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Abstract—The microservice architecture (MSA) emerged as
an evolution of existing architectural styles with the promise of
improving software quality by decomposing an app into modules
that can be maintained, deployed, and scaled independently.
However, the transition from a monolithic to a microservice
architecture is fraught with difficulties, especially when it comes
to assessing qualitative aspects, as controversial results can arise.
In this paper, we present an experience report on the migration
of a monolithic web application and use performance, availability
and energy efficiency as quality attributes to shed light on such
an architectural transition. Horizontal scaling, i.e., distributing
the workload across several service instances, is applied and we
study its impact.

Our main findings are: i) when no app component is replicated,
MSA outperforms the monolithic architecture; ii) the monolithic
architecture shows performance and availability improvement
when replicating the entire app; iii) the replicated MSA version
reaches a ceiling when not replicating its routing part (i.e., the
API gateway), showing worse response times compared to the
replicated monolith; iv) when replicating the API gateway, the
MSA version reaches optimal performance with fewer replicates
than the monolith; v) when not replicating services, MSA
consumes more CPU resources than the monolithic architecture;
vi) when scaling up, the MSA version is more efficient than
the replicated monolith in terms of memory usage, and it can
better exploit CPU resources; vii) when not replicating services,
MSA consumes more energy than the monolithic architecture,
whereas when scaling up, the MSA version is more efficient than
the replicated monolith; MSA version reaches a good balance
between CPU and memory usage.

Index Terms—Microservices, architecture migration, horizon-
tal scaling, load tests, performance, availability, energy usage.

I. INTRODUCTION

Module Decoupling is one of the oldest principles in
software engineering practices [27], [31]. Pushing decoupling

at the highest abstraction levels of software systems shifted
the focus from programming paradigms, like the structured,
including procedural, or object-oriented ones, to architecture
styles that promote the design of systems in terms of compo-
nents, services or microservices (MS). These henceforth first-
class entities enable building software systems with a large
flexibility in their deployment, delivery, scalability, and main-
tenance [7]. Component-based architectures promote a mod-
ular design of software systems by decoupling their modules
through required and provided interfaces, and delaying their
instantiation and interconnection by leveraging connectors.

Service-oriented architectures pushed decoupling further
by enabling (provider) components to publish services with
technology-agnostic interfaces, and (client) components to
lookup for connectors by using service registries. In microser-
vice architectures (MSA), services become domain-oriented
and cover the whole design of an application. In addition,
decoupling is pushed the farthest, by enabling inter-process
communication, to make possible independent module deploy-
ment, release, and scalability. However, both the decoupling
and the introduction of intermediate abstraction layers do not
come without cost [3], [23]. A computational overhead arises
in running an application as distinct processes and having to
“pay” inter-process and network communication costs rather
than simply making function calls within a process.

For several years now, we have been developing an
auto-grading web application to train students in the Unix
command-line interface [8]. The first version of this appli-
cation has a monolithic architecture implemented using Node
and Python for server-side scripts and a templating language
(EJS) for the web interface, while data persistence is handled
by a Postgres DB server. One of the main features of the



application is the evaluation of archive files submitted by
students as answers to exercises. This feature is delegated
by the Web (Node) app to Python scripts, each dedicated to
an exercise. These scripts are simple in essence, performing
unit tests on the content of submitted archives, but can be
relatively slow as some tests require traversing files weighting
several hundred kilobytes. Moreover, they are launched by
making a blocking system call from the backend to a Python
interpreter. Overall, when the application is used by several
dozens to hundreds of students, this feature seems to constitute
a bottleneck in this original monolithic version of the app.
To improve the application’s behavior and enable it to handle
more simultaneous users, we then developed an MSA version.

Our concern was then to measure if this change of architec-
ture was beneficial for the application. To compare its different
versions, we mainly focused on the two most frequently ad-
dressed attributes [24], namely performance and availability.
To that aim, we performed load tests, varying the number of
running instances (scaling out) of the entire application, or of
just some microservices. There are different interpretations of
the load test concept [15], and numerous quality attributes are
proposed to measure the success of an MSA implementation
or migration [15], [24]. In our experiments, performance
and availability were mainly measured by observing request
response times and failure rates, respectively, together with
measures we proposed. Overall, we considered the following
research questions under different load conditions:

- RQ1: Does the extraction of the most time-consuming
tasks in a worker microservice improve the perfor-
mance and availability of the application compared
to the monolithic one and its replicated versions?

- RQ2: How does the number of replicas in the MSA
version of the application impact its performance and
availability?

- RQ3: How resource (system and energy) usage evolves
throughout application configurations?

The rest of the paper is structured as follows. Section II
introduces the monolithic architecture of the application. Sec-
tion III details the migration to MSA. Section IV explains
the protocol we followed to evaluate the runtime quality of
the application’s versions. Section V exposes the results of
the experiments to answer the research questions. Section VI
discusses the related work. Section VII concludes with a
discussion on future research directions.

II. THE LEGACY ARCHITECTURE OF THE STUDIED APP

The application under study aims at providing exercises
to learn the Unix Command line interface. Instructors can
create exercises or pick existing ones to compose sessions with
starting and ending dates. During these sessions, students solve
exercises and hopefully acquire skills targeted by the selected
exercises. The initial architecture of the application is depicted
in Figure 1. It is composed of three main components, each
deployed as a Docker container:

• The Front-End serves a Single Page Application (SPA)
based on the React library.

Student Instructor Admin
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Fig. 1: The monolithic architecture of the studied app.

• The backend of the app is a monolith written with Node-
Express and delivering a REST API to the SPA.

• The persistence is a Postgres server managing a database
connected only to the backend.

This version of the app under study was designed according
to the layered architecture style [34]. Once having loaded
the frontend of the app, client browsers interact with the
routes layer exposing the application entry points. The HTTP
requests are first checked by the middleware layer (e.g.,for
authentication and authorization). Then, these requests are
handled by the controllers layer which identify destination
services or models. The services interoperate with models,
which in turn access the database layer through an ad-hoc
ORM (Object-Relational Mapping). For historical reasons,
controllers sometimes directly access models without going
through services. This is settled in the recent versions of the
app (following those used in this work). When a client HTTP
request asks for data, upon processing completion, the backend
sends JSON to the client’ browser running the SPA.

The app provides a set of business services, like listing,
creating, updating, and deleting exercises. The same kind
of services (CRUD operations) are provided for managing
users, exercise sequences, exercise sessions, etc.

The application has been used for several years. In this
initial version, it supports the simultaneous connection of



up to roughly 50 students. However, we observed that its
performance starts to degrade when we reach around 30
simultaneous users. The bottleneck seems to be the service
evaluating students’ productions, grading these contributions.
This service performs several heavy I/O operations and block-
ing system calls.

III. THE MSA VERSION OF THE STUDIED APP

To improve the performance of the application under study,
we apply the hybrid pattern [16] to turn our monolith appli-
cation (hereafter denoted MON) into an MSA application. We
choose functional decomposition [30] to reduce the applica-
tion’s bottleneck. Thus, we isolate and decouple the student
production grading part from the rest of the application. In this
service, the execution of Python scripts is performed using a
blocking system call. This time-consuming part at runtime is
not a fixed list of independent steps but rather a set of tests
highly depending on the particular exercise to which a student
answers. Hence, we cannot break the grading task into a fixed
series of predefined steps and apply the saga pattern [18]. We
rather consider each grading task as a long-running job that
we entrust to a worker, applying the master/worker pattern
[17]. We thus create a microservice (denoted Exercise
MS) dedicated to grading student productions. Decoupling this
service from the rest of the application allows both fine-
tuned scalability [10], [5], through instantiation of parallel
replicas of the service, and resilience, as a failing replica does
not compromise the work of other service instances or other
application components.

An API gateway service [28] is also implemented by
extracting the routing part of the monolith.

The rest of the functionalities from the original monolith
stayed as a single Leftover module (microservice) accessible
from the API gateway. As a whole, this first monolith trans-
formation step, according to the strangler pattern [29] results
in a short list of microservices, as depicted in Fig. 2.

At this early stage, the MSA version of our app has a
single database shared by the few MSs of our app. This
contrasts with the usual MSA style that advocates resorting
to the database-per-microservice pattern [32], [30], leading to
more service decoupling, hence improving fault tolerance and
maintainability. However, our work focuses on performance
and more precisely on identifying whether some gain can be
obtained by isolating and scaling the most time-consuming
feature (RQ1)1. Moreover, splitting the database from the
start between the different services would have implied more
inter-service communication to enforce data consistency, likely
masking part of the gain that could be obtained by isolating the
functionality under study. We first sought an answer to RQ1
before investigating data consistency, domain boundaries, and
service autonomy issues. Likewise, we are first interested in
checking whether the extraction of the time-consuming part
provided some benefit before further decomposing the app into
more microservices.

1We did not find the database accesses to be as time-consuming as
evaluations of the students’ productions.
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Fig. 2: The microservice architecture of the studied app.

For implementing the communication between the microser-
vices, we have several choices depending on the nature of the
communication, i.e., synchronous or asynchronous, and also to
some extent depending on the format of the exchanged infor-
mation, human or machine-readable. In this initial migration
step, we implement a version where services communicate
through RESTful HTTP calls. Moreover, there is no direct
communication between microservices, all requests are routed
through the API gateway.

The code of the MSA and monolith versions of the app un-
der study is available at: https://github.com/orgs/ShellOnYou/
repositories. This resource also contains links to container
images for easier reproduction.

IV. LOAD TESTING PROTOCOL

We elaborate a protocol for load testing the backend of
the application and comparing the results of the application’s
versions before and after the architectural migration. This
protocol aims to answer the research questions (RQ1, RQ2
and RQ3) previously stated. Note that the tests go beyond the
application’s expected load and thus reach high failure rates in
some cases, in contrast to other works that focus on pushing
the application up to a Service Level Objective (SLO) [22], [9].
For our application, we run tests to compare the quality of two
architectures (availability and performance [7]) rather than to
uncover non-functional quality-related requirements under a
certain load.

https://github.com/orgs/ShellOnYou/repositories
https://github.com/orgs/ShellOnYou/repositories


A. Testing environment and scenario

The testing environment is composed of the following
elements: i) a dedicated server, which is used for testing.
It hosts the different variants of the application each of
which is deployed as a separate Docker-Compose service
orchestration. Only one configuration is active at a given time,
the others being shut down. To emphasize the constraints of the
application during load testing, we eliminate the reverse proxy
and directly subject the monolith or API gateway to the load
testing. The server shows these settings: Intel(R) Core(TM) i9-
10920X CPU @ 3.50GHz processor, with 12 physical CPU
cores, appearing as 24 logical cores (threads) thanks to hyper-
threading. The server has a Cache of 12.25MB and 128 GB
RAM, it runs a Debian 12 OS with Docker 20.10.24; ii)
a dedicated machine, which is used for load testing. It is
equipped with the same hardware and OS configuration as
the server, and it runs the Gatling load testing open-source
toolset (https://gatling.io/). Both the client and app server live
on the same wired network. The choice of Gatling is motivated
by its rich and well-documented API. In addition, the toolset
includes a recorder which enables to save usage scenarios
(series of HTTP requests) by interacting with the application
using a simple Internet Browser (Mozilla Firefox, in our case).
This recorder generates the necessary Java/Scala code to replay
scenarios. The generated code can be toggled to create a
chosen number of (virtual) users during a certain time; each
of these users replays the recorded scenario.

In our tests, we run a scenario composed of a sequence
of HTTP requests that are sent to the application, and which
enable to execute successively the following features:

1) Authentication: a POST request to
/api/user/login the API endpoint for getting
an access token and a user_id. If the app does not
answer with an access token, the remaining requests
are ignored;

2) Checking if the user has been successfully logged-in: a
GET request to the /api/auth/verify endpoint;

3) Student production submission (SPS): a POST request
to the /api/exercise-production endpoint with
student’s data, a tarball containing the answers to a
particular exercise and an archived file system that can
weight up to 15KB. This submission is supposed to be
saved in the database, then analyzed by a python script.
A positive HTTP (201) response is expected, whose
content is the feedback to the student. This request is
labeled Req-SPS;

4) Logout: a DELETE HTTP request to the
/api/user/logout endpoint;

5) Checking if the user has been successfully logged-
out: a GET request to the following API endpoint
/api/auth/verify.

This sequence of HTTP requests corresponds to a recurrent
interaction of the users with the application, soliciting what
has been noticed as a bottleneck (Req-SPS). We used a
Gatling recorder to save this scenario by interacting with the

web interface of the application, and in the generated code,
we noticed that concretely there are more than 50 HTTP
requests sent to the application’s front/back-ends to retrieve
(usually small) view elements and data. We discard most of
these requests and keep only the five described above, as
being the most representative. Note that each of these five
requests is preceded by an HTTP OPTIONS preflight request
to check if the following request’s method is supported or
not. This is how concrete cross-domain requests are operated.
Moreover in our scenario, if the authentication request fails, all
the remaining requests (which would fail) are discarded. This
way, we avoid an increase in the number of failed requests
and hence in the failure rate that would be artificial (i.e., users
that cannot log-in do not have access to internal pages and
services of the app). Each pair of HTTP (OPTIONS followed
by GET/POST/DELETE) requests is followed by 5 seconds
pause to emulate pauses arising in real user interactions with
the app. We denote by R this scenario of 10 requests. Note that
R has been prepared so that no functional failure is expected.
We do not consider business logic failures in our load tests.

Besides, we note here that the application’s containers have
been configured to be always automatically restarted by the
docker engine after a failure. This has some consequences
in the interpretation of the data recorded during the tests.
However, since this setup is adopted for all architectural
configurations, it does not introduce a bias.

B. Load testing protocol

The load tests create virtual users (VUs), each following
the above-described R scenario of 10 requests. The protocol
consists of running a series of identical tests. To obtain stable
and reliable results, we repeat ten times every load test, as done
in existing works [13], and we call a run every execution. A
test is thereby a sequence of 10 runs.

We enforce pauses of 30 seconds between each run of the
same test to give the application the possibility to end up
ongoing requests and to return to a steady state. To obtain
stable and comparable results, each run is only launched
when the app is in a steady state. In addition, we remove
all generated student productions in the database after each
run. Following [21], to simulate different load conditions for
our application, each test executes two successive stages:

1) Ramp-up stage: it starts by creating one virtual user
every second and then linearly increases the number of
users to reach 200 per second during 60 seconds.

2) Sustained load stage: it creates 200 virtual users per
second during 60 seconds.

We set up our experiments to simulate 200 VUs per second
since below that threshold, only a non-significant number of
requests fail in some of the simplest configurations of the
app under test. As each user issues 10 requests, these are
potentially 2k requests that flood the application version under
test every second, at some moments of the test. If this is
still considered to be a rather low solicitation rate, it is worth
reminding that the test scenario includes a request (Req-SPS)

https://gatling.io/


that is time consuming for the server while requiring a non-
negligible amount of time on the user side (thinking and
practicing time to answer questions in the exercise statement).
As a reference, when analyzing requests submitted to the
application for the two usage weeks for which we have
statistics over the last years, a Req-SPS was submitted every
411 seconds on average for the 37 persons who used the app
during these weeks. According to these stats, 200 VUs per
second in our test scenario is a highly stressful situation.

C. Selected Metrics

We evaluated some quality metrics while progressively
increasing load conditions, but without reaching the breaking
point where the application crashes entirely. When running
load tests, we consider each request to be either:

• a successful request: one for which we receive an HTTP
response with the expected code which can be 200,
201 or 304 for regular requests, or 401 for the last
request, because after logging out, we should receive an
Unauthorized (401 HTTP code) response;

• a failing request: one for which we receive a response
with a 502, 503, or 504 HTTP code, which is not
expected, indicating a variety of errors ranging from
gateway timeouts to errors related to some services
being unavailable. In addition, we consider low-level
(non-HTTP) errors notified by Gatling and related to
connections closed prematurely, connection establishment
failures, or request/connection timeouts.

For each test, we collect the following measures, most of
which are provided by Gatling:

• number of VUs – each sending 10 requests during each
test theoretically (i.e., if the log-in request succeeds);

• theoretical total number of HTTP requests sent to the app
(denoted by N, where N= 10 × VUs).

• total number of successful requests (denoted by OK);
• total number of failing requests (denoted by KO) ac-

counted by Gatling. From this measure we define the
Failure Rate, denoted by FR, as KO/(OK+KO);

• we also define the request acceptance capability (RAC)
as (OK+KO)/N, allowing us to measure the availability
of the app, that is its capability to accept new requests;

• effective failure rate (EFR), which corresponds to KO/N;
• ratio of successful requests with mean response time less

than 800ms;
• ratio of successful requests with a mean response time

between 800 and 1200ms;
• ratio of successful requests with a mean response time

greater than or equal to 1200ms;
• application performance index (Apdex [33]), which is an

aggregation of the previous three ratios. This index is in
the range [0, 1], with 0 meaning an unacceptable response
time from the application and 1 meaning an excellent
response time;

• throughput, which is a measure of the average number of
successful requests by second.

For each run, we additionally compute and collect the
following metrics:

• CPU and memory usages. These metrics have been col-
lected using Telegraf2 and analysed using Grafana3, those
services run on a separate server in our infrastructure,
which is dedicated to monitoring the server that runs the
application;

• Energy consumption is obtained using a physical power
meter, which instruments the server that runs the ap-
plication. This measurement is more reliable than the
measure given by the CPU (using RAPL). The CPU
measurement uses a specific instruction set to simulate
the CPU’s consumption, while a physical device uses an
electronic component to monitor power.

From the description above, the scenarios we implement
correspond both to load, but also to performance and stress
tests in the sense of [21]. Some of the metrics above like RAC,
FR and EFR, enable to evaluate availability quality attribute,
whereas others like the different ratios of requests executed
within time intervals, Apdex, CPU, memory and power usage
enable to evaluate performance quality attribute.

D. Different configurations of the Application under test

We launched the load test protocol on the monolithic and
microservice architectures in different configurations, consid-
ering one or several replicas of each version. To replicate the
monolith, we introduce an upstream load-balancer (namely
HAProxy), but keeping the database centralized to avoid
redundancy and integrity problems. We denote by MON-1
to MON-12 this version of the monolith that is replicated
one to twelve times. We also consider the configuration of
the monolith where it has no upstream load-balancer, which
we denote as Naked MON. When considering the MSA
version of the application, we can separately replicate each
of its components, namely the API Gateway, the Exercise
MS and the Leftover MS. We denoted by MSA-X-Y a
configuration with X, resp. Y replicas of the Leftover MS,
resp. Exercise MS. We tested only one configuration where
the gateway is replicated twice, namely MSA-2-4-4, having 4
replicas of both Leftover MS, and Exercise MS. Note
that we consider up to 12 replicas since the load test server
has 12 physical CPU cores.

V. LOAD TESTING RESULTS

The results and instructions to reproduce them are available
at https://github.com/ShellOnYou/SOY loadTests.

A. Results for RQ1

Experiments to answer RQ1 are designed as follows. Dur-
ing each run based on the R scenario, the total number of
requests sent by Gatling to the app varied between 990K
and 1.7M (roughly 10 times the number of sent Req-SPS).
This variance partly originates from the ramp-up stage where
Gatling builds a linear progression from 1 to 200 VUs per

2https://www.influxdata.com/time-series-platform/telegraf/
3https://grafana.com/

https://github.com/ShellOnYou/SOY_loadTests
https://www.influxdata.com/time-series-platform/telegraf/
https://grafana.com/


Metrics \Arch. Naked MON MON × 1 MON × 4 MON × 8 MON × 12 MSA-1-1
Request Acceptance Capability (RAC) 52.93% 70.22% 76.36% 100% 100% 94.08%
Failure Rate (FR) 27.26% 18.16% 10.60% 0% 0% 12.18%
Effective Failure Rate (EFR) 61.5% 42.53% 31.73% 0% 0% 17.38%
FR (Req-SPS) 95.54% 98.28% 46.79% 0% 0% 96.22%
EFR (Req-SPS) 97.76% 98.92% 62.52% 0% 0% 96.62%
Mean Response Time (MRT) < 800ms 43.66% 36.16% 78.36% 96.68% 98.39% 85.47%
800ms ≤ MRT < 1200ms 11.92% 11.29% 6.67% 0.66% 0.35% 7.55%
1200ms ≤ MRT 44.42% 52.55% 14.97% 2.66% 1.26% 6.98%
Application Performance Index (Apdex) 0.56 0.55 0.79 0.98 0.99 0.89
System Throughput (ST) 459.74 636.05 764.59 1198.91 1202.05 958.18

TABLE I: RQ1 results – Availability and Performance while considering Naked MON (monolith with no upstream load-
balancer), MON × X (monolith with X replicas), and MSA-1-1 (1 instance of each microservice)

second. This is also due to Gatling’s inability to establish
all the necessary connections when the tests overload the
application’s versions having the smallest replica number.

Table I summarizes the results observed while evaluating
the availability and the performance measures of interest.

The first observation that can be drawn from Table I is that
the analyzed configurations do not have the same availability.
The naked monolithic architecture can accept only half of the
requests (RAC ≈ 53%). This is explained by the heavy load
put on the app by the 200 VUs per second. At such a rate,
the app is so busy that it has to discard new connections.
In the configuration with the same architecture, but with an
upstream load balancer (MON × 1), the availability increases
(RAC ≈ 70%). Indeed, the load balancer, configured with a
permissive timeout, acts as a buffer in front of the app. It can
wait for the app to be less busy to accept requests. As fewer
requests are rejected, the overall number of processed requests
is increased, leading to an increase in the system throughput
(by ≈ 38%). With such different RAC values for Naked
MON and MON ×1, their FR values cannot be compared. But
we can rely on the EFR measure introduced in the previous
section. This measure accounts for the number of requests
that should have been sent, compared to the score given
by Gatling computed from the effective number of requests.
Results show an important decrease in the global EFR. Yet,
no real difference concerning the time-consuming Req-SPS.
The number of replicas is still insufficient to handle the load.
With four replicas (MON-4), the availability and performance
of the monolith version continue to improve (e.g., RAC, FR,
ST). Interestingly, many more Req-SPS are now correctly
processed (as seen by the significant decrease in EFR and FR).
Moreover, requests are now processed more quickly (see the
increased Apdex). Going up to 8 replicas allows the monolith
version to accept all incoming requests (RAC= 100%) and to
reach a nearly optimal behaviour. By optimal, we mean that
the configuration displays a RAC of 100% and answers nearly
all requests in less than 800ms. With 200 VUs, this leads to
a throughput of ≈ 1200 requests per second. Additional tests
(not reported in the tables) show that a naked Node server with
the same payloads exchanged with the clients but where all the
applicative part has been removed, also displays a throughput
of 1200. Thus for 200 VUs, at this level of replication of

the Monolith, the applicative part, including the long running
tasks, does not weight at all on performance.

The microservice version of the application with just one
replica (MSA-1-1) reaches better results than its monolith
counterparts (Naked MON and MON × 1), accepting more
than 94% of the incoming requests. Here the introduction of
the API gateway has the same beneficial effect as the load-
balancer for the monolithic version. The gateway can absorb
a large number of requests, passed to other app components
after very little processing. Yet, accepting more incoming
requests does not guarantee that all requests will be processed
before reaching a timeout, this depends on the other services’
availability. However, we observe that MSA-1-1 has lower
failure rates than Naked MON and MON ×1 (EFR≈ 17%
for MSA-1-1 vs ≈ 62% and ≈ 43% for non-replicated
configurations of the monolith). Thus, the architectural shift
is beneficial even without considering horizontal scaling.

The failure rates (FR and EFR) for Req-SPS are extremely
high for the monolith and only slightly better for the microser-
vice version. This is somewhat expected as this request is very
time consuming, and isolating it in a worker microservice
without increasing the resources devoted to it (i.e., with no
horizontal scaling) is not sufficient to impede the numerous
timeouts that occur for it.

Concerning response times of the non replicated configu-
rations of the app, we can observe that the aggregated score
(Apdex) is much better for the microservice version of the
application (0.89 for MSA-1-1) than for the monolith version
(0.56, resp. 0.55, for Naked MON, resp. MON × 1). More
specifically, ≈ 85% of the requests are processed in less than
800ms by MSA-1-1, while the monolith requires more than
1200 ms to process roughly half of its requests. This faster
processing time explains the reason why MSA-1-1 achieves a
higher RAC and lower failure rates.

RQ1. The experiments show that the introduction of
the MSA is indeed beneficial for the availability and
performance of the app under test even without scaling
it horizontally. The benefit mostly arises from adding an
intermediate routing layer (the API gateway). The same
benefit can be obtained for the monolithic version by



putting it behind a load balancer that buffers incoming
requests. When scaling the application horizontally, as
expected, both architectural versions show improved per-
formance and availability. However, it is worth noting that
fewer replicas (hence resources) are needed for MSA to
achieve an optimal behaviour, compared to the monolithic
architecture.

B. Results for RQ2

Table II shows the results to answer RQ2. A first observa-
tion is that, when varying the number of MSA replicas from
one to four (for the most time-consuming MS, i.e., Exercise
MS), all incoming requests are accepted (RAC = 100%) and
the same configuration achieves 0% of failure rate.

Regarding performance, we do observe different variations.
When moving from 1-1 to 1-2, response time and throughput
improve. This is not surprising because the most-time con-
suming requests that hit one instance of the Exercise MS
in MS-1-1 are distributed across two instances in the MS-
1-2 version. When further increasing the number of replicas
only for Exercise MS (see columns 1-X with X ranging
from 4 to 12), the throughput still increases reaching near-
optimal values as roughly 1210 requests are received each
second by the app. However, we can see that the ratio of
quickly answered requests (< 800ms) is reaching a ceiling of
approx. 75%. This is the expression of Amdhal’s law [4]. In the
current case, this is explained by the fact that the bottleneck
now moves to the Leftover MS, preventing the response
time from being improved through horizontal scaling of the
most time consuming service. By increasing the number of
replicas for the Leftover MS (see columns X-X with X
ranging from 2 to 12) we go beyond this ceiling and reach
89,76% with MS-4-4 configuration. No other configuration in
which we replicate the microservices only is able to give us
better results. We explain this by the fact that the bottleneck
has shifted in these configurations to the API gateway, which
runs as a single process. This is why we ran an additional
load test of the 4-4 MSA configuration with 2 replicas of the
API Gateway, by adding a load balancer (namely, HAProxy)
upstream. With this new configuration, that is called 2-4-4 in
Table II (2 replicas of the API Gateway and 4 replicas of
each MS), we reach the best results as 100% of the requests
are now processed in less than 800ms. We draw the reader’s
attention to the scores obtained for response time < 800ms,
with configurations with a maximal number of replicas (1-
12 or 12-12), which are lower than the scores obtained with
simpler configurations (like the 95% obtained with MS-1-2,
compared to 74.55% and 76.21% with MS-1-12 and MS-12-
12 respectively). This is explained by the fact that MS-1-2 has
a non-null failure rate; approx. 90% of Req-SPS fail. These
requests take longer to execute. This is why configurations
with a null failure rate show longer response times.

RQ2. Our experimental results confirm that increasing
the number of replicas of microservices improves both
availability and performance. Yet, only replicating the
most time-consuming service improves the app behaviour
only up to some point. To reach an optimal system
performance, the other microservices and the API gateway
must also be replicated a minimal number of times.

C. Results for RQ3

Fig. 3 contributes to answer RQ3. It shows the cumulative
CPU usage due to the app (and the load-balancer when the
latter is present). The server was idle and safe for the version
of the app under test. The Y-axis scale adapts to the load of
the CPU during the tests, some configurations (MON ×12 and
MSA 2-4-4) mobilizing almost all available threads (24 at a
maximum that is 2400% on the scale – as mentioned before,
with hyper-threading the 12 cores of our CPU exist at the
operating system level as 24 logical cores or threads). The
10 runs of a test appear quite clearly as peaks in the curves
(more notably for replicated versions). Note that in the case of
the Naked MON, the CPU usage corresponds mainly to two
CPU cores, interpreted as the main app hit by the numerous
requests to handle, the other being the database server solicited
by payloads of around 15 KB for each Req-SPS. When
replicating either the monolith or services of the MSA version,
the total CPU usage largely increases, as more CPU cores are
put to work by the load-balancers (HAProxy for the monolith
and Docker-compose for the MSA version)4. This can be seen
by the increased number of CPU cores having a non-negligible
part in the cumulative curve, and by the scale of the Y axis
(100% representing one CPU core at full use).

In Fig. 3, we put on each column the app configurations
that are approximately equivalent in terms of availability and
performance (response time). In the first column (Fig. 3-(a)
and Fig. 3-(d)), we can see the most basic configurations,
Naked-MON and MSA-1-1, on which we can observe different
CPU usage profiles. While, as explained above, the naked-
MON uses approximately 2 CPU cores, the MSA version
mobilizes more CPU cores. The curves reach 800% on the
Y axis, but if we remove the noisy measures related to system
and Docker processes, as for Naked-MON before, we can
estimate to four the number of CPU cores that are mobilized
(this can be observed from Fig. 3-(d) where we have four
curves distant from each other at the bottom). This corresponds
to the four processes run for this configuration: API Gateway,
MS-Exercise, MS-Leftover, and Postgres. In the two cases,
the CPU cores do not go back to an idle state before the
processes they run re-handle a new sustained load of requests.
In the second column (Fig. 3-(b) and Fig. 3-(e)), we present
CPU usage for configurations that reach 100% of request
acceptance capability (RAC) and 0% of failure rate (EFR).

4As there is only one API URI for the backend, we need to add an extra
layer of load-balancing (HAProxy) to be able to replicate the API. This
concerns the Monolith version as well as X-Y-Z MSA when X> 1.



Metrics MSA configurations
1-1 1-2 2-2 1-4 4-4 1-8 8-8 1-12 12-12 2-4-4

Request Acceptance Capability (RAC) 94.08% 98.67% 98.77% 100% 100% 100% 100% 100% 100% 100%
Effective Failure Rate (EFR) 17.38% 10.72% 6.48% 0% 0% 0% 0% 0% 0% 0%
EFR (Req-SPS) 96.62% 89.28% 84.57% 0% 0% 0% 0% 0% 0% 0%
Mean Response Time (MRT) < 800ms 85.47% 95.82% 93.62% 75.30% 89.76% 75.54% 83.12% 74.55% 76.21% 100%
800ms ≤ MRT < 1200ms 7.55% 2.06% 0.79% 2.62% 3.13% 1.83% 10.52% 2.46% 13.87% 0%
1200ms ≤ MRT 6.98% 2.12% 5.59% 22.08% 7.11% 22.63% 6.36% 22.99% 9.92% 0%
System Throughput (ST) 958 1039 1087 1205 1207 1195 1205 1198 1195 1210

TABLE II: RQ2 results – Availability and Performance while considering the MSA configurations, columns X − Y mean
variant with X, resp. Y, instances of the Leftover Ms, resp.Exercise Ms; 2− 4− 4 means the MSA configuration 4− 4
where additionally the gateway was doubled.

(a) Naked MON (b) MON × 8 (c) MON × 12

(d) MSA-1-1 (e) MSA-1-4 (f) MSA-2-4-4

Fig. 3: CPU usage observed for different configurations of the app under test. The Y axis scale adapts to the CPU load, 100%
representing one logical CPU (thread) fully mobilized. It can be observed that the CPU load increases with the number of
services / replicas deployed on the system. The Naked MON configuration is the least CPU intensive configuration, mainly
mobilizing two CPU threads. The most CPU intensive configuration is MON × 12.

In the two cases, we can see cleaner curves, with evident
picks and a return back to an idle state for all CPU cores.
The CPU usage is approximately the same (1500% as a
maximum cumulative measurement), while in one case we
have 8 replicas of the monolith, and in the second we have
only 4 replicas of MS exercise. The last column (Fig. 3-(c)
and Fig. 3-(f)) depicts CPU usage for the best configurations
identified in our load tests: MON × 12, which reaches the best
average response times, and MSA-2-4-4 which makes 100%
of requests be processed in less than 800ms. Here again, we
have the same CPU usage profiles. Yet, the difference is in the
maximum cumulative measurement, which reaches 2000% for
the replicated monolith, while it is equal to 1500% for the MS
version of the app. This shows that with less CPU usage, the
MS version can reach optimal, and even better, results for
availability and performance compared to the monolith.

Table III shows the evolution of energy (power) usage while
increasing the number of replicas for both versions of the app.
Memory values for a configuration are the difference between
the amount of memory used by the configuration on average
and the minimum memory it consumes. These are presented
as ratios (percentages) to the total memory of the server (128

Metrics
Architecture Variants

Monolith Configurations
Naked MON MON × 8 MON × 12

Energy usage (w/h) 60 82 86
Memory usage (%) 0.99 1.34 1.76

Microservice Configurations
1-1 1-4 2-4-4

Energy usage (w/h) 70 77 80
Memory usage (%) 1.87 1.38 1.07

TABLE III: Memory and energy usage when replicating the
monolithic and microservice versions.

GB). Power consumption is measured by a physical power-
meter. Results in Table III indicate that, at the beginning, the
monolith outperforms the MS version. This may be explained
by the monolith using less CPU on average and its memory
footprint is less important5. What we observed is that at some
level (between 4 and 8 replicas), the MS version of the app
outperforms the monolith, because it reaches a good balance
between CPU and memory usage.

5In our experiment data, we did not notice significant differences in IO
disk activity between the two versions of the application, probably because
of the presence of a centralized database.



When comparing configurations having equivalent measures
for the availability quality attribute, for example configurations
having 100% of request acceptance capability and 0% of
failure rate, which are MON × 8 and MSA-1.4 (see the middle
column of Table III), the results for resource usage are in favor
of the MS version: 82 vs 77 w/h in terms of energy usage.
Memory usage is almost the same, 1.34% vs 1.38%. When
comparing the best obtained configurations in our load tests
(MON × 12 and MSA-2-4-4 – last column of the table) we
can observe a net improvement: less energy and memory usage
for the MS version (7% less energy usage, from 86 to 80 w/h,
but a 40% decrease in memory usage, from 1.76% to 1.07%).

RQ3: The monolith outperforms MS version in energy
usage when using a few replicas. The situation is re-
versed when reaching optimal configurations regarding
availability and performance (response time). In terms of
memory usage, the MS version outperforms the monolith.
They require close memory quantities for a few replicas,
but when increasing the replicas, the monolithic version
requires more and more memory compared to MSA. This
stems from MSA version running lighter processes in
terms of memory footprint. Indeed, each service corre-
sponds to only part of the monolith, and configurations
we consider do not replicate all services (e.g., only one
or two instances of the gateway are considered).

D. Threats to Validity

The validity of the load tests presented in this experience
report may be threatened by some biases [41].

Firstly, concerning construct validity, our metrics may not
cover all aspects of availability and performance quality
attributes. Definitions of these quality attributes in existing
quality models are quite large [7]. To mitigate this threat,
we have examined all the metrics that were reported by
professional tools, like the load testing tool, Gatling, and
the observability platform, Prometheus/Grafana. Besides, we
also report the physical measures of energy consumption (as
estimations of this measure given by CPUs are controversial).
Secondly, the app is centralized, being deployed on a single
server. If the app was deployed in a distributed infrastructure,
which is sometimes the case for large applications with an
MSA, part of the results would be different, and probably
additional conclusions might be derived, e.g., when analyzing
network activity for instance. Since we wanted to test a specific
app on a server on which we invested for an on-premise
deployment, our study exclusively considers such a kind of
setting with a centralized deployment.

About the internal validity, we are aware that the way
we implemented our microservice version may be subject to
discussion. Indeed, we did not instantiate the database-per-
microservice pattern; we may thereby think that the database
server may be a bottleneck in our load tests. In the different
tests we run we analyzed the logs of the database container
and we did not notice any connection refusal or server crash.

Besides this, we see that at some level of replication, we reach
a null failure rate. The database server is thus able to support
the heavy workload induced by our tests.

Regarding the external validity, our experimental results
consider one application, we do not have clues on the gen-
eralization of the findings. To smooth this threat, we tested
different variants of our application that represent typical
configurations of enterprise applications, with a monolithic
architecture or microservice one, including an API gateway,
a multi-container orchestration with a traditional network,
and volume configurations. In many other projects that we
supervise, we can observe equivalent configurations.

Finally, concerning conclusion validity, though the servers
are dedicated to this app and its load test, the app is dockerized
and is managed by a combination of Docker and OS processes.
This introduces a slight instability in testing the app, as
explained in [13]. We tried to smooth this factor by launching
10 runs of each test for all the considered configurations,
and we reported the obtained average values. In our case, the
hardest was to collect measures on OS resource usage, and par-
ticularly delimiting the monitoring time periods. We iterated
several times on measure extraction from Prometheus/Grafana
to carefully get the most precise measures. Also, we made sure
that during all tests no extra process runs on the server and
no SSH (or any kind of) connection was established, except
those made by Grafana to monitor the app.

VI. RELATED WORK

In the literature, the shift from monolithic to microservice-
based architectures is raising attention from the research
community, e.g., [14], [30], [19], [38]. However, most of the
existing studies do not focus on real software, they investigate
the migration targeting ad-hoc applications. This lack of real-
world use cases offers intriguing research solutions but they
might not address the actual needs of existing applications.
Our research effort fosters the migration of an application in
production from a monolithic to a microservice architecture,
constrained by real-world usage (e.g., the number of users can
change during execution). This evaluation of a real use case
is partially covered in the literature, for instance, in [11] the
banking sector is investigated though neglecting any perfor-
mance evaluation, and in [36] an experience on the upkeep of
a scientific application is presented. Both these papers remark
that migrating to a microservices architecture is indeed not a
simple task. It requires an evaluation of how communication
is performed, how the application can be partitioned, and how
data workflow is managed. The migration can lead to potential
gains in the application, although sometimes the overhead
can be quite significant. Agarwal et al. [1] exploit the imple-
mentation structure of a monolith architecture by identifying
business functionalities that contribute to the recommendation
of microservice architecture candidates. A foundational study
on characterizing the workload in microservices is proposed
in [37], and significant overhead is found due to the architec-
tural migration. A similar investigation is conducted in [2] with
a load testing scenario; the results show a distinct difference in



efficiency between monolithic and microservices architectures
as the number of requests increases.

The software deployment (e.g., cloud vs on-premise) can
also impact the quality characteristics, since software com-
ponents can be spread across different data centers or sub-
sections of the same data center, unlike monolithic applications
that are deployed on the same node. To tackle this aspect,
Jatkiewicz et al. [20] pursue a comparison of monolithic vs
microservice architectures (deployed on a single node) with a
focus on how vertical/horizontal scaling techniques impact the
system quality, as we do in our work. Differently from [20],
our experimentation runs much more extensive load tests
(reaching more than 1 million requests for each run, while
they run a limited number of 22k requests). Besides this, they
evaluate performance only and not availability.

In the literature, there are a few works that combine tests and
Microservice Architecture (MSA), as outlined in [40]. Jindal et
al [22] propose a method for identifying “microservice capac-
ities”, which are maximal rates of requests that can be served
by a microservice without violating service-level objectives.
Camilli et al. [12] present a method for learning performance
models by load testing applied to MSAs. The objective is to
automate the verification of such systems against performance
requirements, but the analysis does not compare different
system configurations. In this paper, however, we execute load
tests with varying system configurations, thus validating the
tested app in terms of load capacity on a target node.

To validate a migration, we need to assess its impact, e.g.
as investigated by Avritzer et al. [6]. These authors present a
method for assessing and comparing the scalability of MSA
deployment alternatives. The authors perform experiments in
both a bare-metal host environment and a virtualized one. They
compare results across these two environments, adjusting the
allocated resources and the number of replicas. Some of their
observations mirror ours in this paper, for example, “having
more Docker containers improves the performance of the
services” [6] holds for MSA in our case. We employ this kind
of study to conduct our load tests and validate the behavior
of our migrated application. Similar tests can be found in [25]
where Lourenço et al. present a comparative analysis on the
migration from a monolithic architecture to microservices that
resulted in better scalability. However, this paper highlights the
advantages of migration for the introduction of new features
and for fixing bugs compared to monolithic architectures.

This paper pursues a detailed comparison between mono-
lithic and microservice architectures. Normalization tests are
necessary to evaluate and generalize results. This approach
is presented in [39], and the authors provide a simulation
toolkit to evaluate the Quality-of-Service of microservices
when exposed to evolution scenarios such as auto-scaling, load
balancing, and overload control. However, these tests are based
on simulated workloads, and not compared to a real use case.
Here, all simulations are performed using real data to mimic
the day-to-day life of an application. Adhering to this pattern
is crucial as real users can create unexpected events which
are hard to replicate in a simulated environment. We present

an in-depth experiment designed to measure and compare the
performance of each architecture. Our focus specifically lies on
an application that exposes a time-consuming service. Despite
this specificity, we argue on the complexity when comparing
different versions of applications based on load tests.

Several works have been conducted on web services. Ma-
zlami et al. [26] present a strategy, based on a formal graph-
based model, that allows the extraction of microservices from a
monolithic architecture. Zhu et al. [42] formalize load balanc-
ing as an emergent property of the microservices ecosystem,
round-robin scheduling policy showing better scalability than
the workload aware policy (i.e., the shortest waiting queue).
Song et al. [35] introduce a dataflow-based domain-specific
language that includes the implicit declarations of equivalent
microservices and their execution patterns.

To summarize, to the best of our knowledge, although there
are efforts to compare monolithic and microservice architec-
tures, our work advances the state-of-the-art by highlighting
the impact on both availability, performance and resource
usage, of some design choices, in the particular case of a real-
world application exposing a time-consuming service.

VII. CONCLUSION

This paper presents an experience report on the migration of
a monolithic web app that includes a feature generating long
running tasks. We migrated this monolith to a microservice
version and conducted load tests. We considered several con-
figurations for the monolith and its microservice version, with
up to 200 virtual users per second, each performing 10 requests
(e.g., high loads considering the time consuming tasks).

Results provide the following findings: (i) scaling up the app
horizontally is beneficial for both the monolith and the MSA,
even if the monolith requires a larger number of replicas to
reach a given level of performance and availability; (ii) the
migration is worthwhile only when the user requests saturate
the monolith that instead enjoys a lower energy consumption,
besides sparing the migration’s effort; (iii) under heavy load,
the replication of the most time consuming parts of the MSA
might be not sufficient to reach a given level of performance
and availability, (iv) the replication of the API gateway benefits
the MSA by buffering incoming traffic; a similar effect is
achieved for the monolith by placing it after a load balancer.

Our load testing results make evident the complexity behind
the migration process. Thus, in terms of lessons learned, we
can conclude that the migration is subject to the applications’
peculiarities (e.g., long-running jobs, routing infrastructure,
load and communication between services), but the service
replication strategy has a significant impact on performance,
availability, and energy usage.

Future work includes comparing the MSA version described
in this work with two further versions of the app: (i) replacing
the REST/HTTP communication between microservices with
a message broker; (ii) replacing the file storage (currently in
the database) with a dedicated high-performance file storage
service. The goal is to evaluate the impact of these different
design choices on the quality of the application under analysis.
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ability assessment of microservice architecture deployment configura-
tions: A domain-based approach leveraging operational profiles and load
tests. Journal of Systems and Software (JSS), 165:110564, 2020.

[7] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice, 4th Edition (SEI Series in Software Engineering). Addison-
Wesley Pro., 2021.

[8] Vincent Berry, Arnaud Castelltort, Chrysta Pelissier, Marion Rousseau,
and Chouki Tibermacine. Shellonyou: Learning by doing unix command
line. In Proceedings of the 27th ACM Conference on on Innovation
and Technology in Computer Science Education Vol. 1, ITiCSE ’22,
page 379–385, New York, NY, USA, 2022. Association for Computing
Machinery.

[9] Betsy Beyer, Niall Richard Murphy, David K Rensin, Kent Kawahara,
and Stephen Thorne. The site reliability workbook: practical ways to
implement SRE. ” O’Reilly Media, Inc.”, 2018.
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