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Content of the presentation

Introduction of Christoffel-Darboux kernels and Christoffel function.

Overview of first properties.

Statistical aspects and application to support inference.
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Motivation

Mathematical context:

Christoffel-Darboux (CD) kernels and orthogonal polynomials ∼ 19-th century.

Important in approximation theory (convergence of generalized Fourier series).

There is still a lot of activity going on.

Recently used in, data science, polynomial optimization contexts.

In a nutshell

A CD kernel Kµ depends on a (probability) measure µ on a Euclidean space Rp

We have Kµ : Rp × Rp → R, and will often consider Kµ(x, x).

Kµ, is a polynomial, we actually have (Kµ
d )d∈N, where Kµ

d is of degree 2d , d ∈ N.
It captures information on µ (support, density).

It is easily computed from moments of the measure.

Moments (pseudomoments) of measures are outputs of Lassere’s Hierarchy.

Moments correspond to empirical averages in a statistical context.
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(xi )
N
i=1 is a set of points in R2 (black dots).

µ is the empirical average µ = 1
N

∑N
i=1 δxi .

The CD kernel is a function on R2 × R2 (level sets of Kµ
d (x, x), d = 4).

Plan for today: Introduction of these objects and first properties.
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Outline

1. CD kernel, Christoffel function, orthogonal polynomials, moments

2. Quantitative asymptotics

3. Empirical measures statistical aspects

4. Application to support inference from sample
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Christoffel-Darboux kernel

µ: Borel probability measure in Rp

(compact support, density)

.
Rd [X ]: p-variate polynomials of degree at most d (of dimension s(d) =

(
p+d
d

)
).

(dimension p and degree d are fixed).

(P,Q) 7→ ⟪P,Q⟫µ :=

∫
PQdµ,

defines a valid scalar product on Rd [X ].

(Rd [X ], ⟪·, ·⟫µ) is a finite dimensional, Hilbert space of functions from Rp to R.
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Reproducing Kernel Hilbert Space (RKHS)

Hilbert space method (first half of 20-th century): Zarembda, Mercer, Moore, Szegö,
Bergman, Bochner, Kolmogorov, Aronszajn . . .

Aronszajn (1950): X is a set and H a Hilbert space of real valued functions on X with
scalar product ⟨·, ·⟩H and norm ∥ · ∥H.

The following are equivalent:

For any x ∈ X , h 7→ h(x) is continuous on H.

There is a unique symmetric positive definite K : H×H 7→ R such that,

▶ for any x ∈ X , K(x , ·) ∈ H
▶ for any x ∈ X , h ∈ H

⟨h,K(x , ·)⟩H = h(x).

H is called RKHS and K is the reproducing kernel of H.
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Reproducing Kernel Hilbert Space (RKHS)

H = (Rd [X ], ⟪·, ·⟫µ) is a Reproducing Kernel Hilbert Space (RKHS):

Evaluation is continuous with respect to coefficients.
Finite dimension, all norms are equivalent: ∥ · ∥µ and any norm on coefficients.

Reproducing property: For all d ∈ N, there exists Kµ
d : Rp ×Rp 7→ R, symmetric such

that for all z ∈ Rp,
Kµ

d (z, ·) ∈ Rd [X ].

Kµ
d satifies the reproducing property, for all P ∈ Rd [X ] and z ∈ Rp,

P(z) = ⟪P(·),Kµ
d (z, ·)⟫µ =

∫
P(x)Kµ

d (z, x)dµ(x)

Christoffel-Darboux kernel: K d
µ is the reproducing kernel of H.

8 / 32



Reproducing Kernel Hilbert Space (RKHS)

H = (Rd [X ], ⟪·, ·⟫µ) is a Reproducing Kernel Hilbert Space (RKHS):

Evaluation is continuous with respect to coefficients.
Finite dimension, all norms are equivalent: ∥ · ∥µ and any norm on coefficients.

Reproducing property: For all d ∈ N, there exists Kµ
d : Rp ×Rp 7→ R, symmetric such

that for all z ∈ Rp,
Kµ

d (z, ·) ∈ Rd [X ].

Kµ
d satifies the reproducing property, for all P ∈ Rd [X ] and z ∈ Rp,

P(z) = ⟪P(·),Kµ
d (z, ·)⟫µ =

∫
P(x)Kµ

d (z, x)dµ(x)

Christoffel-Darboux kernel: K d
µ is the reproducing kernel of H.

8 / 32



Reproducing Kernel Hilbert Space (RKHS)

H = (Rd [X ], ⟪·, ·⟫µ) is a Reproducing Kernel Hilbert Space (RKHS):

Evaluation is continuous with respect to coefficients.
Finite dimension, all norms are equivalent: ∥ · ∥µ and any norm on coefficients.

Reproducing property: For all d ∈ N, there exists Kµ
d : Rp ×Rp 7→ R, symmetric such

that for all z ∈ Rp,
Kµ

d (z, ·) ∈ Rd [X ].

Kµ
d satifies the reproducing property, for all P ∈ Rd [X ] and z ∈ Rp,

P(z) = ⟪P(·),Kµ
d (z, ·)⟫µ =

∫
P(x)Kµ

d (z, x)dµ(x)

Christoffel-Darboux kernel: K d
µ is the reproducing kernel of H.

8 / 32



Computation from moments

µ: Borel probability measure in Rp (compact support, density).
Rd [X ]: p-variate polynomials of degree at most d (of dimension s(d) =

(
p+d
d

)
).

Let {Pi}s(d)i=1 be any basis of Rd [X ],

vd : x 7→ (P1(x), . . . ,Ps(d)(x))
T .

Mµ,d =
∫
vdv

T
d dµ ∈ Rs(d)×s(d) (integral coordinate-wise).

Let P : x 7→ cTP vd(x), and Q : x 7→ cTQ vd(x), then

cTQMµ,dcP =

∫
(cTQ vd(x))(vd(x)

T cP)dµ(x) =

∫
P(x)Q(x)dµ(x).

Mµ,d is invertible and for all x, y ∈ Rp, Kµ
d (x, y) = vd(x)

TM−1
µ,dvd(y).

Proof: cP ∈ Rs(d), coefficients. Verify the reproducing property: P : x 7→ cTP vd (x),

⟪P(·),Kµ
d (z, ·)⟫

µ
=

∫
P(x)Kµ

d (z, x)dµ(x) =

∫
cTP vd (x)vd (x)

TM−1
µ,dvd (z)dµ(x)

= cTP

(∫
vd (x)vd (x)

Tdµ(x)

)
M−1

µ,dvd (z)

= cTP vd (z) = P(z)

Remark:
It does not depend on the choice of the basis.
If vd is the monomial basis, then we recover the usual moment matrix.
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(Practical computation: empirical measures)

What’s wrong?
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 1
46

37
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 3
33

34
0 

Empirical measure: µN = 1
N

∑N
i=1 δxi .

Polynomial basis: Choose vd : x 7→ (P1(x), . . . ,Ps(d)(x))
T .

Empirical moments: D ∈ RN×s(d) rows given by vd(Xi ), i = 1 . . .N (design matrix)

MµN ,d =
1

N
DTD.

Inverse moment matrix: for all x ∈ Rp,

KµN
d (x, x) = vd(x)

TM−1
µN ,dvd(x).
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Relation with orthogonal polynomials

µ: Borel probability measure in Rp (compact support, density).
Rd [X ]: p-variate polynomials of degree at most d (of dimension s(d) =

(
p+d
d

)
).

Relation with orthogonal polynomials

Let {Pi}s(d)i=1 be any orthonormal basis of Rd [X ] (w.r.t. ⟪·, ·⟫µ),

then for all x, y ∈ Rp,

Kµ
d (x, y) =

s(d)∑
i=1

Pi (x)Pi (y).

Proof: vd : x 7→ (P1(x), . . . ,Ps(d)(x))
T , in this basis Mµ,d = I

Remark: monomial basis, Gram-Schmitt provides a canonical way to construct such a
basis. This is at the heart of the (rich) theory of orthogonal polynomials.
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Christoffel function

µ: Borel probability measure in Rp (compact support, density).
Rd [X ]: p-variate polynomials of degree at most d (of dimension s(d) =

(
p+d
d

)
).

Christoffel function

Λµ
d : R

p 7→ [0, 1]

z 7→ min
P∈Rd [X ]

{∫
P2dµ : P(z) = 1

}

=
1

Kµ
d (z, z)

.

For any z ∈ Rp and P ∈ Rd [X ] such that P(z) = 1

P(z)2 = 1 =

(∫
P(y)Kµ

d (z, y)dµ(y)

)2

≤
∫

P2dµ×
∫

Kµ
d (z, y)

2dµ(y)

= Kµ
d (z, z)

∫
P2dµ

reproducing property,

Cauchy-Schwartz , reproducing property.

Equality for P(·) = Kµ
d (z, ·)/K

µ
d (z, z).
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Historical remarks

Univariate case (complex and real) since beginning of 20-th century:

quadrature, interpolation, approximation

orthogonal polynomials

potential theory

random matrices/polynomials

. . .

A few contributors

Szegö, Erdös, Turan, Freud, Totik, Máté, Nevai, . . .

Still an object of very active research (asymptotics, multivariate case).
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Outline

1. CD kernel, Christoffel function, orthogonal polynomials, moments

2. Quantitative asymptotics

3. Empirical measures statistical aspects

4. Application to support inference from sample
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Main idea

µ: Lebesgue restricted to S ⊂ Rp, compact, non-empty interior.
Order of growth of the CD kernel.

dp

exp(αd)

dp+1

dp+2

exp(α
√
d)
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The unit euclidean ball (Bos, Xu)

ωp is the area of the p dimensional unit sphere in Rp+1.

Lebesgue measure on the ball: Let λB be the restriction of Lebesgue measure to the
unit Euclidean ball B ⊂ Rp. We have

KλB
d (0, 0) ≤ s(d)

ωp

(d + p + 1)(d + p + 2)(2d + p + 6)

(d + 1)(d + 2)(d + 3)
= O(dp)

KλB
d (x, x) = 2

(
p + d + 1

d

)
−

(
p + d

d

)
= O(dp+1), ∥x∥ = 1.
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Smooth boundary

Exercise: Show that if µ(A) ≥ ν(A) for all measurable set A, then for all d , Kµ
d ≤ Kν

d .

Lebesgue measure on a set with non empty interior: Let S ⊂ Rp have non empty
interior. Then for all x ∈ int(S),

KλS
d (x, x) = O(dp)

If in addition the boundary of S ⊂ Rp is a smooth embedded hypersurface in Rp. Then

sup
x∈S

KλS
d (x, x) = O(dp+1).

Proof: x ∈ int(S), there is a ball Br ⊂ S of radius r and center x. Consider λBr ≤ λS .

Tubular neighborhood theorem: There exists r > 0 such that for all x ∈ S , there is a
ball of radius r , Br ⊂ S such that x ∈ Br . Consider λBr ≤ λS .
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If in addition the boundary of S ⊂ Rp is a smooth embedded hypersurface in Rp. Then

sup
x∈S

KλS
d (x, x) = O(dp+1).

Proof: x ∈ int(S), there is a ball Br ⊂ S of radius r and center x. Consider λBr ≤ λS .

Tubular neighborhood theorem: There exists r > 0 such that for all x ∈ S , there is a
ball of radius r , Br ⊂ S such that x ∈ Br . Consider λBr ≤ λS .
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Explicit construction: the cube [−1, 1]p

Legendre Polynomials: P0(t) = 0, P1(t) = t

(n + 1)Pn+1(t) = (2n + 1)tPn(t)− nPn−1(t)

maxt∈[−1,1] Pn(t) = 1.

Orthogonality: ∫ 1

−1

Pm(t)Pn(t)dt =
2

2n + 1
δmn.

Lebesgue measure on the cube: orthogonal polynomials given by

Qα(x) =

p∏
i=1

√
αi +

1

2
Pαi (xi ), α ∈ Np

+, |α| < d

Let λC be the restriction of Lebesgue measure to the unit cube C = [−1, 1]p, then

sup
x∈C

KλC
d (x, x) ≤

∑
|α|≤d

p∏
i=1

(
αi +

1

2

)
= O(d2p)
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Exponential lower bounds

Let S ⊂ Rp be compact and µ be a probability measure supported on S . Then for all
x with dist(x, S) ≥ δ > 0, and d ∈ N

Kµ
d (x, x) ≥ 2

δd
δ+diam(S)

−3
.

Proof: For any x ∈ Rp and P ∈ Rd [X ] with P(x) = 1,

K d
µ(x, x) ≥

(∫
P2dµ

)−1

.

Choose P such that P(x) = 1 and the integral is small.
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Exponential lower bounds: Needle polynomial

Kroó’s needle polynomial, for any δ > 0, d ∈ N∗, ∃Q ∈ R2d [X ]

Q(0) = 1, |Q(x)| ≤ 1 if ∥x∥ ≤ 1, |Q(x)| ≤ 21−δd if δ ≤ ∥x∥ ≤ 1.

Example for δ = 0.2 and d = 20, 30, 40.
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Exponential separation of the support

µ: Lebesgue restricted to S ⊂ Rp, compact, non-empty interior.

dp

exp(αd)

dp+1

dp+2

exp(α
√
d)

Exponential growth dichotomy: Growth of the CD kernel is

At most polynomial in the degree d in the interior of the support.

Exponential in the degree d outside the support.

In between on the boundary of the support of µ: depending on local geometry.
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Outline

1. CD kernel, Christoffel function, orthogonal polynomials, moments

2. Quantitative asymptotics

3. Empirical measures statistical aspects

4. Application to support inference from sample
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Empirical christoffel-Darboux kernel

µ: Borel probability measure in Rp (compact support, density).
Rd [X ]: p-variate polynomials of degree at most d (of dimension s(d) =

(
p+d
d

)
).

(dimension p and degree d are fixed).

(P,Q) 7→ ⟪P,Q⟫µ :=

∫
PQdµ,

defines a valid scalar product on Rd [X ].

Christoffel-Darboux kernel: K d
µ is the reproducing kernel of (Rd [X ], ⟪·, ·⟫µ).

Empirical measure: µN = 1
N

∑N
i=1 δxi .

Example: P : x 7→
∏n

i=1 ∥x− xi∥2, ⟪P,P⟫µN = 0 but P ̸= 0.
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Fix using empirical Christoffel function

Empirical measure: µN = 1
N

∑N
i=1 δxi

Empirical christoffel function (no need for a valid scalar product)

ΛµN
d : Rp 7→ [0, 1]

z 7→ min
P∈Rd [X ]

{
1

N

N∑
i=1

P(Xi )
2 : P(z) = 1

}
.

Degeneracy for large d : if s(d) ≥ N, then

ΛµN
n : z 7→

{
0, z ̸= xi , i = 1 . . . ,N
1
N
, otherwise.

How to ensure that ΛµN
d retains the favorable properties of Λµ

d ?
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Empirical measure: statistical setting

Statistical setting: (Xi )i∈N, Rp valued random variables, iid with distribution µ.

For any N ∈ N, measurable subsets A1, . . . ,AN in Rp:

P [(X1 ∈ A1) & (X2 ∈ A2) & . . . & (XN ∈ AN)] =
N∏
i=1

µ(Ai ).

Empirical measure: For any N ∈ N,

µN =
1

N

N∑
i=1

δXi

Strong law of large numbers: for any continuous f , almost surely

lim
N→∞

∫
f (z)dµN(z) = lim

N→∞

1

N

N∑
i=1

f (Xi ) =

∫
f (z)dµ(z),
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Statistical consistency

µ: Borel probability measure in Rp (compact support, density).
(Xi )i=1,...,N , Rp valued random variables, iid with distribution µ
µN = 1

N

∑N
i=1 δXi

Consistency for fixed degree: d ∈ N fixed, as N → ∞, almost surely, uniformly in x

ΛµN
d (x) → Λµ

d (x).

Finite sample concentration: Set m = maxx∈supp(µ) K
µ
d (x, x).

Then, for all α > 0, with probability at least 1− α,

sup
x

|ΛµN
d (x)− Λµ

d (x)| ≤ max

(√
16m

3N
log

(
s(d)

α

)
,
16m

3N
log

(
s(d)

α

))

Nondegenerate regime: N ≥ maxx∈supp(µ) K
µ
d (x, x) ≥ s(d).

Of order dp+1 for smooth boundary.

Statistical tools: Concentration for random matrices (non commutative Bernstein).
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Leveraging the exponential growth dichotomy

Smooth boundary: Let S ⊂ Rp compact, nonempty interior, boundary is a smooth
embedded hypersurface. µ is the restriction of Lebesgue measures to S .

Constants:Then for any α > 0, there exist constants C1, C2, C3 which depend on α and
can be computed from problem data,

Degree choice and threshold: setting for all N ∈ N,

dN :=
⌊
C1N

1
p+2

⌋
γN := C2d

3p
2

N

SN := {x ∈ Rp, KµN
dN

(x, x) ≤ γN},

Set convergence: it holds with probability at least 1− α that

dH(S ,SN) ≤
C3

N
1

2p+4

dH(∂S , ∂SN) ≤
C3

N
1

2p+4

Hausdorff Distance:dH(X ,Y ) between two compact sets X ,Y :

dH(X ,Y ) = max

{
sup
x∈X

inf
y∈Y

∥x− y∥, sup
y∈Y

inf
x∈X

∥x− y∥
}
.
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dN :=
⌊
C1N

1
p+2

⌋
γN := C2d

3p
2

N

SN := {x ∈ Rp, KµN
dN

(x, x) ≤ γN},

Set convergence: it holds with probability at least 1− α that

dH(S ,SN) ≤
C3

N
1

2p+4

dH(∂S , ∂SN) ≤
C3

N
1

2p+4

Hausdorff Distance:dH(X ,Y ) between two compact sets X ,Y :

dH(X ,Y ) = max

{
sup
x∈X

inf
y∈Y

∥x− y∥, sup
y∈Y

inf
x∈X

∥x− y∥
}
.
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Numerical illustration
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Numerical illustration
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Takeaway

µ: Borel probability measure in Rp (compact support, density).

(Xi )i=1,...,N , Rp valued random variables, iid with distribution µ
µN = 1

N

∑N
i=1 δXi .

RKHS: Kµ
d is the reproducing kernel of Rd [X ] with dot product (P,Q) 7→

∫
PQdµ.

Inverse moment matrix: vd : Rp → Rs(d) basis of Rd [X ], for all x, y ∈ Rp,

Kµ
d (x, y) = vd(x)

TM−1
µ,dvd(y).

Variational formulation: Christoffel function, for all x ∈ Rp,

1

Kµ
d (x, x)

= Λµ
d (x) := min

P∈Rd [X ]

{∫
P2dµ : P(z) = 1

}
.

Exponential growth dichotomy: as d grows, Kµ
d (x, x) goes to infinity

At most in O(d) in the interior of the support of µ.

At least exponentially outside the support of µ.

Statistical approximation: ΛµN
d ∼ Λµ

d

provided that

N ≥ sup
x∈supp(µ)

Kµ
d (x, x) ≥ s(d).
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