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Content of the presentation

Introduction of Christoffel-Darboux kernels and Christoffel function.
Overview of first properties.

Statistical aspects and application to support inference.
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Recently used in, data science, polynomial optimization contexts.

In a nutshell

@ A CD kernel K* depends on a (probability) measure p on a Euclidean space R”
We have K*: R? x R? — R, and will often consider K*(x, x).
K*, is a polynomial, we actually have (K/')gen, where K is of degree 2d, d € N.
It captures information on p (support, density).
It is easily computed from moments of the measure.

Moments (pseudomoments) of measures are outputs of Lassere’s Hierarchy.

Moments correspond to empirical averages in a statistical context.
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o (x;)Y, is a set of points in R? (black dots).
o 11 is the empirical average = & -V &..
o The CD kernel is a function on R? x R? (level sets of K//(x,x), d = 4).

Plan for today: Introduction of these objects and first properties.
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1. CD kernel, Christoffel function, orthogonal polynomials, moments
2. Quantitative asymptotics
3. Empirical measures statistical aspects

4. Application to support inference from sample
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Christoffel-Darboux kernel

1 Borel probability measure in R?
Ry4[X]: p-variate polynomials of degree at most d (of dlmen5|on s(d) = (°1%)).
(dimension p and degree d are fixed).
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Christoffel-Darboux kernel

w: Borel probability measure in R (compact support, density).
Rg[X]: p-variate polynomials of degree at most d (of dimension s(d) = (°})).
(dimension p and degree d are fixed).

(P.Q) = (P.Q), = [ Pad,

defines a valid scalar product on Ry[X].

(Rg[X]1, (-, D) is a finite dimensional, Hilbert space of functions from R” to R.
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Reproducing Kernel Hilbert Space (RKHS)

Hilbert space method (first half of 20-th century): Zarembda, Mercer, Moore, Szegd,
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Reproducing Kernel Hilbert Space (RKHS)

H = (R4[X], {*, D)) is a Reproducing Kernel Hilbert Space (RKHS):

@ Evaluation is continuous with respect to coefficients.
@ Finite dimension, all norms are equivalent: || - ||, and any norm on coefficients.
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Reproducing property: For all d € N, there exists K/ : R? x R? — R, symmetric such
that for all z € RP,
K (z,) € RaX].

K satifies the reproducing property, for all P € Rq[X] and z € R,

P@) = (P()Ki(=)), = /P(X)Ké‘(ZyX)du(X)

Christoffel-Darboux kernel: Kg is the reproducing kernel of H.
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Computation from moments

w: Borel probability measure in R” (compact support, density).
Ry4[X]: p-variate polynomials of degree at most d (of dimension s(d) = (":d)).

o Let {P,-},S.Ldl) be any basis of R4[X],
@ Vy: X (Pl(x), 000y Ps(d)(x))T.
o Mg = [vav)du € R (integral coordinate-wise).

o Let P: x — cAvg(x), and Q: x — c(gvd(x), then
c@Myacp = /(C5Vd(X))(Vd(X)TCP)dM(X) = /P(X)Q(X)du(X)

M,..4 is invertible and for all x,y € R?, K (x,y) = vd(x)TM;’bvd(y).

Proof: cp € R5(9), coefficients. Verify the reproducing property: P: x — c;—vd(x),
(PO KL ), :/P(X)Kc‘,‘(z,x)d,u(x) - /c;—vd(x)vd(x)TM‘vad(z)du(x)
= f ([ walwa() T du(x) ) M val@) = cFva(a) = P2

Remark:
@ It does not depend on the choice of the basis.

@ If vg is the monomial basis, then we recover the usual moment matrix.
9/32



(Practical computation: empirical measures)

.. N
Empirical measure: py = % Y1V, Ox.

Polynomial basis: Choose vg: x — (P1(x), ..., Psa)(x))".
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(Practical computation: empirical measures)

What’s wrong?

.. N
Empirical measure: py = % Y1V, Ox.

Polynomial basis: Choose vg: x — (P1(x), ..., Psa)(x))".
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Relation with orthogonal polynomials

w: Borel probability measure in R (compact support, density).
Rg[X]: p-variate polynomials of degree at most d (of dimension s(d) = (°})).

Relation with orthogonal polynomials

Let {P,-}f(:dl) be any orthonormal basis of Ry[X] (w.r.t. (-, -)u), then for all x,y € RP,

s(d)

K{(x,y) = Z Pi(x)Pi(y)-

Proof: vy: x— (P1(x),..., Pyq)(x))7, in this basis M,, 4 =/

Remark: monomial basis, Gram-Schmitt provides a canonical way to construct such a
basis. This is at the heart of the (rich) theory of orthogonal polynomials.
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Christoffel function

w: Borel probability measure in R (compact support, density).
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Christoffel function

u: Borel probability measure in R” (compact support, density).
Rqg[X]: p-variate polynomials of degree at most d (of dimension s(d) = (°})).

Christoffel function
AL RP — [0,1]
. 2 ) _ _ 1
zn—)Pé‘%ldr?X] {/P du: P(z)_l} = Ko

For any z € R? and P € Ry[X] such that P(z) = 1

(/ P(y)Ks‘(z,y)du(y)f

< /Pzdux /Kg‘(z,y)2d,u(y) = Kj(z,z)/Pzd,u
reproducing property, Cauchy-Schwartz , reproducing property.

Equality for P(:) = K} (z,-)/ K/ (z, z).

Pz = 1
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Historical remarks

Univariate case (complex and real) since beginning of 20-th century:

@ quadrature, interpolation, approximation

orthogonal polynomials

potential theory

random matrices/polynomials
A few contributors
o Szego, Erdos, Turan, Freud, Totik, Maté, Nevai, ...

Still an object of very active research (asymptotics, multivariate case).
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2. Quantitative asymptotics
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1 Lebesgue restricted to S C RP, compact, non-empty interior.

Order of growth of the CD kernel.

exp(av/d

@
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The unit euclidean ball (Bos, Xu)

wp is the area of the p dimensional unit sphere in RPHL
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The unit euclidean ball (Bos, Xu)

wp is the area of the p dimensional unit sphere in RPHL

Lebesgue measure on the ball: Let A\g be the restriction of Lebesgue measure to the
unit Euclidean ball B C R”. We have

5 s(d)(d+p+1)(d+p+2)2d+p+6) _
K;2(0,0) < Wp (d+1)(d+2)(d+3) = 0(d")

K2 ) = 2(”+Z+ 1) - (pZ d) e W MY
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Smooth boundary

Exercise: Show that if u(A) > v(A) for all measurable set A, then for all d, K} < K.
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Exercise: Show that if u(A) > v(A) for all measurable set A, then for all d, K} < K.
Lebesgue measure on a set with non empty interior: Let S C R” have non empty
interior. Then for all x € int(S),

Ky* (x,x) = O(d”)
If in addition the boundary of S C R is a smooth embedded hypersurface in RP. Then

sup K5 (x,x) = O(d”™).
x€S

Proof: x € int(S), there is a ball B, C S of radius r and center x. Consider Ag, < As.

Tubular neighborhood theorem: There exists r > 0 such that for all x € S, there is a
ball of radius r, B, C S such that x € B,. Consider Ag, < As.
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Explicit construction: the cube [—1,1]P

Legendre Polynomials: Py(t) =0, Pi(t) =t
(n+ 1)Pnia(t) = (2n 4+ 1)tPy(t) — nPn—1(t)
maxte[_m] Pn(t) =1.

18/32



Explicit construction: the cube [—1,1]P

Legendre Polynomials: Py(t) =0, Pi(t) =t
(n+ 1)Pnia(t) = (2n 4+ 1)tPy(t) — nPn—1(t)
maxte[_m] Pn(t) =1.

Orthogonality:

/1 Po(t)Pa(t)dt = —°

=—" Sm.
2n4+1 ™

18/32



Explicit construction: the cube [—1,1]P

Legendre Polynomials: Py(t) =0, Pi(t) =t
(n+ 1)Pnia(t) = (2n 4+ 1)tPy(t) — nPn—1(t)
maxte[_m] Pn(t) =1.

Orthogonality:

/1 Po(t)Pa(t)dt = —°

= b
L 2n4+1"""

Lebesgue measure on the cube: orthogonal polynomials given by

P
1
Q) =] for + 2Puf), e, ol <d
i=1

18/32



Explicit construction: the cube [—1,1]P

Legendre Polynomials: Py(t) =0, Pi(t) =t
(n+ 1)Pnia(t) = (2n 4+ 1)tPy(t) — nPn—1(t)
maxte[_m] Pn(t) =1.

Orthogonality:

/1 Po(t)Pa(t)dt = —°

= b
L 2n4+1"""

Lebesgue measure on the cube: orthogonal polynomials given by

P
1
Q) =] for + 2Puf), e, ol <d
i=1

Let Ac be the restriction of Lebesgue measure to the unit cube C = [—1,1]", then
x - 1 2
sup K¢ (x,x) < (a,-Jrf):Odp
sup Ky (x, x) ‘a%g 5 (d)
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Exponential lower bounds

Let S C RP be compact and p be a probability measure supported on S. Then for all
x with dist(x,S) > 6 >0, and d € N

)
KA (x,x) > 2FTatmE 2,
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Exponential lower bounds

Let S C RP be compact and p be a probability measure supported on S. Then for all
x with dist(x,S) > 6 >0, and d € N

)
KA (x,x) > 2FTatmE 2,

Proof: For any x € R? and P € Rq4[X] with P(x) =1,

Kg(x,x) > (/ P2du> - .

Choose P such that P(x) =1 and the integral is small.
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Exponential lower bounds: Needle polynomial

Krod'’s needle polynomial, for any 6 > 0, d € N*, 3Q € Ro4[X]
Q) =1, QeI < 1if x| <1, QE)| <27 § < x|| < 1.
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Exponential lower bounds: Needle polynomial

Krod'’s needle polynomial, for any 6 > 0, d € N*, 3Q € Ro4[X]
Q) =1, QeI < 1if x| <1, QE)| <27 § < x|| < 1.

Example for 6 = 0.2 and d = 20, 30, 40.

At
.

08 f
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Exponential separation of the support

1 Lebesgue restricted to S C RP, compact, non-empty interior.

@

Exponential growth dichotomy: Growth of the CD kernel is

exp(av/d)

@ At most polynomial in the degree d in the interior of the support.
@ Exponential in the degree d outside the support.

@ In between on the boundary of the support of u: depending on local geometry.
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3. Empirical measures statistical aspects
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Empirical christoffel-Darboux kernel

w: Borel probability measure in R” (compact support, density).

Rqg[X]: p-variate polynomials of degree at most d (of dimension s(d) = (°})).

(dimension p and degree d are fixed).

(P.Q) = (P.Q), = [ Pad,

defines a valid scalar product on Ry4[X].

Christoffel-Darboux kernel: K¢ is the reproducing kernel of (Ra[X], (-, -))-

23/32



Empirical christoffel-Darboux kernel

w: Borel probability measure in R” (compact support, density).
Rgy[X]: p-variate polynomials of degree at most d (of dimension s(d) = (Pzd)).
(dimension p and degree d are fixed).

(P.Q) = (P.Q), = [ Pad,

defines a valid scalar product on Ry4[X].

Christoffel-Darboux kernel: K¢ is the reproducing kernel of (Ra[X], (-, -))-

.. N
Empirical measure: uy = %Zi:l O; -

23/32



Empirical christoffel-Darboux kernel

w: Borel probability measure in R” (compact support .
Rgy[X]: p-variate polynomials of degree at most d (of dimension s(d) = (Pzd)).
(dimension p and degree d are fixed).

(P.Q) = (P.Q), = [ Pad,

Christoffel-Darboux kernel: K¢ is the reproducing kernel of (Ra[X], (-, -))-

.. N
Empirical measure: uy = %Zi:l O; -

23/32



Empirical christoffel-Darboux kernel

w: Borel probability measure in R” (compact support

Rgy[X]: p-variate polynomials of degree at most d (of dimension s(d) = (Pzd)).

(dimension p and degree d are fixed).

(P.Q) = (P.Q), = [ Pad,

Christoffel-Darboux kernel: K¢ is the reproducing kernel of (Ra[X], (-, -))-
Empirical measure: iy = + 3V 6.

Example: P: x— []7, |Ix — x|, (P, P)uy =0but P£0.
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Fix using empirical Christoffel function

. e . 1 N
Empirical measure: uy = § >, O,
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Fix using empirical Christoffel function

.. N
Empirical measure: puy = 1 > 0x

Empirical christoffel function (no need for a valid scalar product)
A“N . RP s [0, 1]

z—  min { ZP(X) P(z) = 1}.
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Fix using empirical Christoffel function

- N
Empirical measure: puy = % i, Oy

Empirical christoffel function (no need for a valid scalar product)
A“N . RP s [0, 1]

N
. 1 2
= m — E P(X)) : P =15.
z PeRl;EX] {N 2 (Xp) (2) }

Degeneracy for large d: if s(d) > N, then

AﬁN:zt—){O’ z#x,i=1...,N

1 .
N> Otherwise.
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Fix using empirical Christoffel function

- N
Empirical measure: puy = % i, Oy

Empirical christoffel function (no need for a valid scalar product)
A“N . RP s [0, 1]

N
. 1 2
= m — E P(X)) : P =15.
z PeRl;EX] {N 2 (Xp) (2) }

Degeneracy for large d: if s(d) > N, then

AﬁN:zt—){O’ z#x,i=1...,N

1 .
N> Otherwise.

How to ensure that A4" retains the favorable properties of AL?
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Empirical measure: statistical setting

Statistical setting: (X;)ien, R” valued random variables, iid with distribution .
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Empirical measure: statistical setting

Statistical setting: (X;)ien, R” valued random variables, iid with distribution .
For any N € N, measurable subsets Aj,..., Ay in R”:

P[(X € A1) & (Xo € Ar) & ... & (X € An)] = [ [ (A

i=1

Empirical measure: For any N € N,

Strong law of large numbers: for any continuous f, almost surely

N

I|m /f z)dun(z) = I|m Z /f(z)du(z
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Statistical consistency

w: Borel probability measure in R (compact support, density).
(Xi)i=1,...,n, RP valued random variables, iid with distribution
BN = % vazl 5Xf
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Statistical consistency

u: Borel probability measure in R” (compact support, density).
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Consistency for fixed degree: d € N fixed, as N — oo, almost surely, uniformly in x

NGV (x) — AL (x).
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Statistical consistency

u: Borel probability measure in R” (compact support, density).

(Xi)i=1,...,n, RP valued random variables, iid with distribution
1N
N = w Zi:1 5Xf

Consistency for fixed degree: d € N fixed, as N — oo, almost surely, uniformly in x

NGV (x) — AL (x).

Finite sample concentration: Set m = maxxcsupp(u) Kj (X, X).
Then, for all a > 0, with probability at least 1 — «,

sup 5" (x) — N (3)| < max ( 10 1og (%)f—ﬁ log (ij”))

Nondegenerate regime: N > maxycsupp(u) K (X, x) > s(d).
Of order d”* for smooth boundary.

Statistical tools: Concentration for random matrices (non commutative Bernstein).
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4. Application to support inference from sample
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Leveraging the exponential growth dichotomy

Smooth boundary: Let S C R? compact, nonempty interior, boundary is a smooth
embedded hypersurface. p is the restriction of Lebesgue measures to S.
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Leveraging the exponential growth dichotomy

Smooth boundary: Let S C R? compact, nonempty interior, boundary is a smooth
embedded hypersurface. p is the restriction of Lebesgue measures to S.

Constants:Then for any a > 0, there exist constants C;, C;, Gz which depend on « and
can be computed from problem data,

Degree choice and threshold: setting for all N € N,
dy = {ClNﬁJ
3p
IN ‘= Csz2
Sn = {x € R”, K[ (x,x) <},

Set convergence: it holds with probability at least 1 — « that

du(S, Sn) < Cﬁ dn(8S,05y) < Cﬁ
N 2052 N 2953

Hausdorff Distance:dy (X, Y) between two compact sets X, Y:
dn(X,Y) = max< sup inf ||[x —y||,sup inf ||x — .
X, ¥) = max Ssup nf 1x —yl. sup i x ] |
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Numerical illustration
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Numerical illustration
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w: Borel probability measure in R (compact support, density).

31/32



w: Borel probability measure in R (compact support, density).

RKHS: K/ is the reproducing kernel of R4[X] with dot product (P, Q) — [ PQdy.

31/32



w: Borel probability measure in R (compact support, density).

RKHS: K/ is the reproducing kernel of R4[X] with dot product (P, Q) — [ PQdy.
Inverse moment matrix: vy: R” — R¥(?) basis of Ry4[X], for all x,y € R?,

Ky (x,y) = va(x)" M, 4va(y).

31/32



w: Borel probability measure in R (compact support, density).

RKHS: K/ is the reproducing kernel of R4[X] with dot product (P, Q) — [ PQdy.
Inverse moment matrix: vy: R” — R¥(?) basis of Ry4[X], for all x,y € R?,
Ky (x,y) = va(x)" M, gva(y)-

Variational formulation: Christoffel function, for all x € RP”,

1 — AH — ; 2 . _
KT(x,%) =N (x) = PQ&LTX] {/P du: P(z) = 1},

31/32



w: Borel probability measure in R (compact support, density).

RKHS: K/ is the reproducing kernel of R4[X] with dot product (P, Q) — [ PQdy.
Inverse moment matrix: vy: R” — R¥(?) basis of Ry4[X], for all x,y € R?,

Ky (x,y) = va(x)" M, gva(y)-
Variational formulation: Christoffel function, for all x € RP”,

1 . 2
=AN(x) = Pdu: P(z) =1;.
ke =00 = i { [P P <1}
Exponential growth dichotomy: as d grows, K//(x, x) goes to infinity

@ At most in O(d) in the interior of the support of p.
@ At least exponentially outside the support of L.

31/32



w: Borel probability measure in R (compact support, density).

(Xi)i=1,....n, RP valued random variables, iid with distribution
1N

BN = 2imy 0%

RKHS: K/ is the reproducing kernel of R4[X] with dot product (P, Q) — [ PQdy.
Inverse moment matrix: vy: R” — R¥(?) basis of Ry4[X], for all x,y € R?,
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w: Borel probability measure in R (compact support, density).
(Xi)i=1,....n, RP valued random variables, iid with distribution

pn =g Z,N:1 0x;-
RKHS: K/ is the reproducing kernel of Ry[X] with dot product (P, Q) — [ PQdpu.
Inverse moment matrix: vy: R” — R¥(?) basis of Ry4[X], for all x,y € R?,
Ky (x,y) = va(x)" M, gva(y).
Variational formulation: Christoffel function, for all x € RP?,

1 — AH — ; 2 . _
KT(x,%) =N (x) = PQ&LTX] {/P du: P(z) = 1},

Exponential growth dichotomy: as d grows, K//(x, x) goes to infinity
@ At most in O(d) in the interior of the support of p.
@ At least exponentially outside the support of L.

Statistical approximation: A;" ~ A% provided that

N> sup Kf(x,x)>s(d).

x€supp(p)
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