Introduction to Christoffel-Darboux kernels for data analysis

Eduard Pauwels collaboration with Franqis Bachoc and Jean-Bernard Lasserre and Mihai Putinar and Trang-May Vu.

Journée PMNL

Montpellier, October 2022

Introduction of Christoffel-Darboux kernels and Christoffel function.

Overview of first properties.

Statistical aspects and application to support inference.

Mathematical context:

- ullet Christoffel-Darboux (CD) kernels and orthogonal polynomials \sim 19-th century.
- Important in approximation theory (convergence of generalized Fourier series).
- There is still a lot of activity going on.
- Recently used in, data science, polynomial optimization contexts.

Mathematical context:

- ullet Christoffel-Darboux (CD) kernels and orthogonal polynomials \sim 19-th century.
- Important in approximation theory (convergence of generalized Fourier series).
- There is still a lot of activity going on.
- Recently used in, data science, polynomial optimization contexts.

In a nutshell

• A CD kernel K^{μ} depends on a (probability) measure μ on a Euclidean space \mathbb{R}^{p}

Mathematical context:

- ullet Christoffel-Darboux (CD) kernels and orthogonal polynomials \sim 19-th century.
- Important in approximation theory (convergence of generalized Fourier series).
- There is still a lot of activity going on.
- Recently used in, data science, polynomial optimization contexts.

- A CD kernel K^{μ} depends on a (probability) measure μ on a Euclidean space \mathbb{R}^{p}
- We have $K^{\mu} \colon \mathbb{R}^{p} \times \mathbb{R}^{p} \to \mathbb{R}$, and will often consider $K^{\mu}(\mathbf{x}, \mathbf{x})$.

Mathematical context:

- ullet Christoffel-Darboux (CD) kernels and orthogonal polynomials \sim 19-th century.
- Important in approximation theory (convergence of generalized Fourier series).
- There is still a lot of activity going on.
- Recently used in, data science, polynomial optimization contexts.

- A CD kernel K^{μ} depends on a (probability) measure μ on a Euclidean space \mathbb{R}^{p}
- We have $K^{\mu} \colon \mathbb{R}^{p} \times \mathbb{R}^{p} \to \mathbb{R}$, and will often consider $K^{\mu}(\mathbf{x}, \mathbf{x})$.
- K^{μ} , is a polynomial, we actually have $(K^{\mu}_d)_{d \in \mathbb{N}}$, where K^{μ}_d is of degree 2d, $d \in \mathbb{N}$.

Mathematical context:

- ullet Christoffel-Darboux (CD) kernels and orthogonal polynomials \sim 19-th century.
- Important in approximation theory (convergence of generalized Fourier series).
- There is still a lot of activity going on.
- Recently used in, data science, polynomial optimization contexts.

- A CD kernel K^{μ} depends on a (probability) measure μ on a Euclidean space \mathbb{R}^{p}
- We have $K^{\mu} \colon \mathbb{R}^{p} \times \mathbb{R}^{p} \to \mathbb{R}$, and will often consider $K^{\mu}(\mathbf{x}, \mathbf{x})$.
- K^{μ} , is a polynomial, we actually have $(K^{\mu}_d)_{d \in \mathbb{N}}$, where K^{μ}_d is of degree 2d, $d \in \mathbb{N}$.
- It captures information on μ (support, density).

Mathematical context:

- ullet Christoffel-Darboux (CD) kernels and orthogonal polynomials \sim 19-th century.
- Important in approximation theory (convergence of generalized Fourier series).
- There is still a lot of activity going on.
- Recently used in, data science, polynomial optimization contexts.

- A CD kernel K^{μ} depends on a (probability) measure μ on a Euclidean space \mathbb{R}^{p}
- We have $K^{\mu} \colon \mathbb{R}^{p} \times \mathbb{R}^{p} \to \mathbb{R}$, and will often consider $K^{\mu}(\mathbf{x}, \mathbf{x})$.
- K^{μ} , is a polynomial, we actually have $(K^{\mu}_d)_{d \in \mathbb{N}}$, where K^{μ}_d is of degree 2d, $d \in \mathbb{N}$.
- It captures information on μ (support, density).
- It is easily computed from moments of the measure.

Mathematical context:

- ullet Christoffel-Darboux (CD) kernels and orthogonal polynomials \sim 19-th century.
- Important in approximation theory (convergence of generalized Fourier series).
- There is still a lot of activity going on.
- Recently used in, data science, polynomial optimization contexts.

- A CD kernel \mathcal{K}^{μ} depends on a (probability) measure μ on a Euclidean space \mathbb{R}^{p}
- We have $K^{\mu} \colon \mathbb{R}^{p} \times \mathbb{R}^{p} \to \mathbb{R}$, and will often consider $K^{\mu}(\mathbf{x}, \mathbf{x})$.
- K^{μ} , is a polynomial, we actually have $(K^{\mu}_d)_{d \in \mathbb{N}}$, where K^{μ}_d is of degree 2d, $d \in \mathbb{N}$.
- It captures information on μ (support, density).
- It is easily computed from moments of the measure.
- Moments (pseudomoments) of measures are outputs of Lassere's Hierarchy.

Mathematical context:

- ullet Christoffel-Darboux (CD) kernels and orthogonal polynomials \sim 19-th century.
- Important in approximation theory (convergence of generalized Fourier series).
- There is still a lot of activity going on.
- Recently used in, data science, polynomial optimization contexts.

- A CD kernel \mathcal{K}^{μ} depends on a (probability) measure μ on a Euclidean space \mathbb{R}^{p}
- We have $K^{\mu} \colon \mathbb{R}^{p} \times \mathbb{R}^{p} \to \mathbb{R}$, and will often consider $K^{\mu}(\mathbf{x}, \mathbf{x})$.
- K^{μ} , is a polynomial, we actually have $(K^{\mu}_d)_{d \in \mathbb{N}}$, where K^{μ}_d is of degree 2d, $d \in \mathbb{N}$.
- It captures information on μ (support, density).
- It is easily computed from moments of the measure.
- Moments (pseudomoments) of measures are outputs of Lassere's Hierarchy.
- Moments correspond to empirical averages in a statistical context.

How does it look like?

How does it look like?

- $(\mathbf{x}_i)_{i=1}^N$ is a set of points in \mathbb{R}^2 (black dots).
- μ is the empirical average $\mu = \frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{x}_i}$.
- The CD kernel is a function on $\mathbb{R}^2 \times \mathbb{R}^2$ (level sets of $K_d^{\mu}(\mathbf{x}, \mathbf{x}), d = 4$).

How does it look like?

- $(\mathbf{x}_i)_{i=1}^N$ is a set of points in \mathbb{R}^2 (black dots).
- μ is the empirical average $\mu = \frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{x}_i}$.
- The CD kernel is a function on $\mathbb{R}^2 \times \mathbb{R}^2$ (level sets of $K_d^{\mu}(\mathbf{x}, \mathbf{x}), d = 4$).

Plan for today: Introduction of these objects and first properties.

- 1. CD kernel, Christoffel function, orthogonal polynomials, moments
- 2. Quantitative asymptotics
- 3. Empirical measures statistical aspects
- 4. Application to support inference from sample

 μ : Borel probability measure in \mathbb{R}^p . $\mathbb{R}_d[X]$: *p*-variate polynomials of degree at most *d* (of dimension $s(d) = \binom{p+d}{d}$). (dimension *p* and degree *d* are fixed). μ : Borel probability measure in \mathbb{R}^{p}

 $\mathbb{R}_d[X]$: *p*-variate polynomials of degree at most *d* (of dimension $s(d) = \binom{p+d}{d}$). (dimension *p* and degree *d* are fixed).

$$(P,Q) \qquad \mapsto \qquad \langle\!\langle P,Q \rangle\!\rangle_{\mu} := \int PQd\mu,$$

defines a valid scalar product on $\mathbb{R}_d[X]$.

 μ : Borel probability measure in \mathbb{R}^p (compact support, density). $\mathbb{R}_d[X]$: *p*-variate polynomials of degree at most *d* (of dimension $s(d) = \binom{p+d}{d}$). (dimension *p* and degree *d* are fixed).

$$(P,Q) \mapsto \langle\!\langle P,Q \rangle\!\rangle_{\mu} := \int PQd\mu,$$

defines a valid scalar product on $\mathbb{R}_d[X]$.

 μ : Borel probability measure in \mathbb{R}^p (compact support, density). $\mathbb{R}_d[X]$: *p*-variate polynomials of degree at most *d* (of dimension $s(d) = \binom{p+d}{d}$). (dimension *p* and degree *d* are fixed).

$$(P,Q) \mapsto \langle \langle P,Q \rangle \rangle_{\mu} := \int PQd\mu,$$

defines a valid scalar product on $\mathbb{R}_d[X]$.

 $(\mathbb{R}_d[X], \langle\!\langle \cdot, \cdot \rangle\!\rangle_\mu)$ is a *finite dimensional, Hilbert space* of functions from \mathbb{R}^p to \mathbb{R} .

Aronszajn (1950): \mathcal{X} is a set and \mathcal{H} a Hilbert space of real valued functions on \mathcal{X} with scalar product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ and norm $\| \cdot \|_{\mathcal{H}}$.

Aronszajn (1950): \mathcal{X} is a set and \mathcal{H} a Hilbert space of real valued functions on \mathcal{X} with scalar product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ and norm $\| \cdot \|_{\mathcal{H}}$.

The following are equivalent:

• For any $x \in \mathcal{X}$, $h \mapsto h(x)$ is continuous on \mathcal{H} .

Aronszajn (1950): \mathcal{X} is a set and \mathcal{H} a Hilbert space of real valued functions on \mathcal{X} with scalar product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ and norm $\| \cdot \|_{\mathcal{H}}$.

The following are equivalent:

- For any $x \in \mathcal{X}$, $h \mapsto h(x)$ is continuous on \mathcal{H} .
- There is a unique symmetric positive definite $K \colon \mathcal{H} \times \mathcal{H} \mapsto \mathbb{R}$ such that,

Aronszajn (1950): \mathcal{X} is a set and \mathcal{H} a Hilbert space of real valued functions on \mathcal{X} with scalar product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ and norm $\| \cdot \|_{\mathcal{H}}$.

The following are equivalent:

- For any $x \in \mathcal{X}$, $h \mapsto h(x)$ is continuous on \mathcal{H} .
- There is a unique symmetric positive definite $K : \mathcal{H} \times \mathcal{H} \mapsto \mathbb{R}$ such that,
 - for any $x \in \mathcal{X}$, $K(x, \cdot) \in \mathcal{H}$
 - for any $x \in \mathcal{X}$, $h \in \mathcal{H}$

 $\langle h, K(x, \cdot) \rangle_{\mathcal{H}} = h(x).$

Aronszajn (1950): \mathcal{X} is a set and \mathcal{H} a Hilbert space of real valued functions on \mathcal{X} with scalar product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ and norm $\| \cdot \|_{\mathcal{H}}$.

The following are equivalent:

- For any $x \in \mathcal{X}$, $h \mapsto h(x)$ is continuous on \mathcal{H} .
- There is a unique symmetric positive definite $K : \mathcal{H} \times \mathcal{H} \mapsto \mathbb{R}$ such that,
 - for any $x \in \mathcal{X}$, $K(x, \cdot) \in \mathcal{H}$
 - for any $x \in \mathcal{X}$, $h \in \mathcal{H}$

$$\langle h, K(x, \cdot) \rangle_{\mathcal{H}} = h(x).$$

 \mathcal{H} is called RKHS and K is *the* reproducing kernel of \mathcal{H} .

 $\mathcal{H} = (\mathbb{R}_d[X], \langle\!\langle \cdot, \cdot \rangle\!\rangle_\mu)$ is a Reproducing Kernel Hilbert Space (RKHS):

- Evaluation is continuous with respect to coefficients.
- Finite dimension, all norms are equivalent: $\|\cdot\|_{\mu}$ and any norm on coefficients.

 $\mathcal{H} = (\mathbb{R}_d[X], \langle\!\langle \cdot, \cdot \rangle\!\rangle_\mu)$ is a Reproducing Kernel Hilbert Space (RKHS):

- Evaluation is continuous with respect to coefficients.
- Finite dimension, all norms are equivalent: $\|\cdot\|_{\mu}$ and any norm on coefficients.

Reproducing property: For all $d \in \mathbb{N}$, there exists $K_d^{\mu} \colon \mathbb{R}^p \times \mathbb{R}^p \mapsto \mathbb{R}$, symmetric such that for all $z \in \mathbb{R}^p$,

$$K^{\mu}_{d}(\mathbf{z},\cdot) \in \mathbb{R}_{d}[X].$$

 K^{μ}_d satifies the reproducing property, for all $P \in \mathbb{R}_d[X]$ and $\mathbf{z} \in \mathbb{R}^p$,

$$P(\mathbf{z}) = \langle \langle P(\cdot), K^{\mu}_{d}(\mathbf{z}, \cdot) \rangle \rangle_{\mu} = \int P(\mathbf{x}) K^{\mu}_{d}(\mathbf{z}, \mathbf{x}) d\mu(\mathbf{x})$$

 $\mathcal{H} = (\mathbb{R}_d[X], \langle\!\langle \cdot, \cdot \rangle\!\rangle_\mu)$ is a Reproducing Kernel Hilbert Space (RKHS):

- Evaluation is continuous with respect to coefficients.
- Finite dimension, all norms are equivalent: $\|\cdot\|_{\mu}$ and any norm on coefficients.

Reproducing property: For all $d \in \mathbb{N}$, there exists $K_d^{\mu} \colon \mathbb{R}^p \times \mathbb{R}^p \mapsto \mathbb{R}$, symmetric such that for all $z \in \mathbb{R}^p$,

$$K^{\mu}_{d}(\mathbf{z},\cdot) \in \mathbb{R}_{d}[X].$$

 ${\mathcal K}^\mu_d$ satifies the reproducing property, for all $P\in {\mathbb R}_d[X]$ and ${\mathsf z}\in {\mathbb R}^p$,

$$P(\mathbf{z}) = \langle \langle P(\cdot), \mathcal{K}^{\mu}_{d}(\mathbf{z}, \cdot) \rangle \rangle_{\mu} = \int P(\mathbf{x}) \mathcal{K}^{\mu}_{d}(\mathbf{z}, \mathbf{x}) d\mu(\mathbf{x})$$

Christoffel-Darboux kernel: K^d_{μ} is *the* reproducing kernel of \mathcal{H} .

- Let $\{P_i\}_{i=1}^{s(d)}$ be any basis of $\mathbb{R}_d[X]$,
- $\mathbf{v}_d : \mathbf{x} \mapsto (P_1(\mathbf{x}), \ldots, P_{s(d)}(\mathbf{x}))^T$.
- $M_{\mu,d} = \int \mathbf{v}_d \mathbf{v}_d^T d\mu \in \mathbb{R}^{s(d) \times s(d)}$ (integral coordinate-wise).

• Let
$$\{P_i\}_{i=1}^{s(d)}$$
 be any basis of $\mathbb{R}_d[X]$,
• $\mathbf{v}_d : \mathbf{x} \mapsto (P_1(\mathbf{x}), \dots, P_{s(d)}(\mathbf{x}))^T$.
• $M_{\mu,d} = \int \mathbf{v}_d \mathbf{v}_d^T d\mu \in \mathbb{R}^{s(d) \times s(d)}$ (integral coordinate-wise).
• Let $P : \mathbf{x} \mapsto c_P^T \mathbf{v}_d(\mathbf{x})$, and $Q : \mathbf{x} \mapsto c_Q^T \mathbf{v}_d(\mathbf{x})$, then
 $c_Q^T M_{\mu,d} c_P = \int (c_Q^T \mathbf{v}_d(\mathbf{x})) (\mathbf{v}_d(\mathbf{x})^T c_P) d\mu(\mathbf{x}) = \int P(\mathbf{x}) Q(\mathbf{x}) d\mu(\mathbf{x})$

 μ : Borel probability measure in \mathbb{R}^p (compact support, density). $\mathbb{R}_d[X]$: *p*-variate polynomials of degree at most *d* (of dimension $s(d) = \binom{p+d}{d}$).

 $M_{\mu,d}$ is invertible and for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$, $K_d^{\mu}(\mathbf{x}, \mathbf{y}) = \mathbf{v}_d(\mathbf{x})^T M_{\mu,d}^{-1} \mathbf{v}_d(\mathbf{y})$.

 μ : Borel probability measure in \mathbb{R}^p (compact support, density). $\mathbb{R}_d[X]$: *p*-variate polynomials of degree at most *d* (of dimension $s(d) = \binom{p+d}{d}$).

Proof: $c_P \in \mathbb{R}^{s(d)}$, coefficients. Verify the reproducing property: $P: \mathbf{x} \mapsto c_p^T \mathbf{v}_d(\mathbf{x})$,

 μ : Borel probability measure in \mathbb{R}^p (compact support, density). $\mathbb{R}_d[X]$: *p*-variate polynomials of degree at most *d* (of dimension $s(d) = \binom{p+d}{d}$).

Proof: $c_P \in \mathbb{R}^{s(d)}$, coefficients. Verify the reproducing property: $P: \mathbf{x} \mapsto c_P^T \mathbf{v}_d(\mathbf{x})$,

$$\left\langle \left\langle P(\cdot), \mathcal{K}^{\mu}_{d}(\mathbf{z}, \cdot) \right\rangle \right\rangle_{\mu} = \int P(\mathbf{x}) \mathcal{K}^{\mu}_{d}(\mathbf{z}, \mathbf{x}) d\mu(\mathbf{x}) = \int c_{P}^{\mathsf{T}} \mathbf{v}_{d}(\mathbf{x}) \mathbf{v}_{d}(\mathbf{x})^{\mathsf{T}} \mathcal{M}^{-1}_{\mu, d} \mathbf{v}_{d}(\mathbf{z}) d\mu(\mathbf{x})$$

P

Pı

• Let
$$\{P_i\}_{i=1}^{s(d)}$$
 be any basis of $\mathbb{R}_d[X]$,
• $\mathbf{v}_d : \mathbf{x} \mapsto (P_1(\mathbf{x}), \dots, P_{s(d)}(\mathbf{x}))^T$.
• $M_{\mu,d} = \int \mathbf{v}_d \mathbf{v}_d^T d\mu \in \mathbb{R}^{s(d) \times s(d)}$ (integral coordinate-wise).
• Let $P : \mathbf{x} \mapsto c_P^T \mathbf{v}_d(\mathbf{x})$, and $Q : \mathbf{x} \mapsto c_Q^T \mathbf{v}_d(\mathbf{x})$, then
 $c_Q^T M_{\mu,d} c_P = \int (c_Q^T \mathbf{v}_d(\mathbf{x})) (\mathbf{v}_d(\mathbf{x})^T c_P) d\mu(\mathbf{x}) = \int P(\mathbf{x}) Q(\mathbf{x}) d\mu(\mathbf{x})$.
 $M_{\mu,d}$ is invertible and for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^P$, $K_d^{\mu}(\mathbf{x}, \mathbf{y}) = \mathbf{v}_d(\mathbf{x})^T M_{\mu,d}^{-1} \mathbf{v}_d(\mathbf{y})$.
roof: $c_P \in \mathbb{R}^{s(d)}$, coefficients. Verify the reproducing property: $P : \mathbf{x} \mapsto c_P^T \mathbf{v}_d(\mathbf{x})$,
 $\langle\!\langle P(\cdot), K_d^{\mu}(\mathbf{z}, \cdot) \rangle\!\rangle_{\mu} = \int P(\mathbf{x}) K_d^{\mu}(\mathbf{z}, \mathbf{x}) d\mu(\mathbf{x}) = \int c_P^T \mathbf{v}_d(\mathbf{x}) \mathbf{v}_d(\mathbf{x})^T M_{\mu,d}^{-1} \mathbf{v}_d(\mathbf{z}) d\mu(\mathbf{x})$
 $= c_P^T \left(\int \mathbf{v}_d(\mathbf{x}) \mathbf{v}_d(\mathbf{x})^T d\mu(\mathbf{x})\right) M_{\mu,d}^{-1} \mathbf{v}_d(\mathbf{z}) = P(\mathbf{z})$

 μ : Borel probability measure in \mathbb{R}^p (compact support, density). $\mathbb{R}_d[X]$: *p*-variate polynomials of degree at most *d* (of dimension $s(d) = \binom{p+d}{d}$).

Remark:

- It does not depend on the choice of the basis.
- If \mathbf{v}_d is the monomial basis, then we recover the usual moment matrix.

 $= c_{P}^{T} \left(\int \mathbf{v}_{d}(\mathbf{x}) \mathbf{v}_{d}(\mathbf{x})^{T} d\mu(\mathbf{x}) \right) M_{\mu,d}^{-1} \mathbf{v}_{d}(\mathbf{z}) = c_{P}^{T} \mathbf{v}_{d}(\mathbf{z}) = P(\mathbf{z})$

Empirical measure: $\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$.

Polynomial basis: Choose $\mathbf{v}_d : \mathbf{x} \mapsto (P_1(\mathbf{x}), \dots, P_{s(d)}(\mathbf{x}))^T$.

Empirical measure: $\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$.

Polynomial basis: Choose $\mathbf{v}_d : \mathbf{x} \mapsto (P_1(\mathbf{x}), \dots, P_{s(d)}(\mathbf{x}))^T$.

Empirical moments: $D \in \mathbb{R}^{N \times s(d)}$ rows given by $\mathbf{v}_d(X_i)$, $i = 1 \dots N$ (design matrix)

$$M_{\mu_N,d}=\frac{1}{N}D^T D.$$

Empirical measure: $\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$.

Polynomial basis: Choose $\mathbf{v}_d : \mathbf{x} \mapsto (P_1(\mathbf{x}), \dots, P_{s(d)}(\mathbf{x}))^T$.

Empirical moments: $D \in \mathbb{R}^{N \times s(d)}$ rows given by $\mathbf{v}_d(X_i)$, $i = 1 \dots N$ (design matrix)

$$M_{\mu_N,d} = \frac{1}{N} D^T D$$

Inverse moment matrix: for all $\mathbf{x} \in \mathbb{R}^{p}$,

$$K_d^{\mu_N}(\mathbf{x},\mathbf{x}) = \mathbf{v}_d(\mathbf{x})^T M_{\mu_N,d}^{-1} \mathbf{v}_d(\mathbf{x}).$$

What's wrong?

Empirical measure: $\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$.

Polynomial basis: Choose $\mathbf{v}_d : \mathbf{x} \mapsto (P_1(\mathbf{x}), \dots, P_{s(d)}(\mathbf{x}))^T$.

Empirical moments: $D \in \mathbb{R}^{N \times s(d)}$ rows given by $\mathbf{v}_d(X_i)$, $i = 1 \dots N$ (design matrix)

$$M_{\mu_N,d} = \frac{1}{N} D^T D$$

Inverse moment matrix: for all $\mathbf{x} \in \mathbb{R}^{p}$,

$$K_d^{\mu_N}(\mathbf{x},\mathbf{x}) = \mathbf{v}_d(\mathbf{x})^T M_{\mu_N,d}^{-1} \mathbf{v}_d(\mathbf{x}).$$

Relation with orthogonal polynomials

Let $\{P_i\}_{i=1}^{s(d)}$ be any orthonormal basis of $\mathbb{R}_d[X]$ (*w.r.t.* $\langle\!\langle \cdot, \cdot \rangle\!\rangle_\mu$),

Relation with orthogonal polynomials

Let $\{P_i\}_{i=1}^{s(d)}$ be any orthonormal basis of $\mathbb{R}_d[X]$ (*w.r.t.* $\langle\!\langle\cdot,\cdot\rangle\!\rangle_\mu$), then for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$,

$$\mathcal{K}^{\mu}_{d}(\mathbf{x},\mathbf{y}) = \sum_{i=1}^{s(d)} \mathcal{P}_{i}(\mathbf{x}) \mathcal{P}_{i}(\mathbf{y}).$$

Relation with orthogonal polynomials

Let $\{P_i\}_{i=1}^{s(d)}$ be any orthonormal basis of $\mathbb{R}_d[X]$ (*w.r.t.* $\langle\!\langle \cdot, \cdot \rangle\!\rangle_\mu$), then for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$,

$$\mathcal{K}^{\mu}_{d}(\mathbf{x},\mathbf{y}) = \sum_{i=1}^{s(d)} \mathcal{P}_{i}(\mathbf{x}) \mathcal{P}_{i}(\mathbf{y}).$$

Proof: $\mathbf{v}_d : \mathbf{x} \mapsto (P_1(\mathbf{x}), \dots, P_{s(d)}(\mathbf{x}))^T$, in this basis $M_{\mu,d} = I$

Relation with orthogonal polynomials

Let $\{P_i\}_{i=1}^{s(d)}$ be any orthonormal basis of $\mathbb{R}_d[X]$ (*w.r.t.* $\langle\!\langle\cdot,\cdot\rangle\!\rangle_\mu$), then for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$,

$$\mathcal{K}^{\mu}_{d}(\mathbf{x},\mathbf{y}) = \sum_{i=1}^{s(d)} \mathcal{P}_{i}(\mathbf{x}) \mathcal{P}_{i}(\mathbf{y}).$$

Proof: $\mathbf{v}_d : \mathbf{x} \mapsto (P_1(\mathbf{x}), \dots, P_{s(d)}(\mathbf{x}))^T$, in this basis $M_{\mu,d} = I$

Remark: monomial basis, Gram-Schmitt provides a canonical way to construct such a basis. This is at the heart of the (rich) theory of orthogonal polynomials.

Christoffel function

$$egin{aligned} &\Lambda^{\mu}_{d}\colon \mathbb{R}^{p} \,\mapsto\, [0,1] \ &\mathbf{z}\,\mapsto\, \min_{P\in \mathbb{R}_{d}[X]}\,\left\{\int P^{2}d\mu: \quad P(\mathbf{z})\,=\,1
ight\} \end{aligned}$$

Christoffel function

$$egin{aligned} \Lambda^{\mu}_{d} \colon \mathbb{R}^{
ho} &\mapsto \ [0,1] \ \mathbf{z} &\mapsto \min_{P \in \mathbb{R}_{d}[X]} \left\{ \int P^{2} d\mu \colon & P(\mathbf{z}) = 1
ight\} &= & rac{1}{\mathcal{K}^{\mu}_{d}(\mathbf{z},\mathbf{z})}. \end{aligned}$$

Christoffel function

$$egin{array}{lll} \lambda^{\mu}_d\colon \mathbb{R}^p &\mapsto [0,1] \ \mathbf{z} &\mapsto \min_{P\in \mathbb{R}_d[X]} \left\{\int P^2 d\mu: & P(\mathbf{z}) = 1
ight\} &= & rac{1}{\mathcal{K}^{\mu}_d(\mathbf{z},\mathbf{z})}. \end{array}$$

For any $\mathsf{z} \in \mathbb{R}^{\rho}$ and $P \in \mathbb{R}_d[X]$ such that $P(\mathsf{z}) \, = \, 1$

$$P(\mathbf{z})^2 = 1 = \left(\int P(\mathbf{y}) K^{\mu}_d(\mathbf{z}, \mathbf{y}) d\mu(\mathbf{y})\right)^2$$

reproducing property,

Christoffel function

$$egin{array}{lll} \lambda^{\mu}_d\colon \mathbb{R}^p &\mapsto [0,1] \ \mathbf{z} &\mapsto \min_{P\in \mathbb{R}_d[X]} \left\{\int P^2 d\mu: & P(\mathbf{z}) = 1
ight\} &= & rac{1}{\mathcal{K}^{\mu}_d(\mathbf{z},\mathbf{z})}. \end{array}$$

For any $\mathsf{z} \in \mathbb{R}^{\rho}$ and $P \in \mathbb{R}_d[X]$ such that $P(\mathsf{z}) \, = \, 1$

$$P(\mathbf{z})^{2} = 1 = \left(\int P(\mathbf{y}) \mathcal{K}_{d}^{\mu}(\mathbf{z}, \mathbf{y}) d\mu(\mathbf{y})\right)^{2}$$
$$\leq \int P^{2} d\mu \times \int \mathcal{K}_{d}^{\mu}(\mathbf{z}, \mathbf{y})^{2} d\mu(\mathbf{y})^{2}$$

reproducing property, Cauchy-Schwartz

Christoffel function

$$egin{array}{lll} \lambda^{\mu}_d\colon \mathbb{R}^p \ \mapsto \ [0,1] \ \mathbf{z} \ \mapsto \ \min_{P\in \mathbb{R}_d[X]} \ iggl\{\int P^2 d\mu: \ \ P(\mathbf{z}) \ = \ 1iggl\} & = \ \ rac{1}{\mathcal{K}^{\mu}_d(\mathbf{z},\mathbf{z})} \end{array}$$

For any $\mathbf{z} \in \mathbb{R}^p$ and $P \in \mathbb{R}_d[X]$ such that $P(\mathbf{z}) \, = \, 1$

$$P(\mathbf{z})^{2} = 1 = \left(\int P(\mathbf{y}) K_{d}^{\mu}(\mathbf{z}, \mathbf{y}) d\mu(\mathbf{y})\right)^{2}$$

$$\leq \int P^{2} d\mu \times \int K_{d}^{\mu}(\mathbf{z}, \mathbf{y})^{2} d\mu(\mathbf{y}) = K_{d}^{\mu}(\mathbf{z}, \mathbf{z}) \int P^{2} d\mu$$

reproducing property, Cauchy-Schwartz , reproducing property.

Christoffel function

$$egin{array}{lll} \lambda^{\mu}_d\colon \mathbb{R}^p \ \mapsto \ [0,1] \ \mathbf{z} \ \mapsto \ \min_{P\in \mathbb{R}_d[X]} \ iggl\{\int P^2 d\mu: \ \ P(\mathbf{z}) \ = \ 1iggl\} & = \ \ rac{1}{\mathcal{K}^{\mu}_d(\mathbf{z},\mathbf{z})} \end{array}$$

For any $\mathbf{z} \in \mathbb{R}^p$ and $P \in \mathbb{R}_d[X]$ such that $P(\mathbf{z}) \, = \, 1$

$$P(\mathbf{z})^{2} = 1 = \left(\int P(\mathbf{y}) K_{d}^{\mu}(\mathbf{z}, \mathbf{y}) d\mu(\mathbf{y})\right)^{2}$$

$$\leq \int P^{2} d\mu \times \int K_{d}^{\mu}(\mathbf{z}, \mathbf{y})^{2} d\mu(\mathbf{y}) = K_{d}^{\mu}(\mathbf{z}, \mathbf{z}) \int P^{2} d\mu$$

reproducing property, Cauchy-Schwartz , reproducing property.

Equality for $P(\cdot) = K_d^{\mu}(\mathbf{z}, \cdot)/K_d^{\mu}(\mathbf{z}, \mathbf{z}).$

Univariate case (complex and real) since beginning of 20-th century:

- quadrature, interpolation, approximation
- orthogonal polynomials
- potential theory
- random matrices/polynomials
- . . .

A few contributors

• Szegö, Erdös, Turan, Freud, Totik, Máté, Nevai, ...

Still an object of very active research (asymptotics, multivariate case).

1. CD kernel, Christoffel function, orthogonal polynomials, moments

2. Quantitative asymptotics

- 3. Empirical measures statistical aspects
- 4. Application to support inference from sample

Main idea

 μ : Lebesgue restricted to $S \subset \mathbb{R}^p$, compact, non-empty interior. Order of growth of the CD kernel.

 ω_p is the area of the *p* dimensional unit sphere in \mathbb{R}^{p+1} .

 ω_p is the area of the *p* dimensional unit sphere in \mathbb{R}^{p+1} .

Lebesgue measure on the ball: Let λ_B be the restriction of Lebesgue measure to the unit Euclidean ball $B \subset \mathbb{R}^p$. We have

$$\begin{split} & \mathcal{K}_{d}^{\lambda_{B}}(0,0) \leq \frac{s(d)}{\omega_{p}} \frac{(d+p+1)(d+p+2)(2d+p+6)}{(d+1)(d+2)(d+3)} = O(d^{p}) \\ & \mathcal{K}_{d}^{\lambda_{B}}(\mathbf{x},\mathbf{x}) = 2 \binom{p+d+1}{d} - \binom{p+d}{d} = O(d^{p+1}), \qquad \|\mathbf{x}\| = 1 \end{split}$$

Lebesgue measure on a set with non empty interior: Let $S \subset \mathbb{R}^{p}$ have non empty interior. Then for all $\mathbf{x} \in \text{int}(S)$,

 $K_d^{\lambda_S}(\mathbf{x},\mathbf{x})=O(d^p)$

Lebesgue measure on a set with non empty interior: Let $S \subset \mathbb{R}^{p}$ have non empty interior. Then for all $\mathbf{x} \in \text{int}(S)$,

$$K_d^{\lambda_S}(\mathbf{x},\mathbf{x}) = O(d^p)$$

Proof: $\mathbf{x} \in int(S)$, there is a ball $B_r \subset S$ of radius r and center \mathbf{x} . Consider $\lambda_{B_r} \leq \lambda_S$.

Lebesgue measure on a set with non empty interior: Let $S \subset \mathbb{R}^{p}$ have non empty interior. Then for all $\mathbf{x} \in int(S)$,

$$K_d^{\lambda_S}(\mathbf{x},\mathbf{x}) = O(d^p)$$

If in addition the boundary of $S \subset \mathbb{R}^p$ is a smooth embedded hypersurface in \mathbb{R}^p . Then

$$\sup_{\mathbf{x}\in S} K_d^{\lambda_S}(\mathbf{x},\mathbf{x}) = O(d^{p+1}).$$

Proof: $\mathbf{x} \in int(S)$, there is a ball $B_r \subset S$ of radius r and center \mathbf{x} . Consider $\lambda_{B_r} \leq \lambda_S$.

Lebesgue measure on a set with non empty interior: Let $S \subset \mathbb{R}^{p}$ have non empty interior. Then for all $\mathbf{x} \in int(S)$,

$$K_d^{\lambda_S}(\mathbf{x},\mathbf{x}) = O(d^p)$$

If in addition the boundary of $S \subset \mathbb{R}^p$ is a smooth embedded hypersurface in \mathbb{R}^p . Then

$$\sup_{\mathbf{x}\in S} K_d^{\lambda_S}(\mathbf{x},\mathbf{x}) = O(d^{p+1}).$$

Proof: $\mathbf{x} \in int(S)$, there is a ball $B_r \subset S$ of radius r and center \mathbf{x} . Consider $\lambda_{B_r} \leq \lambda_S$.

Tubular neighborhood theorem: There exists r > 0 such that for all $\mathbf{x} \in S$, there is a ball of radius r, $B_r \subset S$ such that $x \in B_r$. Consider $\lambda_{B_r} \leq \lambda_S$.

Explicit construction: the cube $[-1,1]^p$

Legendre Polynomials: $P_0(t) = 0$, $P_1(t) = t$

$$(n+1)P_{n+1}(t) = (2n+1)tP_n(t) - nP_{n-1}(t)$$

 $\max_{t \in [-1,1]} P_n(t) = 1.$

Explicit construction: the cube $[-1,1]^p$

Legendre Polynomials: $P_0(t) = 0$, $P_1(t) = t$

$$(n+1)P_{n+1}(t) = (2n+1)tP_n(t) - nP_{n-1}(t)$$

 $\max_{t \in [-1,1]} P_n(t) = 1.$

Orthogonality:

$$\int_{-1}^1 P_m(t)P_n(t)dt = \frac{2}{2n+1}\delta_{mn}.$$

Explicit construction: the cube $[-1,1]^p$

Legendre Polynomials: $P_0(t) = 0$, $P_1(t) = t$

$$(n+1)P_{n+1}(t) = (2n+1)tP_n(t) - nP_{n-1}(t)$$

 $\max_{t \in [-1,1]} P_n(t) = 1.$

Orthogonality:

$$\int_{-1}^1 P_m(t)P_n(t)dt=\frac{2}{2n+1}\delta_{mn}.$$

Lebesgue measure on the cube: orthogonal polynomials given by

$$Q_lpha(\mathbf{x}) = \prod_{i=1}^p \sqrt{lpha_i + rac{1}{2}} P_{lpha_i}(\mathbf{x}_i), \qquad lpha \in \mathbb{N}^p_+, \quad |lpha| < d$$

Explicit construction: the cube $[-1, 1]^p$

Legendre Polynomials: $P_0(t) = 0$, $P_1(t) = t$

$$(n+1)P_{n+1}(t) = (2n+1)tP_n(t) - nP_{n-1}(t)$$

 $\max_{t \in [-1,1]} P_n(t) = 1.$

Orthogonality:

$$\int_{-1}^1 P_m(t)P_n(t)dt=\frac{2}{2n+1}\delta_{mn}.$$

Lebesgue measure on the cube: orthogonal polynomials given by

$$Q_{lpha}(\mathbf{x}) = \prod_{i=1}^{p} \sqrt{lpha_i + rac{1}{2}} P_{lpha_i}(\mathbf{x}_i), \qquad lpha \in \mathbb{N}^p_+, \quad |lpha| < d$$

Let λ_C be the restriction of Lebesgue measure to the unit cube $C = [-1, 1]^p$, then

$$\sup_{\mathbf{x}\in\mathcal{C}} K_d^{\lambda_{\mathcal{C}}}(\mathbf{x},\mathbf{x}) \leq \sum_{|\alpha|\leq d} \prod_{i=1}^p \left(\alpha_i + \frac{1}{2}\right) = O(d^{2p})$$

Let $S \subset \mathbb{R}^p$ be compact and μ be a probability measure supported on S. Then for all \mathbf{x} with $dist(\mathbf{x}, S) \geq \delta > 0$, and $d \in \mathbb{N}$

$$\mathcal{K}^{\mu}_{d}(\mathbf{x},\mathbf{x}) \geq 2^{rac{\delta d}{\delta + ext{diam}(S)} - 3}.$$

Let $S \subset \mathbb{R}^p$ be compact and μ be a probability measure supported on S. Then for all \mathbf{x} with $\operatorname{dist}(\mathbf{x}, S) \geq \delta > 0$, and $d \in \mathbb{N}$

$$\mathcal{K}^{\mu}_{d}(\mathbf{x},\mathbf{x})\geq 2^{rac{\delta d}{\delta+ ext{diam}(S)}-3}$$

Proof: For any $\mathbf{x} \in \mathbb{R}^{p}$ and $P \in \mathbb{R}_{d}[X]$ with $P(\mathbf{x}) = 1$,

$$\mathcal{K}^d_\mu(\mathbf{x},\mathbf{x}) \geq \left(\int \mathcal{P}^2 d\mu
ight)^{-1}$$

Choose P such that $P(\mathbf{x}) = 1$ and the integral is small.

Exponential lower bounds: Needle polynomial

Kroó's needle polynomial, for any $\delta > 0$, $d \in \mathbb{N}^*$, $\exists Q \in \mathbb{R}_{2d}[X]$

 $Q(0) = 1, \qquad |Q(\mathbf{x})| \le 1 \text{ if } \|\mathbf{x}\| \le 1, \qquad |Q(\mathbf{x})| \le 2^{1-\delta d} \text{ if } \delta \le \|\mathbf{x}\| \le 1.$

Exponential lower bounds: Needle polynomial

Kroó's needle polynomial, for any $\delta > 0$, $d \in \mathbb{N}^*$, $\exists Q \in \mathbb{R}_{2d}[X]$

 $Q(0) = 1, \qquad |Q(\mathbf{x})| \le 1 \text{ if } \|\mathbf{x}\| \le 1, \qquad |Q(\mathbf{x})| \le 2^{1-\delta d} \text{ if } \delta \le \|\mathbf{x}\| \le 1.$

Example for $\delta = 0.2$ and d = 20, 30, 40.

Exponential separation of the support

 μ : Lebesgue restricted to $S \subset \mathbb{R}^p$, compact, non-empty interior.

Exponential growth dichotomy: Growth of the CD kernel is

- At most polynomial in the degree *d* in the interior of the support.
- Exponential in the degree *d* outside the support.
- In between on the boundary of the support of μ : depending on local geometry.

- 1. CD kernel, Christoffel function, orthogonal polynomials, moments
- 2. Quantitative asymptotics
- 3. Empirical measures statistical aspects
- 4. Application to support inference from sample
μ : Borel probability measure in \mathbb{R}^p (compact support, density). $\mathbb{R}_d[X]$: *p*-variate polynomials of degree at most *d* (of dimension $s(d) = \binom{p+d}{d}$). (dimension *p* and degree *d* are fixed).

$$(P,Q) \mapsto \langle\!\langle P,Q \rangle\!\rangle_{\mu} := \int PQd\mu,$$

defines a valid scalar product on $\mathbb{R}_d[X].$

Christoffel-Darboux kernel: \mathcal{K}^{d}_{μ} is *the* reproducing kernel of $(\mathbb{R}_{d}[X], \langle\!\langle \cdot, \cdot \rangle\!\rangle_{\mu})$.

 μ : Borel probability measure in \mathbb{R}^p (compact support, density). $\mathbb{R}_d[X]$: *p*-variate polynomials of degree at most *d* (of dimension $s(d) = \binom{p+d}{d}$). (dimension *p* and degree *d* are fixed).

$$(P,Q) \qquad \mapsto \qquad \langle\!\langle P,Q \rangle\!\rangle_{\mu} := \int PQd\mu,$$

defines a valid scalar product on $\mathbb{R}_d[X]$.

Christoffel-Darboux kernel: K^d_{μ} is *the* reproducing kernel of $(\mathbb{R}_d[X], \langle\!\langle \cdot, \cdot \rangle\!\rangle_{\mu})$.

Empirical measure: $\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{\mathbf{x}_i}$.

 $\begin{array}{l} \mu: \text{ Borel probability measure in } \mathbb{R}^p \mbox{ (compact support }). \\ \mathbb{R}_d[X]: \mbox{ p-variate polynomials of degree at most d (of dimension $s(d) = \binom{p+d}{d}$). \\ (\text{dimension p and degree d are fixed}). \end{array}$

$$(P,Q) \mapsto \langle \langle P,Q \rangle \rangle_{\mu} := \int PQd\mu,$$

Christoffel-Darboux kernel: K^d_{μ} is *the* reproducing kernel of $(\mathbb{R}_d[X], \langle\!\langle \cdot, \cdot \rangle\!\rangle_{\mu})$.

Empirical measure: $\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{\mathbf{x}_i}$.

 $\begin{array}{ll} \mu \colon \text{Borel probability measure in } \mathbb{R}^p \ (\text{compact support} &). \\ \mathbb{R}_d[X] \colon \ p\text{-variate polynomials of degree at most } d \ (\text{of dimension } s(d) = \binom{p+d}{d}). \\ (\text{dimension } p \ \text{and degree } d \ \text{are fixed}). \end{array}$

$$(P,Q) \mapsto \langle \langle P,Q \rangle \rangle_{\mu} := \int PQd\mu,$$

Christoffel-Darboux kernel: K^d_{μ} is *the* reproducing kernel of $(\mathbb{R}_d[X], \langle\!\langle \cdot, \cdot \rangle\!\rangle_{\mu})$.

Empirical measure: $\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{\mathbf{x}_i}$.

Example: $P: \mathbf{x} \mapsto \prod_{i=1}^{n} \|\mathbf{x} - \mathbf{x}_i\|^2$, $\langle\!\langle P, P \rangle\!\rangle_{\mu_N} = 0$ but $P \neq 0$.

Empirical christoffel function (no need for a valid scalar product)

$$egin{aligned} & \Lambda^{\mu_N}_d\colon \mathbb{R}^{
ho}\,\mapsto\, [0,1] \ & \mathbf{z}\,\mapsto\,\min_{P\in\mathbb{R}_d[X]}\,\left\{rac{1}{N}\sum_{i=1}^N P(X_i)^2:\quad P(\mathbf{z})\,=\,1
ight\}. \end{aligned}$$

Empirical christoffel function (no need for a valid scalar product)

$$egin{aligned} & \Lambda_d^{\mu_N} \colon \mathbb{R}^p \ \mapsto \ [0,1] \ & \mathbf{z} \ \mapsto \ \min_{P \in \mathbb{R}_d[X]} \ & \left\{ rac{1}{N} \sum_{i=1}^N P(X_i)^2 \colon \quad P(\mathbf{z}) \ = \ 1
ight\}. \end{aligned}$$

Degeneracy for large d: if $s(d) \ge N$, then

$$\Lambda_n^{\mu_N} \colon \mathbf{z} \mapsto \begin{cases} 0, & \mathbf{z} \neq \mathbf{x}_i, \ i = 1 \dots, N \\ \frac{1}{N}, & \text{otherwise.} \end{cases}$$

Empirical christoffel function (no need for a valid scalar product)

$$egin{aligned} & \Lambda_d^{\mu_N} \colon \mathbb{R}^p \ \mapsto \ [0,1] \ & \mathbf{z} \ \mapsto \ \min_{P \in \mathbb{R}_d[X]} \ & \left\{ rac{1}{N} \sum_{i=1}^N P(X_i)^2 \colon \quad P(\mathbf{z}) \ = \ 1
ight\}. \end{aligned}$$

Degeneracy for large d: if $s(d) \ge N$, then

$$\Lambda_n^{\mu_N} \colon \mathbf{z} \mapsto \begin{cases} 0, & \mathbf{z} \neq \mathbf{x}_i, \ i = 1 \dots, N \\ \frac{1}{N}, & \text{otherwise.} \end{cases}$$

How to ensure that $\Lambda_d^{\mu_N}$ retains the favorable properties of $\Lambda_d^{\mu_2}$?

Statistical setting: $(X_i)_{i \in \mathbb{N}}$, \mathbb{R}^{p} valued random variables, *iid* with distribution μ .

Statistical setting: $(X_i)_{i \in \mathbb{N}}$, \mathbb{R}^p valued random variables, *iid* with distribution μ . For any $N \in \mathbb{N}$, measurable subsets A_1, \ldots, A_N in \mathbb{R}^p :

$$\mathbb{P}[(X_1 \in A_1) \& (X_2 \in A_2) \& \dots \& (X_N \in A_N)] = \prod_{i=1}^N \mu(A_i).$$

Statistical setting: $(X_i)_{i \in \mathbb{N}}$, \mathbb{R}^p valued random variables, *iid* with distribution μ . For any $N \in \mathbb{N}$, measurable subsets A_1, \ldots, A_N in \mathbb{R}^p :

$$\mathbb{P}[(X_1 \in A_1) \& (X_2 \in A_2) \& \dots \& (X_N \in A_N)] = \prod_{i=1}^N \mu(A_i).$$

Empirical measure: For any $N \in \mathbb{N}$,

$$\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{X_i}$$

Statistical setting: $(X_i)_{i \in \mathbb{N}}$, \mathbb{R}^p valued random variables, *iid* with distribution μ . For any $N \in \mathbb{N}$, measurable subsets A_1, \ldots, A_N in \mathbb{R}^p :

$$\mathbb{P}[(X_1 \in A_1) \& (X_2 \in A_2) \& \dots \& (X_N \in A_N)] = \prod_{i=1}^N \mu(A_i).$$

Empirical measure: For any $N \in \mathbb{N}$,

$$\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{X_i}$$

Strong law of large numbers: for any continuous f, almost surely

$$\lim_{N\to\infty}\int f(\mathbf{z})d\mu_N(\mathbf{z})=\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N f(X_i)=\int f(\mathbf{z})d\mu(\mathbf{z}),$$

Statistical consistency

 $\begin{array}{l} \mu: \text{ Borel probability measure in } \mathbb{R}^{p} \text{ (compact support, density).} \\ (X_{i})_{i=1,\ldots,N}, \mathbb{R}^{p} \text{ valued random variables, } \textit{iid with distribution } \mu \\ \mu_{N} = \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}} \end{array}$

Consistency for fixed degree: $d \in \mathbb{N}$ fixed, as $N \to \infty$, almost surely, uniformly in **x**

 $\Lambda^{\mu_N}_d(\mathbf{x}) o \Lambda^{\mu}_d(\mathbf{x}).$

Consistency for fixed degree: $d \in \mathbb{N}$ fixed, as $N \to \infty$, almost surely, uniformly in **x**

$$\Lambda^{\mu_N}_d(\mathbf{x}) o \Lambda^{\mu}_d(\mathbf{x}).$$

Finite sample concentration: Set $m = \max_{\mathbf{x} \in \text{supp}(\mu)} K_d^{\mu}(\mathbf{x}, \mathbf{x})$.

Consistency for fixed degree: $d \in \mathbb{N}$ fixed, as $N \to \infty$, almost surely, uniformly in **x**

$$\Lambda^{\mu_N}_d(\mathbf{x}) o \Lambda^{\mu}_d(\mathbf{x}).$$

Finite sample concentration: Set $m = \max_{\mathbf{x} \in \operatorname{supp}(\mu)} K_d^{\mu}(\mathbf{x}, \mathbf{x})$. Then, for all $\alpha > 0$, with probability at least $1 - \alpha$,

$$\sup_{\mathbf{x}} |\Lambda^{\mu_N}_d(\mathbf{x}) - \Lambda^{\mu}_d(\mathbf{x})| \leq \max\left(\sqrt{\frac{16m}{3N}\log\left(\frac{s(d)}{\alpha}\right)}, \frac{16m}{3N}\log\left(\frac{s(d)}{\alpha}\right)\right)$$

Consistency for fixed degree: $d \in \mathbb{N}$ fixed, as $N \to \infty$, almost surely, uniformly in **x**

$$\Lambda^{\mu_N}_d(\mathbf{x}) o \Lambda^{\mu}_d(\mathbf{x}).$$

Finite sample concentration: Set $m = \max_{\mathbf{x} \in \operatorname{supp}(\mu)} K_d^{\mu}(\mathbf{x}, \mathbf{x})$. Then, for all $\alpha > 0$, with probability at least $1 - \alpha$,

$$\sup_{\mathbf{x}} |\Lambda^{\mu_N}_d(\mathbf{x}) - \Lambda^{\mu}_d(\mathbf{x})| \leq \max\left(\sqrt{\frac{16m}{3N}\log\left(\frac{s(d)}{\alpha}\right)}, \frac{16m}{3N}\log\left(\frac{s(d)}{\alpha}\right)\right)$$

Nondegenerate regime: $N \ge \max_{\mathbf{x} \in \text{supp}(\mu)} K_d^{\mu}(\mathbf{x}, \mathbf{x}) \ge s(d)$. Of order d^{p+1} for smooth boundary.

Consistency for fixed degree: $d \in \mathbb{N}$ fixed, as $N \to \infty$, almost surely, uniformly in **x**

$$\Lambda^{\mu_N}_d(\mathbf{x}) o \Lambda^{\mu}_d(\mathbf{x}).$$

Finite sample concentration: Set $m = \max_{\mathbf{x} \in \operatorname{supp}(\mu)} K_d^{\mu}(\mathbf{x}, \mathbf{x})$. Then, for all $\alpha > 0$, with probability at least $1 - \alpha$,

$$\sup_{\mathbf{x}} |\Lambda^{\mu_N}_d(\mathbf{x}) - \Lambda^{\mu}_d(\mathbf{x})| \leq \max\left(\sqrt{\frac{16m}{3N}\log\left(\frac{s(d)}{\alpha}\right)}, \frac{16m}{3N}\log\left(\frac{s(d)}{\alpha}\right)\right)$$

Nondegenerate regime: $N \ge \max_{\mathbf{x} \in \text{supp}(\mu)} K_d^{\mu}(\mathbf{x}, \mathbf{x}) \ge s(d)$. Of order d^{p+1} for smooth boundary.

Statistical tools: Concentration for random matrices (non commutative Bernstein).

- 1. CD kernel, Christoffel function, orthogonal polynomials, moments
- 2. Quantitative asymptotics
- 3. Empirical measures statistical aspects
- 4. Application to support inference from sample

Smooth boundary: Let $S \subset \mathbb{R}^p$ compact, nonempty interior, boundary is a smooth embedded hypersurface. μ is the restriction of Lebesgue measures to S.

Smooth boundary: Let $S \subset \mathbb{R}^p$ compact, nonempty interior, boundary is a smooth embedded hypersurface. μ is the restriction of Lebesgue measures to S.

Constants: Then for any $\alpha > 0$, there exist constants C_1 , C_2 , C_3 which depend on α and can be computed from problem data,

Smooth boundary: Let $S \subset \mathbb{R}^p$ compact, nonempty interior, boundary is a smooth embedded hypersurface. μ is the restriction of Lebesgue measures to S.

Constants: Then for any $\alpha > 0$, there exist constants C_1 , C_2 , C_3 which depend on α and can be computed from problem data,

Degree choice and threshold: setting for all $N \in \mathbb{N}$,

$$\begin{split} d_{\mathsf{N}} &:= \left\lfloor C_1 N^{\frac{1}{p+2}} \right\rfloor \\ \gamma_{\mathsf{N}} &:= C_2 d_{\mathsf{N}}^{\frac{3p}{2}} \\ S_{\mathsf{N}} &:= \{ \mathbf{x} \in \mathbb{R}^p, \ \mathcal{K}_{d_{\mathsf{N}}}^{\mu_{\mathsf{N}}}(\mathbf{x}, \mathbf{x}) \leq \gamma_{\mathsf{N}} \}, \end{split}$$

Smooth boundary: Let $S \subset \mathbb{R}^{\rho}$ compact, nonempty interior, boundary is a smooth embedded hypersurface. μ is the restriction of Lebesgue measures to S.

Constants: Then for any $\alpha > 0$, there exist constants C_1 , C_2 , C_3 which depend on α and can be computed from problem data,

Degree choice and threshold: setting for all $N \in \mathbb{N}$,

$$\begin{split} d_{\mathsf{N}} &:= \left\lfloor C_1 N^{\frac{1}{p+2}} \right\rfloor \\ \gamma_{\mathsf{N}} &:= C_2 d_{\mathsf{N}}^{\frac{3p}{2}} \\ S_{\mathsf{N}} &:= \{ \mathbf{x} \in \mathbb{R}^p, \, \mathcal{K}_{d_{\mathsf{N}}}^{\mu_{\mathsf{N}}}(\mathbf{x}, \mathbf{x}) \leq \gamma_{\mathsf{N}} \}, \end{split}$$

Set convergence: it holds with probability at least $1 - \alpha$ that

$$d_{H}(S,S_{N}) \leq \frac{C_{3}}{N^{\frac{1}{2p+4}}} \qquad \qquad d_{H}(\partial S,\partial S_{N}) \leq \frac{C_{3}}{N^{\frac{1}{2p+4}}}$$

Smooth boundary: Let $S \subset \mathbb{R}^p$ compact, nonempty interior, boundary is a smooth embedded hypersurface. μ is the restriction of Lebesgue measures to S.

Constants: Then for any $\alpha > 0$, there exist constants C_1 , C_2 , C_3 which depend on α and can be computed from problem data,

Degree choice and threshold: setting for all $N \in \mathbb{N}$,

$$\begin{split} d_{\mathsf{N}} &:= \left\lfloor C_1 N^{\frac{1}{p+2}} \right\rfloor \\ \gamma_{\mathsf{N}} &:= C_2 d_{\mathsf{N}}^{\frac{3p}{2}} \\ S_{\mathsf{N}} &:= \{ \mathbf{x} \in \mathbb{R}^p, \, \mathcal{K}_{d_{\mathsf{N}}}^{\mu_{\mathsf{N}}}(\mathbf{x}, \mathbf{x}) \leq \gamma_{\mathsf{N}} \}, \end{split}$$

Set convergence: it holds with probability at least $1 - \alpha$ that

$$d_H(S,S_N) \leq \frac{C_3}{N^{\frac{1}{2p+4}}} \qquad \qquad d_H(\partial S,\partial S_N) \leq \frac{C_3}{N^{\frac{1}{2p+4}}}$$

Hausdorff Distance: $d_H(X, Y)$ between two compact sets X, Y:

$$d_{H}(X,Y) = \max\left\{\sup_{\mathbf{x}\in X}\inf_{\mathbf{y}\in Y}\|\mathbf{x}-\mathbf{y}\|, \sup_{\mathbf{y}\in Y}\inf_{\mathbf{x}\in X}\|\mathbf{x}-\mathbf{y}\|\right\}$$

Takeaway

 μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).

 μ : Borel probability measure in \mathbb{R}^{ρ} (compact support, density).

RKHS: K_d^{μ} is the reproducing kernel of $\mathbb{R}_d[X]$ with dot product $(P, Q) \mapsto \int PQd\mu$.

 μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).

RKHS: K_d^{μ} is the reproducing kernel of $\mathbb{R}_d[X]$ with dot product $(P, Q) \mapsto \int PQd\mu$. **Inverse moment matrix:** $\mathbf{v}_d : \mathbb{R}^p \to \mathbb{R}^{\mathfrak{s}(d)}$ basis of $\mathbb{R}_d[X]$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$, $K_d^{\mu}(\mathbf{x}, \mathbf{y}) = \mathbf{v}_d(\mathbf{x})^T M_{\mu d}^{-1} \mathbf{v}_d(\mathbf{y})$. μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).

RKHS: K_d^{μ} is the reproducing kernel of $\mathbb{R}_d[X]$ with dot product $(P, Q) \mapsto \int PQd\mu$.

Inverse moment matrix: $\mathbf{v}_d \colon \mathbb{R}^p \to \mathbb{R}^{s(d)}$ basis of $\mathbb{R}_d[X]$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$,

$$K^{\mu}_{d}(\mathbf{x},\mathbf{y}) = \mathbf{v}_{d}(\mathbf{x})^{T} M^{-1}_{\mu,d} \mathbf{v}_{d}(\mathbf{y}).$$

Variational formulation: Christoffel function, for all $\mathbf{x} \in \mathbb{R}^{p}$,

$$\frac{1}{\mathcal{K}^{\mu}_{d}(\mathbf{x},\mathbf{x})} = \Lambda^{\mu}_{d}(\mathbf{x}) := \min_{P \in \mathbb{R}_{d}[X]} \left\{ \int P^{2} d\mu : P(\mathbf{z}) = 1 \right\}$$

 μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).

RKHS: K_d^{μ} is the reproducing kernel of $\mathbb{R}_d[X]$ with dot product $(P, Q) \mapsto \int PQd\mu$.

Inverse moment matrix: $\mathbf{v}_d \colon \mathbb{R}^p \to \mathbb{R}^{s(d)}$ basis of $\mathbb{R}_d[X]$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$,

$$\mathcal{K}^{\mu}_{d}(\mathbf{x},\mathbf{y}) = \mathbf{v}_{d}(\mathbf{x})^{T} M^{-1}_{\mu,d} \mathbf{v}_{d}(\mathbf{y}).$$

Variational formulation: Christoffel function, for all $\mathbf{x} \in \mathbb{R}^{p}$,

$$\frac{1}{K^{\mu}_{d}(\mathbf{x},\mathbf{x})} = \Lambda^{\mu}_{d}(\mathbf{x}) := \min_{P \in \mathbb{R}_{d}[X]} \left\{ \int P^{2} d\mu : P(\mathbf{z}) = 1 \right\}$$

Exponential growth dichotomy: as d grows, $K_d^{\mu}(\mathbf{x}, \mathbf{x})$ goes to infinity

- At most in O(d) in the interior of the support of μ .
- At least exponentially outside the support of μ .

Takeaway

 μ : Borel probability measure in \mathbb{R}^p (compact support, density). $(X_i)_{i=1,...,N}$, \mathbb{R}^p valued random variables, *iid* with distribution μ $\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{X_i}$.

RKHS: K_d^{μ} is the reproducing kernel of $\mathbb{R}_d[X]$ with dot product $(P, Q) \mapsto \int PQd\mu$.

Inverse moment matrix: $\mathbf{v}_d \colon \mathbb{R}^p \to \mathbb{R}^{s(d)}$ basis of $\mathbb{R}_d[X]$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$,

$$\mathcal{K}^{\mu}_{d}(\mathbf{x},\mathbf{y}) = \mathbf{v}_{d}(\mathbf{x})^{T} M^{-1}_{\mu,d} \mathbf{v}_{d}(\mathbf{y}).$$

Variational formulation: Christoffel function, for all $\mathbf{x} \in \mathbb{R}^{p}$,

$$\frac{1}{K^{\mu}_{d}(\mathbf{x},\mathbf{x})} = \Lambda^{\mu}_{d}(\mathbf{x}) := \min_{P \in \mathbb{R}_{d}[X]} \left\{ \int P^{2} d\mu : P(\mathbf{z}) = 1 \right\}$$

Exponential growth dichotomy: as d grows, $K_d^{\mu}(\mathbf{x}, \mathbf{x})$ goes to infinity

- At most in O(d) in the interior of the support of μ .
- At least exponentially outside the support of μ .

Takeaway

 μ : Borel probability measure in \mathbb{R}^p (compact support, density). $(X_i)_{i=1,...,N}$, \mathbb{R}^p valued random variables, *iid* with distribution μ $\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{X_i}$.

RKHS: K_d^{μ} is the reproducing kernel of $\mathbb{R}_d[X]$ with dot product $(P, Q) \mapsto \int PQd\mu$.

Inverse moment matrix: $\mathbf{v}_d \colon \mathbb{R}^p \to \mathbb{R}^{s(d)}$ basis of $\mathbb{R}_d[X]$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$,

$$\mathcal{K}^{\mu}_{d}(\mathbf{x},\mathbf{y}) = \mathbf{v}_{d}(\mathbf{x})^{T} M^{-1}_{\mu,d} \mathbf{v}_{d}(\mathbf{y}).$$

Variational formulation: Christoffel function, for all $\mathbf{x} \in \mathbb{R}^{p}$,

$$\frac{1}{\mathcal{K}^{\mu}_{d}(\mathbf{x},\mathbf{x})} = \Lambda^{\mu}_{d}(\mathbf{x}) := \min_{P \in \mathbb{R}_{d}[X]} \left\{ \int P^{2} d\mu : P(\mathbf{z}) = 1 \right\}$$

Exponential growth dichotomy: as d grows, $K_d^{\mu}(\mathbf{x}, \mathbf{x})$ goes to infinity

- At most in O(d) in the interior of the support of μ .
- At least exponentially outside the support of μ .

Statistical approximation: $\Lambda_d^{\mu_N} \sim \Lambda_d^{\mu}$ provided that

$$N \geq \sup_{\mathbf{x}\in \mathrm{supp}(\mu)} K^{\mu}_{d}(\mathbf{x},\mathbf{x}) \geq s(d).$$

Thanks

