality
Integrity

Authorize
Actors Authorization No

CWE-353:
Missing Support

for Integrity Check
Integrity Verify Message

Integrity
Transport Layer

Securiy Yes

CWE-354:
Improper Validation
of Integrity Check

Value

Integrity Verify Message
Integrity

Transport Layer
Securiy Yes

airflow mo Monolithic
Component

CWE-250:
Execution with

Unnecessary
Privileges

Confidentiality
Integrity

Availability

Limit
Access

Secure
Three-Tier

Architecture
Yes

airflow db Database
Component

CWE-250:
Execution with

Unnecessary
Privileges

Confidentiality
Integrity

Availability

Limit
Access

Secure
Three-Tier

Architecture
No

of a pattern recommended for the countermeasure in the
architecture. We can be observed that one of them, involving
the REST Connector element (line in bold), with weaknesses
”CWE-287 Improper Authentication”, corresponds to the vul-
nerability reported for Apache Airflow in CVE and NVD.
The description of the vulnerability officially reported in CVE:
”The previous default setting for Airflow’s Experimental API
was to allow all API requests without authentication”.

Precisely, the weakness reported by Sarch-Checks corre-
sponds to a weakness in the REST connector (airflow rest)
that communicates the monolithic component (airflow mo) of
Apache Airflow with an external HTTP client (airflow httpc).
Specifically, the lack of authorization mechanisms when con-
suming the REST-API associated with the exposure of services
by the monolith. The above allows us to validate that the
proposed checking method manages to identify the same
vulnerability officially reported for Apache Airflow.

However, the method also manages to identify additional
vulnerabilities that are not officially reported in CVE:

• Element REST Connector with weakness CWE 282:
This impacts confidentiality and integrity properties.
However, as this element had already been declared in
a CVE for confidentiality with the weakness CWE 287,
we can think that the countermeasure will take into
account the integrity property. Indeed, the property of
confidentiality often implies that of integrity.

• Element Database Component with weakness CWE 250:
The weakness means that it is possible to make some
execution without need of privileges. In this case, the
recommandation is to apply the ’Limit Access’ architec-
tural tactic. The value ’No’ in the ’Guarantee’ column
means that Sarch-Checks has not found a pattern imple-
menting this tactic in the architecture.

In the second case, to apply a countermeasure to this
weakness it is suggested to implement the ’Secure Three-
Tier Architecture’ pattern [16]. We checked manually in the

architecture of Apache Airflow and we did not find such
a pattern. Thus, we suspect the presence of a vulnerability
associated with this weakness in the architecture.

D. Discussion

From the observation made during the execution of the
case study and the results obtained, the proposed research
question RQ can be answered. It is possible to have evidence
of a guarantee of a security property from the architectural
description of a software system. The guarantee is based on
the use or not of a pattern implementing an architectural
tactic dedicated to the countermeasure. However, we speak
of suspension because an architectural decision can cover a
countermeasure without conforming to a given pattern. Thus,
our approach can be considered as an aid to the architect to
draw attention to parts of the architecture that may contain
vulnerabilities.

The use of an architectural description that appropriately
abstracts architectural elements, relationships, and properties
can be used to perform a security properties checking process.
This is possible if there is a knowledge base that abstracts
different security scenarios, involving possible architectural
elements and their possible weaknesses, as well as the coun-
termeasures that can be taken to mitigate the risk, particularly
using architectural tactics and patterns. The Sarch-Knows
knowledge graph, used by Sarch-Checks, is a synthesis of all
this. However, it is based on current knowledge of weaknesses
and countermeasures. This may change over time. This is why
we clearly distinguished in Sarch-Knows the stable part of
security knowledge, implemented by abstract nodes, and the
evolving part implemented by instance nodes of the abstract
nodes. This structuring of Sarch-Knows will facilitate its
evolution.

V. RELATED WORK

Several works have been proposed in the identification of
vulnerabilities at the software design level, some of them fo-
cused on the identification and classification of vulnerabilities
at the architectural design level [9], [11], [14]. In addition,
Santos et al. in [16] propose a catalog of architectural security
weaknesses, classified based on common architectural tactics.
This classification generates its own view in CWE, called
Architectural Concepts 9. This view provides a classification
and organization of weaknesses according to security architec-
tural tactics and is a fundamental piece for the construction of
Sarch-Knows, the knowledge graph that supports the proposed
checking method.

In terms of verification, several methods have been proposed
that enable the verification of security properties at the soft-
ware design level. Among them, the use of security tests can be
highlighted to guarantee compliance with the established func-
tional security requirements [12]. Likewise, works focused on
the verification of security properties through the application
of different design patterns are also presented in [10], [21].

9https://cwe.mitre.org/data/definitions/1008.html

https://cwe.mitre.org/data/definitions/1008.html


Likewise, among the proposed works at the architectural
design level is an approach to support security analysis by us-
ing security scenarios and metrics [2]. This approach is based
on formalizing attack scenarios and security metrics signature
using the Object Constraint Language (OCL). Although OCL
can be used to define certain architectural decisions linked to
quality properties [17], it is not a powerful enough language
to express security flaws. For instance, it is not easy to express
a constraint on the data flow of an architecture. However,
tracking the data flow is one of the ways to discover flaws
in an architecture.

Finally, among other notable works is an architecture
evaluation method using behavioral models with structural
analysis for detecting of inconsistencies in security that were
not perceived at the design phase [1] and an analysis ap-
proach to identify architectural design flaws using Design Rule
Spaces [7]. However, these works contrast with our approach,
which emphasizes the analysis and application of early secu-
rity decisions based on a description of the architecture using
a modeling language and a knowledge graph.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a new method to check security prop-
erties at the architectural level of a software system. The
proposed method makes use of a knowledge graph, built from
fundamental elements and instances of software architecture
and cybersecurity. This method enables the automatic checking
of a security property based on an architectural description and
the information found in the knowledge graph.

The main contribution of this work is to avoid theoretical
modeling of weaknesses to search for them in the architecture.
This way of doing things creates two biases: one is linked to
the construction of the model of the weakness and the other is
linked to the construction of the similarity metric to be used
to find the model in the architecture. The combination of these
two biases is often the source of false positives. To do this,
our approach is based on validated knowledge, on security at
the architectural level, accessible to everyone for verification.

The weakness of our approach is that it only covers already
known weaknesses. It is therefore dependent on the commu-
nity’s contribution in the area of security.

Our future work aims to go beyond the limitation cited
above. The objective is to characterize the architectural config-
urations that can lead to vulnerabilities. To do this, we need to
collect a very large number of vulnerable architectural struc-
tures to be able to launch machine/deep learning allowing us to
define clusters: architectural patterns producing vulnerabilities.

REFERENCES

[1] Sarah Al-Azzani and Rami Bahsoon. Secarch: Architecture-level eval-
uation and testing for security. In 2012 Joint Working IEEE/IFIP
Conference on Software Architecture and European Conference on
Software Architecture, pages 51–60, 2012.

[2] Mohamed Almorsy, John Grundy, and Amani S. Ibrahim. Automated
software architecture security risk analysis using formalized signatures.
In David Notkin, Betty H. C. Cheng, and Klaus Pohl, editors, 35th
International Conference on Software Engineering, ICSE ’13, San
Francisco, CA, USA, May 18-26, 2013, pages 662–671. IEEE Computer
Society, 2013.

[3] Ross Anderson. Security Engineering: A Guide to Building Dependable
Distributed Systems, Third Edition. John Wiley & Sons Inc, 2020.

[4] Len Bass, Paul Clements, and Rick Kazman. Software Architecture
in Practice. Addison-Wesley Professional, 4th edition edition, 2021.
OCLC: 1251808773.

[5] Eduardo Berrio-Charry, Jeisson Vergara-Vargas, and Henry Umaña-
Acosta. A component-based evolution model for service-based software
architectures. In 2020 IEEE 11th International Conference on Software
Engineering and Service Science (ICSESS), pages 111–115, 2020.

[6] Daniel Sawano Dan Bergh Johnsson, Daniel Deogun. Secure by Design.
Manning Publications, 2019.

[7] Qiong Feng, Rick Kazman, Yuanfang Cai, Ran Mo, and Lu Xiao.
Towards an architecture-centric approach to security analysis. In 2016
13th Working IEEE/IFIP Conference on Software Architecture (WICSA),
pages 221–230, 2016.

[8] Eduardo Fernandez-Buglioni. Security Patterns in Practice: Designing
Secure Architectures Using Software Patterns. John Wiley & Sons, June
2013. Google-Books-ID: 3vppszXPdr0C.

[9] Danielle Gonzalez, Fawaz Alhenaki, and Mehdi Mirakhorli. Architec-
tural security weaknesses in industrial control systems (ics) an empirical
study based on disclosed software vulnerabilities. In 2019 IEEE
International Conference on Software Architecture (ICSA), pages 31–
40, 2019.

[10] Eunsuk Kang. Robustness analysis for secure software design. In
Proceedings of the 3rd ACM SIGSOFT International Workshop on
Software Security from Design to Deployment, SEAD 2020, page 19–25,
New York, NY, USA, 2020. Association for Computing Machinery.

[11] Yves R. Kirschner, Maximilian Walter, Florian Bossert, Robert Heinrich,
and Anne Koziolek. Automatic derivation of vulnerability models for
software architectures. In 2023 IEEE 20th International Conference on
Software Architecture Companion (ICSA-C), pages 276–283, 2023.

[12] Wissam Mallouli. Security testing as part of software quality assurance:
Principles and challenges. In 2022 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), pages
29–29, 2022.

[13] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study
of software architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52, oct
1992.

[14] Joanna C. S. Santos, Anthony Peruma, Mehdi Mirakhorli, Matthias
Galstery, Jairo Veloz Vidal, and Adriana Sejfia. Understanding software
vulnerabilities related to architectural security tactics: An empirical
investigation of chromium, php and thunderbird. In 2017 IEEE In-
ternational Conference on Software Architecture (ICSA), pages 69–78,
2017.

[15] Joanna C. S. Santos, Katy Tarrit, and Mehdi Mirakhorli. A catalog
of security architecture weaknesses. In 2017 IEEE International Con-
ference on Software Architecture Workshops, ICSA Workshops 2017,
Gothenburg, Sweden, April 5-7, 2017, pages 220–223. IEEE Computer
Society, 2017.

[16] Joanna C. S. Santos, Katy Tarrit, and Mehdi Mirakhorli. A catalog of se-
curity architecture weaknesses. In 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW), pages 220–223, 2017.

[17] Chouki Tibermacine, Régis Fleurquin, and Salah Sadou. A family
of languages for architecture constraint specification. J. Syst. Softw.,
83(5):815–831, 2010.

[18] Katja Tuma, Laurens Sion, Riccardo Scandariato, and Koen Yskout.
Automating the early detection of security design flaws. In Proceedings
of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS ’20, page 332–342,
New York, NY, USA, 2020. Association for Computing Machinery.

[19] Jeisson Vergara-Vargas and Henry Umaña-Acosta. A model-driven
deployment approach for scaling distributed software architectures on a
cloud computing platform. In 2017 8th IEEE International Conference
on Software Engineering and Service Science (ICSESS), pages 99–103,
2017.

[20] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn
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