Introduction to Christoffel-Darboux kernels for data analysis

Edouard Pauwels
collaboration with Frangis Bachoc and Jean-Bernard Lasserre and Mihai Putinar and Trang-May Vu.
Journée PMNL

Montpellier, October 2022

Content of the presentation

Introduction of Christoffel-Darboux kernels and Christoffel function.

Overview of first properties.

Statistical aspects and application to support inference.

Motivation

Mathematical context:

- Christoffel-Darboux (CD) kernels and orthogonal polynomials \sim 19-th century.
- Important in approximation theory (convergence of generalized Fourier series).
- There is still a lot of activity going on.
- Recently used in, data science, polynomial optimization contexts.

Motivation

Mathematical context:

- Christoffel-Darboux (CD) kernels and orthogonal polynomials \sim 19-th century.
- Important in approximation theory (convergence of generalized Fourier series).
- There is still a lot of activity going on.
- Recently used in, data science, polynomial optimization contexts.

In a nutshell

- A CD kernel K^{μ} depends on a (probability) measure μ on a Euclidean space \mathbb{R}^{p}

Motivation

Mathematical context:

- Christoffel-Darboux (CD) kernels and orthogonal polynomials ~ 19-th century.
- Important in approximation theory (convergence of generalized Fourier series).
- There is still a lot of activity going on.
- Recently used in, data science, polynomial optimization contexts.

In a nutshell

- A CD kernel K^{μ} depends on a (probability) measure μ on a Euclidean space \mathbb{R}^{p}
- We have $K^{\mu}: \mathbb{R}^{p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, and will often consider $K^{\mu}(\mathbf{x}, \mathbf{x})$.

Motivation

Mathematical context:

- Christoffel-Darboux (CD) kernels and orthogonal polynomials ~ 19-th century.
- Important in approximation theory (convergence of generalized Fourier series).
- There is still a lot of activity going on.
- Recently used in, data science, polynomial optimization contexts.

In a nutshell

- A CD kernel K^{μ} depends on a (probability) measure μ on a Euclidean space \mathbb{R}^{p}
- We have $K^{\mu}: \mathbb{R}^{p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, and will often consider $K^{\mu}(\mathbf{x}, \mathbf{x})$.
- K^{μ}, is a polynomial, we actually have $\left(K_{d}^{\mu}\right)_{d \in \mathbb{N}}$, where K_{d}^{μ} is of degree $2 d, d \in \mathbb{N}$.

Motivation

Mathematical context:

- Christoffel-Darboux (CD) kernels and orthogonal polynomials ~ 19-th century.
- Important in approximation theory (convergence of generalized Fourier series).
- There is still a lot of activity going on.
- Recently used in, data science, polynomial optimization contexts.

In a nutshell

- A CD kernel K^{μ} depends on a (probability) measure μ on a Euclidean space \mathbb{R}^{p}
- We have $K^{\mu}: \mathbb{R}^{p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, and will often consider $K^{\mu}(\mathbf{x}, \mathbf{x})$.
- K^{μ}, is a polynomial, we actually have $\left(K_{d}^{\mu}\right)_{d \in \mathbb{N}}$, where K_{d}^{μ} is of degree $2 d, d \in \mathbb{N}$.
- It captures information on μ (support, density).

Motivation

Mathematical context:

- Christoffel-Darboux (CD) kernels and orthogonal polynomials ~ 19-th century.
- Important in approximation theory (convergence of generalized Fourier series).
- There is still a lot of activity going on.
- Recently used in, data science, polynomial optimization contexts.

In a nutshell

- A CD kernel K^{μ} depends on a (probability) measure μ on a Euclidean space \mathbb{R}^{p}
- We have $K^{\mu}: \mathbb{R}^{p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, and will often consider $K^{\mu}(\mathbf{x}, \mathbf{x})$.
- K^{μ}, is a polynomial, we actually have $\left(K_{d}^{\mu}\right)_{d \in \mathbb{N}}$, where K_{d}^{μ} is of degree $2 d, d \in \mathbb{N}$.
- It captures information on μ (support, density).
- It is easily computed from moments of the measure.

Motivation

Mathematical context:

- Christoffel-Darboux (CD) kernels and orthogonal polynomials ~ 19-th century.
- Important in approximation theory (convergence of generalized Fourier series).
- There is still a lot of activity going on.
- Recently used in, data science, polynomial optimization contexts.

In a nutshell

- A CD kernel K^{μ} depends on a (probability) measure μ on a Euclidean space \mathbb{R}^{p}
- We have $K^{\mu}: \mathbb{R}^{p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, and will often consider $K^{\mu}(\mathbf{x}, \mathbf{x})$.
- K^{μ}, is a polynomial, we actually have $\left(K_{d}^{\mu}\right)_{d \in \mathbb{N}}$, where K_{d}^{μ} is of degree $2 d, d \in \mathbb{N}$.
- It captures information on μ (support, density).
- It is easily computed from moments of the measure.
- Moments (pseudomoments) of measures are outputs of Lassere's Hierarchy.

Motivation

Mathematical context:

- Christoffel-Darboux (CD) kernels and orthogonal polynomials ~ 19-th century.
- Important in approximation theory (convergence of generalized Fourier series).
- There is still a lot of activity going on.
- Recently used in, data science, polynomial optimization contexts.

In a nutshell

- A CD kernel K^{μ} depends on a (probability) measure μ on a Euclidean space \mathbb{R}^{p}
- We have $K^{\mu}: \mathbb{R}^{p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, and will often consider $K^{\mu}(\mathbf{x}, \mathbf{x})$.
- K^{μ}, is a polynomial, we actually have $\left(K_{d}^{\mu}\right)_{d \in \mathbb{N}}$, where K_{d}^{μ} is of degree $2 d, d \in \mathbb{N}$.
- It captures information on μ (support, density).
- It is easily computed from moments of the measure.
- Moments (pseudomoments) of measures are outputs of Lassere's Hierarchy.
- Moments correspond to empirical averages in a statistical context.

How does it look like?

How does it look like?

- $\left(\mathbf{x}_{i}\right)_{i=1}^{N}$ is a set of points in \mathbb{R}^{2} (black dots).
- μ is the empirical average $\mu=\frac{1}{N} \sum_{i=1}^{N} \delta_{\mathrm{x}_{i}}$.
- The CD kernel is a function on $\mathbb{R}^{2} \times \mathbb{R}^{2}$ (level sets of $K_{d}^{\mu}(\mathbf{x}, \mathbf{x}), d=4$).

How does it look like?

- $\left(\mathbf{x}_{i}\right)_{i=1}^{N}$ is a set of points in \mathbb{R}^{2} (black dots).
- μ is the empirical average $\mu=\frac{1}{N} \sum_{i=1}^{N} \delta_{\mathrm{x}_{i}}$.
- The CD kernel is a function on $\mathbb{R}^{2} \times \mathbb{R}^{2}$ (level sets of $K_{d}^{\mu}(\mathbf{x}, \mathbf{x}), d=4$).

Plan for today: Introduction of these objects and first properties.

Outline

1. CD kernel, Christoffel function, orthogonal polynomials, moments
2. Quantitative asymptotics
3. Empirical measures statistical aspects
4. Application to support inference from sample

Christoffel-Darboux kernel

μ : Borel probability measure in \mathbb{R}^{p}
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$). (dimension p and degree d are fixed).

Christoffel-Darboux kernel

μ : Borel probability measure in \mathbb{R}^{p}
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$). (dimension p and degree d are fixed).

$$
(P, Q) \quad \mapsto \quad\langle P, Q\rangle_{\mu}:=\int P Q d \mu,
$$

defines a valid scalar product on $\mathbb{R}_{d}[X]$.

Christoffel-Darboux kernel

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$). (dimension p and degree d are fixed).

$$
(P, Q) \quad \mapsto \quad\langle P, Q\rangle_{\mu}:=\int P Q d \mu,
$$

defines a valid scalar product on $\mathbb{R}_{d}[X]$.

Christoffel-Darboux kernel

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$). (dimension p and degree d are fixed).

$$
(P, Q) \quad \mapsto \quad\langle P, Q\rangle_{\mu}:=\int P Q d \mu,
$$

defines a valid scalar product on $\mathbb{R}_{d}[X]$.
$\left(\mathbb{R}_{d}[X],\left\langle\langle\cdot, \cdot\rangle_{\mu}\right)\right.$ is a finite dimensional, Hilbert space of functions from \mathbb{R}^{p} to \mathbb{R}.

Reproducing Kernel Hilbert Space (RKHS)

Hilbert space method (first half of 20-th century): Zarembda, Mercer, Moore, Szegö, Bergman, Bochner, Kolmogorov, Aronszajn ...

Reproducing Kernel Hilbert Space (RKHS)

Hilbert space method (first half of 20-th century): Zarembda, Mercer, Moore, Szegö, Bergman, Bochner, Kolmogorov, Aronszajn ...

Aronszajn (1950): \mathcal{X} is a set and \mathcal{H} a Hilbert space of real valued functions on \mathcal{X} with scalar product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ and norm $\|\cdot\|_{\mathcal{H}}$.

Reproducing Kernel Hilbert Space (RKHS)

Hilbert space method (first half of 20-th century): Zarembda, Mercer, Moore, Szegö, Bergman, Bochner, Kolmogorov, Aronszajn ...

Aronszajn (1950): \mathcal{X} is a set and \mathcal{H} a Hilbert space of real valued functions on \mathcal{X} with scalar product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ and norm $\|\cdot\|_{\mathcal{H}}$.

The following are equivalent:

- For any $x \in \mathcal{X}, h \mapsto h(x)$ is continuous on \mathcal{H}.

Reproducing Kernel Hilbert Space (RKHS)

Hilbert space method (first half of 20-th century): Zarembda, Mercer, Moore, Szegö, Bergman, Bochner, Kolmogorov, Aronszajn ...

Aronszajn (1950): \mathcal{X} is a set and \mathcal{H} a Hilbert space of real valued functions on \mathcal{X} with scalar product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ and norm $\|\cdot\|_{\mathcal{H}}$.

The following are equivalent:

- For any $x \in \mathcal{X}, h \mapsto h(x)$ is continuous on \mathcal{H}.
- There is a unique symmetric positive definite $K: \mathcal{H} \times \mathcal{H} \mapsto \mathbb{R}$ such that,

Reproducing Kernel Hilbert Space (RKHS)

Hilbert space method (first half of 20-th century): Zarembda, Mercer, Moore, Szegö, Bergman, Bochner, Kolmogorov, Aronszajn ...

Aronszajn (1950): \mathcal{X} is a set and \mathcal{H} a Hilbert space of real valued functions on \mathcal{X} with scalar product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ and norm $\|\cdot\|_{\mathcal{H}}$.

The following are equivalent:

- For any $x \in \mathcal{X}, h \mapsto h(x)$ is continuous on \mathcal{H}.
- There is a unique symmetric positive definite $K: \mathcal{H} \times \mathcal{H} \mapsto \mathbb{R}$ such that,
- for any $x \in \mathcal{X}, K(x, \cdot) \in \mathcal{H}$
- for any $x \in \mathcal{X}, h \in \mathcal{H}$

$$
\langle h, K(x, \cdot)\rangle_{\mathcal{H}}=h(x) .
$$

Reproducing Kernel Hilbert Space (RKHS)

Hilbert space method (first half of 20-th century): Zarembda, Mercer, Moore, Szegö, Bergman, Bochner, Kolmogorov, Aronszajn ...

Aronszajn (1950): \mathcal{X} is a set and \mathcal{H} a Hilbert space of real valued functions on \mathcal{X} with scalar product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ and norm $\|\cdot\|_{\mathcal{H}}$.

The following are equivalent:

- For any $x \in \mathcal{X}, h \mapsto h(x)$ is continuous on \mathcal{H}.
- There is a unique symmetric positive definite $K: \mathcal{H} \times \mathcal{H} \mapsto \mathbb{R}$ such that,
- for any $x \in \mathcal{X}, K(x, \cdot) \in \mathcal{H}$
- for any $x \in \mathcal{X}, h \in \mathcal{H}$

$$
\langle h, K(x, \cdot)\rangle_{\mathcal{H}}=h(x) .
$$

\mathcal{H} is called RKHS and K is the reproducing kernel of \mathcal{H}.

Reproducing Kernel Hilbert Space (RKHS)

$\mathcal{H}=\left(\mathbb{R}_{d}[X],\left\langle\langle\cdot, \cdot\rangle_{\mu}\right)\right.$ is a Reproducing Kernel Hilbert Space (RKHS):

- Evaluation is continuous with respect to coefficients.
- Finite dimension, all norms are equivalent: $\|\cdot\|_{\mu}$ and any norm on coefficients.

Reproducing Kernel Hilbert Space (RKHS)

$\mathcal{H}=\left(\mathbb{R}_{d}[X],\left\langle\langle\cdot, \cdot\rangle_{\mu}\right)\right.$ is a Reproducing Kernel Hilbert Space (RKHS):

- Evaluation is continuous with respect to coefficients.
- Finite dimension, all norms are equivalent: $\|\cdot\|_{\mu}$ and any norm on coefficients.

Reproducing property: For all $d \in \mathbb{N}$, there exists $K_{d}^{\mu}: \mathbb{R}^{p} \times \mathbb{R}^{p} \mapsto \mathbb{R}$, symmetric such that for all $\mathbf{z} \in \mathbb{R}^{p}$,

$$
K_{d}^{\mu}(\mathbf{z}, \cdot) \in \mathbb{R}_{d}[X]
$$

K_{d}^{μ} satifies the reproducing property, for all $P \in \mathbb{R}_{d}[X]$ and $\mathbf{z} \in \mathbb{R}^{p}$,

$$
P(\mathbf{z})=\left\langle\left\langle P(\cdot), K_{d}^{\mu}(\mathbf{z}, \cdot)\right\rangle_{\mu}=\int P(\mathbf{x}) K_{d}^{\mu}(\mathbf{z}, \mathbf{x}) d \mu(\mathbf{x})\right.
$$

Reproducing Kernel Hilbert Space (RKHS)

$\mathcal{H}=\left(\mathbb{R}_{d}[X],\left\langle\langle\cdot, \cdot\rangle_{\mu}\right)\right.$ is a Reproducing Kernel Hilbert Space (RKHS):

- Evaluation is continuous with respect to coefficients.
- Finite dimension, all norms are equivalent: $\|\cdot\|_{\mu}$ and any norm on coefficients.

Reproducing property: For all $d \in \mathbb{N}$, there exists $K_{d}^{\mu}: \mathbb{R}^{p} \times \mathbb{R}^{p} \mapsto \mathbb{R}$, symmetric such that for all $\mathbf{z} \in \mathbb{R}^{p}$,

$$
K_{d}^{\mu}(\mathbf{z}, \cdot) \in \mathbb{R}_{d}[X]
$$

K_{d}^{μ} satifies the reproducing property, for all $P \in \mathbb{R}_{d}[X]$ and $\mathbf{z} \in \mathbb{R}^{p}$,

$$
P(\mathbf{z})=\left\langle\left\langle P(\cdot), K_{d}^{\mu}(\mathbf{z}, \cdot)\right\rangle_{\mu}=\int P(\mathbf{x}) K_{d}^{\mu}(\mathbf{z}, \mathbf{x}) d \mu(\mathbf{x})\right.
$$

Christoffel-Darboux kernel: K_{μ}^{d} is the reproducing kernel of \mathcal{H}.

Computation from moments

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

Computation from moments

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

- Let $\left\{P_{i}\right\}_{i=1}^{s(d)}$ be any basis of $\mathbb{R}_{d}[X]$,
- $\mathbf{v}_{d}: \mathbf{x} \mapsto\left(P_{1}(\mathbf{x}), \ldots, P_{s(d)}(\mathbf{x})\right)^{T}$.
- $M_{\mu, d}=\int \mathbf{v}_{d} \mathbf{v}_{d}^{T} d \mu \in \mathbb{R}^{s(d) \times s(d)}$ (integral coordinate-wise).

Computation from moments

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

- Let $\left\{P_{i}\right\}_{i=1}^{s(d)}$ be any basis of $\mathbb{R}_{d}[X]$,
- $\mathbf{v}_{d}: \mathbf{x} \mapsto\left(P_{1}(\mathbf{x}), \ldots, P_{s(d)}(\mathbf{x})\right)^{T}$.
- $M_{\mu, d}=\int \mathbf{v}_{d} \mathbf{v}_{d}^{T} d \mu \in \mathbb{R}^{s(d) \times s(d)}$ (integral coordinate-wise).
- Let $P: \mathbf{x} \mapsto c_{P}^{\top} \mathbf{v}_{d}(\mathbf{x})$, and $Q: \mathbf{x} \mapsto c_{Q}^{\top} \mathbf{v}_{d}(\mathbf{x})$, then

$$
c_{Q}^{\top} M_{\mu, d} c_{P}=\int\left(c_{Q}^{\top} \mathbf{v}_{d}(\mathbf{x})\right)\left(\mathbf{v}_{d}(\mathbf{x})^{T} c_{P}\right) d \mu(\mathbf{x})=\int P(\mathbf{x}) Q(\mathbf{x}) d \mu(\mathbf{x}) .
$$

Computation from moments

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

- Let $\left\{P_{i}\right\}_{i=1}^{s(d)}$ be any basis of $\mathbb{R}_{d}[X]$,
- $\mathbf{v}_{d}: \mathbf{x} \mapsto\left(P_{1}(\mathbf{x}), \ldots, P_{s(d)}(\mathbf{x})\right)^{T}$.
- $M_{\mu, d}=\int \mathbf{v}_{d} \mathbf{v}_{d}^{T} d \mu \in \mathbb{R}^{s(d) \times s(d)}$ (integral coordinate-wise).
- Let $P: \mathbf{x} \mapsto c_{P}^{T} \mathbf{v}_{d}(\mathbf{x})$, and $Q: \mathbf{x} \mapsto c_{Q}^{T} \mathbf{v}_{d}(\mathbf{x})$, then

$$
c_{Q}^{T} M_{\mu, d} c_{P}=\int\left(c_{Q}^{T} \mathbf{v}_{d}(\mathbf{x})\right)\left(\mathbf{v}_{d}(\mathbf{x})^{T} c_{P}\right) d \mu(\mathbf{x})=\int P(\mathbf{x}) Q(\mathbf{x}) d \mu(\mathbf{x}) .
$$

$M_{\mu, d}$ is invertible and for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}, K_{d}^{\mu}(\mathbf{x}, \mathbf{y})=\mathbf{v}_{d}(\mathbf{x})^{T} M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{y})$.

Computation from moments

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

- Let $\left\{P_{i}\right\}_{i=1}^{s(d)}$ be any basis of $\mathbb{R}_{d}[X]$,
- $\mathbf{v}_{d}: \mathbf{x} \mapsto\left(P_{1}(\mathbf{x}), \ldots, P_{s(d)}(\mathbf{x})\right)^{T}$.
- $M_{\mu, d}=\int \mathbf{v}_{d} \mathbf{v}_{d}^{T} d \mu \in \mathbb{R}^{s(d) \times s(d)}$ (integral coordinate-wise).
- Let $P: \mathbf{x} \mapsto c_{P}^{T} \mathbf{v}_{d}(\mathbf{x})$, and $Q: \mathbf{x} \mapsto c_{Q}^{T} \mathbf{v}_{d}(\mathbf{x})$, then

$$
c_{Q}^{T} M_{\mu, d} c_{P}=\int\left(c_{Q}^{T} \mathbf{v}_{d}(\mathbf{x})\right)\left(\mathbf{v}_{d}(\mathbf{x})^{T} c_{P}\right) d \mu(\mathbf{x})=\int P(\mathbf{x}) Q(\mathbf{x}) d \mu(\mathbf{x}) .
$$

$M_{\mu, d}$ is invertible and for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}, K_{d}^{\mu}(\mathbf{x}, \mathbf{y})=\mathbf{v}_{d}(\mathbf{x})^{T} M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{y})$.
Proof: $c_{P} \in \mathbb{R}^{s(d)}$, coefficients. Verify the reproducing property: $P: \mathbf{x} \mapsto c_{P}^{T} \mathbf{v}_{d}(\mathbf{x})$,

Computation from moments

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

- Let $\left\{P_{i}\right\}_{i=1}^{s(d)}$ be any basis of $\mathbb{R}_{d}[X]$,
- $\mathbf{v}_{d}: \mathbf{x} \mapsto\left(P_{1}(\mathbf{x}), \ldots, P_{s(d)}(\mathbf{x})\right)^{T}$.
- $M_{\mu, d}=\int \mathbf{v}_{d} \mathbf{v}_{d}^{T} d \mu \in \mathbb{R}^{s(d) \times s(d)}$ (integral coordinate-wise).
- Let $P: \mathbf{x} \mapsto c_{P}^{T} \mathbf{v}_{d}(\mathbf{x})$, and $Q: \mathbf{x} \mapsto c_{Q}^{T} \mathbf{v}_{d}(\mathbf{x})$, then

$$
c_{Q}^{T} M_{\mu, d} c_{P}=\int\left(c_{Q}^{T} \mathbf{v}_{d}(\mathbf{x})\right)\left(\mathbf{v}_{d}(\mathbf{x})^{T} c_{P}\right) d \mu(\mathbf{x})=\int P(\mathbf{x}) Q(\mathbf{x}) d \mu(\mathbf{x}) .
$$

$M_{\mu, d}$ is invertible and for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}, K_{d}^{\mu}(\mathbf{x}, \mathbf{y})=\mathbf{v}_{d}(\mathbf{x})^{T} M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{y})$.
Proof: $c_{P} \in \mathbb{R}^{s(d)}$, coefficients. Verify the reproducing property: $P: \mathbf{x} \mapsto c_{P}^{T} \mathbf{v}_{d}(\mathbf{x})$,

$$
\left\langle\left\langle P(\cdot), K_{d}^{\mu}(\mathbf{z}, \cdot)\right\rangle\right\rangle_{\mu}=\int P(\mathbf{x}) K_{d}^{\mu}(\mathbf{z}, \mathbf{x}) d \mu(\mathbf{x})=\int c_{P}^{T} \mathbf{v}_{d}(\mathbf{x}) \mathbf{v}_{d}(\mathbf{x})^{T} M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{z}) d \mu(\mathbf{x})
$$

Computation from moments

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

- Let $\left\{P_{i}\right\}_{i=1}^{s(d)}$ be any basis of $\mathbb{R}_{d}[X]$,
- $\mathbf{v}_{d}: \mathbf{x} \mapsto\left(P_{1}(\mathbf{x}), \ldots, P_{s(d)}(\mathbf{x})\right)^{T}$.
- $M_{\mu, d}=\int \mathbf{v}_{d} \mathbf{v}_{d}^{T} d \mu \in \mathbb{R}^{s(d) \times s(d)}$ (integral coordinate-wise).
- Let $P: \mathbf{x} \mapsto c_{P}^{T} \mathbf{v}_{d}(\mathbf{x})$, and $Q: \mathbf{x} \mapsto c_{Q}^{T} \mathbf{v}_{d}(\mathbf{x})$, then

$$
c_{Q}^{T} M_{\mu, d} c_{P}=\int\left(c_{Q}^{T} \mathbf{v}_{d}(\mathbf{x})\right)\left(\mathbf{v}_{d}(\mathbf{x})^{T} c_{P}\right) d \mu(\mathbf{x})=\int P(\mathbf{x}) Q(\mathbf{x}) d \mu(\mathbf{x}) .
$$

$M_{\mu, d}$ is invertible and for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}, K_{d}^{\mu}(\mathbf{x}, \mathbf{y})=\mathbf{v}_{d}(\mathbf{x})^{T} M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{y})$.
Proof: $c_{P} \in \mathbb{R}^{s(d)}$, coefficients. Verify the reproducing property: $P: \mathbf{x} \mapsto c_{P}^{T} \mathbf{v}_{d}(\mathbf{x})$,

$$
\begin{aligned}
\left\langle\left\langle P(\cdot), K_{d}^{\mu}(\mathbf{z}, \cdot)\right\rangle\right\rangle_{\mu} & =\int P(\mathbf{x}) K_{d}^{\mu}(\mathbf{z}, \mathbf{x}) d \mu(\mathbf{x})=\int c_{P}^{T} \mathbf{v}_{d}(\mathbf{x}) \mathbf{v}_{d}(\mathbf{x})^{T} M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{z}) d \mu(\mathbf{x}) \\
& =c_{P}^{T}\left(\int \mathbf{v}_{d}(\mathbf{x}) \mathbf{v}_{d}(\mathbf{x})^{T} d \mu(\mathbf{x})\right) M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{z})
\end{aligned}
$$

Computation from moments

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

- Let $\left\{P_{i}\right\}_{i=1}^{s(d)}$ be any basis of $\mathbb{R}_{d}[X]$,
- $\mathbf{v}_{d}: \mathbf{x} \mapsto\left(P_{1}(\mathbf{x}), \ldots, P_{s(d)}(\mathbf{x})\right)^{T}$.
- $M_{\mu, d}=\int \mathbf{v}_{d} \mathbf{v}_{d}^{T} d \mu \in \mathbb{R}^{s(d) \times s(d)}$ (integral coordinate-wise).
- Let $P: \mathbf{x} \mapsto c_{P}^{T} \mathbf{v}_{d}(\mathbf{x})$, and $Q: \mathbf{x} \mapsto c_{Q}^{T} \mathbf{v}_{d}(\mathbf{x})$, then

$$
c_{Q}^{T} M_{\mu, d} c_{P}=\int\left(c_{Q}^{T} \mathbf{v}_{d}(\mathbf{x})\right)\left(\mathbf{v}_{d}(\mathbf{x})^{T} c_{P}\right) d \mu(\mathbf{x})=\int P(\mathbf{x}) Q(\mathbf{x}) d \mu(\mathbf{x}) .
$$

$M_{\mu, d}$ is invertible and for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}, K_{d}^{\mu}(\mathbf{x}, \mathbf{y})=\mathbf{v}_{d}(\mathbf{x})^{T} M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{y})$.
Proof: $c_{P} \in \mathbb{R}^{s(d)}$, coefficients. Verify the reproducing property: $P: \mathbf{x} \mapsto c_{P}^{T} \mathbf{v}_{d}(\mathbf{x})$,

$$
\begin{aligned}
\left.\left\langle P(\cdot), K_{d}^{\mu}(\mathbf{z}, \cdot)\right\rangle\right\rangle_{\mu} & =\int P(\mathbf{x}) K_{d}^{\mu}(\mathbf{z}, \mathbf{x}) d \mu(\mathbf{x})=\int c_{P}^{T} \mathbf{v}_{d}(\mathbf{x}) \mathbf{v}_{d}(\mathbf{x})^{T} M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{z}) d \mu(\mathbf{x}) \\
& =c_{P}^{T}\left(\int \mathbf{v}_{d}(\mathbf{x}) \mathbf{v}_{d}(\mathbf{x})^{T} d \mu(\mathbf{x})\right) M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{z})=c_{P}^{T} \mathbf{v}_{d}(\mathbf{z})=P(\mathbf{z})
\end{aligned}
$$

Computation from moments

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

- Let $\left\{P_{i}\right\}_{i=1}^{s(d)}$ be any basis of $\mathbb{R}_{d}[X]$,
- $\mathbf{v}_{d}: \mathbf{x} \mapsto\left(P_{1}(\mathbf{x}), \ldots, P_{s(d)}(\mathbf{x})\right)^{T}$.
- $M_{\mu, d}=\int \mathbf{v}_{d} \mathbf{v}_{d}^{T} d \mu \in \mathbb{R}^{s(d) \times s(d)}$ (integral coordinate-wise).
- Let $P: \mathbf{x} \mapsto c_{P}^{T} \mathbf{v}_{d}(\mathbf{x})$, and $Q: \mathbf{x} \mapsto c_{Q}^{T} \mathbf{v}_{d}(\mathbf{x})$, then

$$
c_{Q}^{T} M_{\mu, d} c_{P}=\int\left(c_{Q}^{T} \mathbf{v}_{d}(\mathbf{x})\right)\left(\mathbf{v}_{d}(\mathbf{x})^{T} c_{P}\right) d \mu(\mathbf{x})=\int P(\mathbf{x}) Q(\mathbf{x}) d \mu(\mathbf{x})
$$

$M_{\mu, d}$ is invertible and for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}, K_{d}^{\mu}(\mathbf{x}, \mathbf{y})=\mathbf{v}_{d}(\mathbf{x})^{T} M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{y})$.
Proof: $c_{P} \in \mathbb{R}^{s(d)}$, coefficients. Verify the reproducing property: $P: \mathbf{x} \mapsto c_{P}^{T} \mathbf{v}_{d}(\mathbf{x})$,

Remark:

$$
\begin{aligned}
\left\langle\left\langle P(\cdot), K_{d}^{\mu}(\mathbf{z}, \cdot)\right\rangle\right\rangle_{\mu} & =\int P(\mathbf{x}) K_{d}^{\mu}(\mathbf{z}, \mathbf{x}) d \mu(\mathbf{x})=\int c_{P}^{T} \mathbf{v}_{d}(\mathbf{x}) \mathbf{v}_{d}(\mathbf{x})^{T} M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{z}) d \mu(\mathbf{x}) \\
& =c_{P}^{T}\left(\int \mathbf{v}_{d}(\mathbf{x}) \mathbf{v}_{d}(\mathbf{x})^{T} d \mu(\mathbf{x})\right) M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{z})=c_{P}^{T} \mathbf{v}_{d}(\mathbf{z})=P(\mathbf{z})
\end{aligned}
$$

- It does not depend on the choice of the basis.
- If \mathbf{v}_{d} is the monomial basis, then we recover the usual moment matrix.

(Practical computation: empirical measures)

Empirical measure: $\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}}$.

Polynomial basis: Choose $\mathbf{v}_{d}: \mathbf{x} \mapsto\left(P_{1}(\mathbf{x}), \ldots, P_{s(d)}(\mathbf{x})\right)^{T}$.

(Practical computation: empirical measures)

Empirical measure: $\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}}$.

Polynomial basis: Choose $\mathbf{v}_{d}: \mathbf{x} \mapsto\left(P_{1}(\mathbf{x}), \ldots, P_{s(d)}(\mathbf{x})\right)^{T}$.
Empirical moments: $D \in \mathbb{R}^{N \times s(d)}$ rows given by $\mathbf{v}_{d}\left(X_{i}\right), i=1 \ldots N$ (design matrix)

$$
M_{\mu_{N}, d}=\frac{1}{N} D^{T} D .
$$

(Practical computation: empirical measures)

Empirical measure: $\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}}$.

Polynomial basis: Choose $\mathbf{v}_{d}: \mathbf{x} \mapsto\left(P_{1}(\mathbf{x}), \ldots, P_{s(d)}(\mathbf{x})\right)^{T}$.
Empirical moments: $D \in \mathbb{R}^{N \times s(d)}$ rows given by $\mathbf{v}_{d}\left(X_{i}\right), i=1 \ldots N$ (design matrix)

$$
M_{\mu_{N}, d}=\frac{1}{N} D^{T} D .
$$

Inverse moment matrix: for all $\mathrm{x} \in \mathbb{R}^{p}$,

$$
K_{d}^{\mu_{N}}(\mathbf{x}, \mathbf{x})=\mathbf{v}_{d}(\mathbf{x})^{T} M_{\mu_{N}, d}^{-1} \mathbf{v}_{d}(\mathbf{x}) .
$$

(Practical computation: empirical measures)

What's wrong?

Empirical measure: $\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}}$.

Polynomial basis: Choose $\mathbf{v}_{d}: \mathbf{x} \mapsto\left(P_{1}(\mathbf{x}), \ldots, P_{s(d)}(\mathbf{x})\right)^{T}$.
Empirical moments: $D \in \mathbb{R}^{N \times s(d)}$ rows given by $\mathbf{v}_{d}\left(X_{i}\right), i=1 \ldots N$ (design matrix)

$$
M_{\mu_{N}, d}=\frac{1}{N} D^{T} D
$$

Inverse moment matrix: for all $x \in \mathbb{R}^{p}$,

$$
K_{d}^{\mu_{N}}(\mathbf{x}, \mathbf{x})=\mathbf{v}_{d}(\mathbf{x})^{T} M_{\mu_{N}, d}^{-1} \mathbf{v}_{d}(\mathbf{x})
$$

Relation with orthogonal polynomials

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

Relation with orthogonal polynomials

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

Relation with orthogonal polynomials

Let $\left\{P_{i}\right\}_{i=1}^{s(d)}$ be any orthonormal basis of $\mathbb{R}_{d}[X]\left(\right.$ w.r.t. $\left\langle\langle\cdot, \cdot\rangle_{\mu}\right)$,

Relation with orthogonal polynomials

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

Relation with orthogonal polynomials

Let $\left\{P_{i}\right\}_{i=1}^{s(d)}$ be any orthonormal basis of $\mathbb{R}_{d}[X]\left(\right.$ w.r.t. $\left\langle\langle\cdot, \cdot\rangle_{\mu}\right)$, then for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$,

$$
K_{d}^{\mu}(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{s(d)} P_{i}(\mathbf{x}) P_{i}(\mathbf{y})
$$

Relation with orthogonal polynomials

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

Relation with orthogonal polynomials

Let $\left\{P_{i}\right\}_{i=1}^{s(d)}$ be any orthonormal basis of $\mathbb{R}_{d}[X]\left(\right.$ w.r.t. $\left\langle\langle\cdot, \cdot\rangle_{\mu}\right)$, then for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$,

$$
K_{d}^{\mu}(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{s(d)} P_{i}(\mathbf{x}) P_{i}(\mathbf{y})
$$

Proof: $\mathbf{v}_{d}: \mathbf{x} \mapsto\left(P_{1}(\mathbf{x}), \ldots, P_{s(d)}(\mathbf{x})\right)^{T}$, in this basis $M_{\mu, d}=I$

Relation with orthogonal polynomials

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]$: p-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

Relation with orthogonal polynomials

Let $\left\{P_{i}\right\}_{i=1}^{s(d)}$ be any orthonormal basis of $\mathbb{R}_{d}[X]\left(\right.$ w.r.t. $\left.\langle\langle\cdot, \cdot\rangle\rangle_{\mu}\right)$, then for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$,

$$
K_{d}^{\mu}(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{s(d)} P_{i}(\mathbf{x}) P_{i}(\mathbf{y})
$$

Proof: $\mathbf{v}_{d}: \mathbf{x} \mapsto\left(P_{1}(\mathbf{x}), \ldots, P_{s(d)}(\mathbf{x})\right)^{T}$, in this basis $M_{\mu, d}=I$

Remark: monomial basis, Gram-Schmitt provides a canonical way to construct such a basis. This is at the heart of the (rich) theory of orthogonal polynomials.

Christoffel function

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

Christoffel function

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

Christoffel function

$$
\begin{aligned}
\Lambda_{d}^{\mu}: \mathbb{R}^{p} & \mapsto[0,1] \\
\mathbf{z} & \mapsto \min _{P \in \mathbb{R}_{d}[X]}\left\{\int P^{2} d \mu: \quad P(\mathbf{z})=1\right\}
\end{aligned}
$$

Christoffel function

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

Christoffel function

$$
\begin{aligned}
\Lambda_{d}^{\mu}: \mathbb{R}^{p} & \mapsto[0,1] \\
\mathbf{z} & \mapsto \min _{P \in \mathbb{R}_{d}[X]}\left\{\int P^{2} d \mu: \quad P(\mathbf{z})=1\right\}=\frac{1}{K_{d}^{\mu}(\mathbf{z}, \mathbf{z})}
\end{aligned}
$$

Christoffel function

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

Christoffel function

$$
\begin{aligned}
\Lambda_{d}^{\mu}: \mathbb{R}^{p} & \mapsto[0,1] \\
\mathbf{z} & \mapsto \min _{P \in \mathbb{R}_{d}[X]}\left\{\int P^{2} d \mu: \quad P(\mathbf{z})=1\right\}=\frac{1}{K_{d}^{\mu}(\mathbf{z}, \mathbf{z})} .
\end{aligned}
$$

For any $\mathbf{z} \in \mathbb{R}^{P}$ and $P \in \mathbb{R}_{d}[X]$ such that $P(\mathbf{z})=1$

$$
P(\mathbf{z})^{2}=1=\left(\int P(\mathbf{y}) K_{d}^{\mu}(\mathbf{z}, \mathbf{y}) d \mu(\mathbf{y})\right)^{2}
$$

reproducing property,

Christoffel function

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

Christoffel function

$$
\begin{aligned}
\Lambda_{d}^{\mu}: \mathbb{R}^{p} & \mapsto[0,1] \\
\mathbf{z} & \mapsto \min _{P \in \mathbb{R}_{d}[X]}\left\{\int P^{2} d \mu: \quad P(\mathbf{z})=1\right\}=\frac{1}{K_{d}^{\mu}(\mathbf{z}, \mathbf{z})}
\end{aligned}
$$

For any $\mathbf{z} \in \mathbb{R}^{p}$ and $P \in \mathbb{R}_{d}[X]$ such that $P(\mathbf{z})=1$

$$
\begin{aligned}
P(\mathbf{z})^{2}=1 & =\left(\int P(\mathbf{y}) K_{d}^{\mu}(\mathbf{z}, \mathbf{y}) d \mu(\mathbf{y})\right)^{2} \\
& \leq \int P^{2} d \mu \times \int K_{d}^{\mu}(\mathbf{z}, \mathbf{y})^{2} d \mu(\mathbf{y})
\end{aligned}
$$

reproducing property, Cauchy-Schwartz

Christoffel function

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

Christoffel function

$$
\begin{aligned}
\Lambda_{d}^{\mu}: \mathbb{R}^{p} & \mapsto[0,1] \\
\mathbf{z} & \mapsto \min _{P \in \mathbb{R}_{d}[X]}\left\{\int P^{2} d \mu: \quad P(\mathbf{z})=1\right\}=\frac{1}{K_{d}^{\mu}(\mathbf{z}, \mathbf{z})}
\end{aligned}
$$

For any $\mathbf{z} \in \mathbb{R}^{p}$ and $P \in \mathbb{R}_{d}[X]$ such that $P(\mathbf{z})=1$

$$
\begin{aligned}
P(\mathbf{z})^{2}=1 & =\left(\int P(\mathbf{y}) K_{d}^{\mu}(\mathbf{z}, \mathbf{y}) d \mu(\mathbf{y})\right)^{2} \\
& \leq \int P^{2} d \mu \times \int K_{d}^{\mu}(\mathbf{z}, \mathbf{y})^{2} d \mu(\mathbf{y})=K_{d}^{\mu}(\mathbf{z}, \mathbf{z}) \int P^{2} d \mu
\end{aligned}
$$

reproducing property, Cauchy-Schwartz, reproducing property.

Christoffel function

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$).

Christoffel function

$$
\begin{aligned}
\Lambda_{d}^{\mu}: \mathbb{R}^{p} & \mapsto[0,1] \\
\mathbf{z} & \mapsto \min _{P \in \mathbb{R}_{d}[X]}\left\{\int P^{2} d \mu: \quad P(\mathbf{z})=1\right\}=\frac{1}{K_{d}^{\mu}(\mathbf{z}, \mathbf{z})}
\end{aligned}
$$

For any $\mathbf{z} \in \mathbb{R}^{p}$ and $P \in \mathbb{R}_{d}[X]$ such that $P(\mathbf{z})=1$

$$
\begin{aligned}
P(\mathbf{z})^{2}=1 & =\left(\int P(\mathbf{y}) K_{d}^{\mu}(\mathbf{z}, \mathbf{y}) d \mu(\mathbf{y})\right)^{2} \\
& \leq \int P^{2} d \mu \times \int K_{d}^{\mu}(\mathbf{z}, \mathbf{y})^{2} d \mu(\mathbf{y})=K_{d}^{\mu}(\mathbf{z}, \mathbf{z}) \int P^{2} d \mu
\end{aligned}
$$

reproducing property, Cauchy-Schwartz, reproducing property.
Equality for $P(\cdot)=K_{d}^{\mu}(\mathbf{z}, \cdot) / K_{d}^{\mu}(\mathbf{z}, \mathbf{z})$.

Historical remarks

Univariate case (complex and real) since beginning of 20-th century:

- quadrature, interpolation, approximation
- orthogonal polynomials
- potential theory
- random matrices/polynomials
- ...

A few contributors

- Szegö, Erdös, Turan, Freud, Totik, Máté, Nevai, ...

Still an object of very active research (asymptotics, multivariate case).

Outline

1. CD kernel, Christoffel function, orthogonal polynomials, moments

2. Quantitative asymptotics

3. Empirical measures statistical aspects

4. Application to support inference from sample

Main idea

μ : Lebesgue restricted to $S \subset \mathbb{R}^{p}$, compact, non-empty interior. Order of growth of the CD kernel.

The unit euclidean ball (Bos, Xu)

ω_{p} is the area of the p dimensional unit sphere in \mathbb{R}^{p+1}.

The unit euclidean ball (Bos, Xu)

ω_{p} is the area of the p dimensional unit sphere in \mathbb{R}^{p+1}.

Lebesgue measure on the ball: Let λ_{B} be the restriction of Lebesgue measure to the unit Euclidean ball $B \subset \mathbb{R}^{p}$. We have

$$
\begin{aligned}
& K_{d}^{\lambda_{B}}(0,0) \leq \frac{s(d)}{\omega_{p}} \frac{(d+p+1)(d+p+2)(2 d+p+6)}{(d+1)(d+2)(d+3)}=O\left(d^{p}\right) \\
& K_{d}^{\lambda_{B}}(\mathbf{x}, \mathbf{x})=2\binom{p+d+1}{d}-\binom{p+d}{d}=O\left(d^{p+1}\right), \quad\|\mathbf{x}\|=1
\end{aligned}
$$

Smooth boundary

Exercise: Show that if $\mu(A) \geq \nu(A)$ for all measurable set A, then for all $d, K_{d}^{\mu} \leq K_{d}^{\nu}$.

Smooth boundary

Exercise: Show that if $\mu(A) \geq \nu(A)$ for all measurable set A, then for all $d, K_{d}^{\mu} \leq K_{d}^{\nu}$.

Lebesgue measure on a set with non empty interior: Let $S \subset \mathbb{R}^{p}$ have non empty interior. Then for all $x \in \operatorname{int}(S)$,

$$
K_{d}^{\lambda}(\mathbf{x}, \mathbf{x})=O\left(d^{p}\right)
$$

Smooth boundary

Exercise: Show that if $\mu(A) \geq \nu(A)$ for all measurable set A, then for all $d, K_{d}^{\mu} \leq K_{d}^{\nu}$.

Lebesgue measure on a set with non empty interior: Let $S \subset \mathbb{R}^{p}$ have non empty interior. Then for all $x \in \operatorname{int}(S)$,

$$
K_{d}^{\lambda_{s}}(\mathbf{x}, \mathbf{x})=O\left(d^{p}\right)
$$

Proof: $\mathbf{x} \in \operatorname{int}(S)$, there is a ball $B_{r} \subset S$ of radius r and center \mathbf{x}. Consider $\lambda_{B_{r}} \leq \lambda_{S}$.

Smooth boundary

Exercise: Show that if $\mu(A) \geq \nu(A)$ for all measurable set A, then for all $d, K_{d}^{\mu} \leq K_{d}^{\nu}$.

Lebesgue measure on a set with non empty interior: Let $S \subset \mathbb{R}^{p}$ have non empty interior. Then for all $x \in \operatorname{int}(S)$,

$$
K_{d}^{\lambda_{s}}(\mathbf{x}, \mathbf{x})=O\left(d^{p}\right)
$$

If in addition the boundary of $S \subset \mathbb{R}^{p}$ is a smooth embedded hypersurface in \mathbb{R}^{p}. Then

$$
\sup _{\mathbf{x} \in S} K_{d}^{\lambda_{S}}(\mathbf{x}, \mathbf{x})=O\left(d^{p+1}\right)
$$

Proof: $\mathbf{x} \in \operatorname{int}(S)$, there is a ball $B_{r} \subset S$ of radius r and center \mathbf{x}. Consider $\lambda_{B_{r}} \leq \lambda_{S}$.

Smooth boundary

Exercise: Show that if $\mu(A) \geq \nu(A)$ for all measurable set A, then for all $d, K_{d}^{\mu} \leq K_{d}^{\nu}$.

Lebesgue measure on a set with non empty interior: Let $S \subset \mathbb{R}^{p}$ have non empty interior. Then for all $x \in \operatorname{int}(S)$,

$$
K_{d}^{\lambda_{s}}(\mathbf{x}, \mathbf{x})=O\left(d^{p}\right)
$$

If in addition the boundary of $S \subset \mathbb{R}^{p}$ is a smooth embedded hypersurface in \mathbb{R}^{p}. Then

$$
\sup _{\mathbf{x} \in S} K_{d}^{\lambda_{S}}(\mathbf{x}, \mathbf{x})=O\left(d^{p+1}\right)
$$

Proof: $\mathbf{x} \in \operatorname{int}(S)$, there is a ball $B_{r} \subset S$ of radius r and center \mathbf{x}. Consider $\lambda_{B_{r}} \leq \lambda_{S}$.

Tubular neighborhood theorem: There exists $r>0$ such that for all $\mathbf{x} \in S$, there is a ball of radius $r, B_{r} \subset S$ such that $x \in B_{r}$. Consider $\lambda_{B_{r}} \leq \lambda_{S}$.

Explicit construction: the cube $[-1,1]^{p}$

Legendre Polynomials: $P_{0}(t)=0, P_{1}(t)=t$

$$
(n+1) P_{n+1}(t)=(2 n+1) t P_{n}(t)-n P_{n-1}(t)
$$

$\max _{t \in[-1,1]} P_{n}(t)=1$.

Explicit construction: the cube $[-1,1]^{p}$

Legendre Polynomials: $P_{0}(t)=0, P_{1}(t)=t$

$$
(n+1) P_{n+1}(t)=(2 n+1) t P_{n}(t)-n P_{n-1}(t)
$$

$\max _{t \in[-1,1]} P_{n}(t)=1$.

Orthogonality:

$$
\int_{-1}^{1} P_{m}(t) P_{n}(t) d t=\frac{2}{2 n+1} \delta_{m n}
$$

Explicit construction: the cube $[-1,1]^{p}$

Legendre Polynomials: $P_{0}(t)=0, P_{1}(t)=t$

$$
(n+1) P_{n+1}(t)=(2 n+1) t P_{n}(t)-n P_{n-1}(t)
$$

$\max _{t \in[-1,1]} P_{n}(t)=1$.

Orthogonality:

$$
\int_{-1}^{1} P_{m}(t) P_{n}(t) d t=\frac{2}{2 n+1} \delta_{m n} .
$$

Lebesgue measure on the cube: orthogonal polynomials given by

$$
Q_{\alpha}(\mathbf{x})=\prod_{i=1}^{p} \sqrt{\alpha_{i}+\frac{1}{2}} P_{\alpha_{i}}\left(x_{i}\right), \quad \alpha \in \mathbb{N}_{+}^{p}, \quad|\alpha|<d
$$

Explicit construction: the cube $[-1,1]^{p}$

Legendre Polynomials: $P_{0}(t)=0, P_{1}(t)=t$

$$
(n+1) P_{n+1}(t)=(2 n+1) t P_{n}(t)-n P_{n-1}(t)
$$

$\max _{t \in[-1,1]} P_{n}(t)=1$.

Orthogonality:

$$
\int_{-1}^{1} P_{m}(t) P_{n}(t) d t=\frac{2}{2 n+1} \delta_{m n}
$$

Lebesgue measure on the cube: orthogonal polynomials given by

$$
Q_{\alpha}(\mathbf{x})=\prod_{i=1}^{p} \sqrt{\alpha_{i}+\frac{1}{2}} P_{\alpha_{i}}\left(x_{i}\right), \quad \alpha \in \mathbb{N}_{+}^{p}, \quad|\alpha|<d
$$

Let λ_{c} be the restriction of Lebesgue measure to the unit cube $C=[-1,1]^{p}$, then

$$
\sup _{\mathbf{x} \in C} K_{d}^{\lambda c}(\mathbf{x}, \mathbf{x}) \leq \sum_{|\alpha| \leq d} \prod_{i=1}^{p}\left(\alpha_{i}+\frac{1}{2}\right)=O\left(d^{2 p}\right)
$$

Exponential lower bounds

Let $S \subset \mathbb{R}^{p}$ be compact and μ be a probability measure supported on S. Then for all \mathbf{x} with $\operatorname{dist}(\mathbf{x}, S) \geq \delta>0$, and $d \in \mathbb{N}$

$$
K_{d}^{\mu}(\mathbf{x}, \mathrm{x}) \geq 2^{\frac{\delta \delta d}{\delta+\operatorname{diam}(S)}}{ }^{-3} .
$$

Exponential lower bounds

Let $S \subset \mathbb{R}^{p}$ be compact and μ be a probability measure supported on S. Then for all \mathbf{x} with $\operatorname{dist}(\mathbf{x}, S) \geq \delta>0$, and $d \in \mathbb{N}$

$$
K_{d}^{\mu}(\mathbf{x}, \mathrm{x}) \geq 2^{\frac{\delta \delta d}{\delta+\operatorname{diam}(S)^{-3}}}
$$

Proof: For any $\mathbf{x} \in \mathbb{R}^{p}$ and $P \in \mathbb{R}_{d}[X]$ with $P(\mathbf{x})=1$,

$$
K_{\mu}^{d}(\mathbf{x}, \mathbf{x}) \geq\left(\int P^{2} d \mu\right)^{-1}
$$

Choose P such that $P(\mathbf{x})=1$ and the integral is small.

Exponential lower bounds: Needle polynomial

Kroó's needle polynomial, for any $\delta>0, d \in \mathbb{N}^{*}, \exists Q \in \mathbb{R}_{2 d}[X]$

$$
Q(0)=1, \quad|Q(\mathbf{x})| \leq 1 \text { if }\|\mathbf{x}\| \leq 1, \quad|Q(\mathbf{x})| \leq 2^{1-\delta d} \text { if } \delta \leq\|\mathbf{x}\| \leq 1 .
$$

Exponential lower bounds: Needle polynomial

Kroó's needle polynomial, for any $\delta>0, d \in \mathbb{N}^{*}, \exists Q \in \mathbb{R}_{2 d}[X]$

$$
Q(0)=1, \quad|Q(\mathbf{x})| \leq 1 \text { if }\|\mathbf{x}\| \leq 1, \quad|Q(\mathbf{x})| \leq 2^{1-\delta d} \text { if } \delta \leq\|\mathbf{x}\| \leq 1 .
$$

Example for $\delta=0.2$ and $d=20,30,40$.

Exponential separation of the support

μ : Lebesgue restricted to $S \subset \mathbb{R}^{p}$, compact, non-empty interior.

Exponential growth dichotomy: Growth of the CD kernel is

- At most polynomial in the degree d in the interior of the support.
- Exponential in the degree d outside the support.
- In between on the boundary of the support of μ : depending on local geometry.

Outline

1. CD kernel, Christoffel function, orthogonal polynomials, moments

2. Quantitative asymptotics
3. Empirical measures statistical aspects
4. Application to support inference from sample

Empirical christoffel-Darboux kernel

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$). (dimension p and degree d are fixed).

$$
(P, Q) \quad \mapsto \quad\langle P, Q\rangle\rangle_{\mu}:=\int P Q d \mu
$$

defines a valid scalar product on $\mathbb{R}_{d}[X]$.

Christoffel-Darboux kernel: K_{μ}^{d} is the reproducing kernel of $\left(\mathbb{R}_{d}[X],\langle\langle\cdot, \cdot\rangle\rangle_{\mu}\right)$.

Empirical christoffel-Darboux kernel

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$). (dimension p and degree d are fixed).

$$
(P, Q) \quad \mapsto \quad\langle P, Q\rangle\rangle_{\mu}:=\int P Q d \mu
$$

defines a valid scalar product on $\mathbb{R}_{d}[X]$.

Christoffel-Darboux kernel: K_{μ}^{d} is the reproducing kernel of $\left(\mathbb{R}_{d}[X],\langle\langle\cdot, \cdot\rangle\rangle_{\mu}\right)$.

Empirical measure: $\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\mathrm{x}_{i}}$.

Empirical christoffel-Darboux kernel

μ : Borel probability measure in \mathbb{R}^{p} (compact support).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$). (dimension p and degree d are fixed).

$$
(P, Q) \quad \mapsto \quad\langle P, Q\rangle\rangle_{\mu}:=\int P Q d \mu
$$

Christoffel-Darboux kernel: K_{μ}^{d} is the reproducing kernel of $\left(\mathbb{R}_{d}[X],\langle\langle\cdot, \cdot\rangle\rangle_{\mu}\right)$.

Empirical measure: $\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\mathrm{x}_{i}}$.

Empirical christoffel-Darboux kernel

μ : Borel probability measure in \mathbb{R}^{p} (compact support).
$\mathbb{R}_{d}[X]: p$-variate polynomials of degree at most d (of dimension $s(d)=\binom{p+d}{d}$). (dimension p and degree d are fixed).

$$
(P, Q) \quad \mapsto \quad\langle P, Q\rangle\rangle_{\mu}:=\int P Q d \mu
$$

Christoffel-Darboux kernel: K_{μ}^{d} is the reproducing kernel of $\left(\mathbb{R}_{d}[X],\langle\langle\cdot, \cdot\rangle\rangle_{\mu}\right)$.

Empirical measure: $\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{x}_{i}}$.
Example: $P: \mathbf{x} \mapsto \prod_{i=1}^{n}\left\|\mathbf{x}-\mathbf{x}_{i}\right\|^{2}, \quad\langle\langle P, P\rangle\rangle_{\mu_{N}}=0$ but $P \neq 0$.

Fix using empirical Christoffel function

$$
\text { Empirical measure: } \mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{x}_{i}}
$$

Fix using empirical Christoffel function

Empirical measure: $\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\mathrm{x}_{i}}$
Empirical christoffel function (no need for a valid scalar product)

$$
\begin{aligned}
\Lambda_{d}^{\mu_{N}}: \mathbb{R}^{p} & \mapsto[0,1] \\
\mathbf{z} & \mapsto \min _{P \in \mathbb{R}_{d}[X]}\left\{\frac{1}{N} \sum_{i=1}^{N} P\left(X_{i}\right)^{2}: \quad P(\mathbf{z})=1\right\} .
\end{aligned}
$$

Fix using empirical Christoffel function

Empirical measure: $\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{x}_{i}}$
Empirical christoffel function (no need for a valid scalar product)

$$
\begin{aligned}
\Lambda_{d}^{\mu_{N}}: \mathbb{R}^{p} & \mapsto[0,1] \\
\mathbf{z} & \mapsto \min _{P \in \mathbb{R}_{d}[X]}\left\{\frac{1}{N} \sum_{i=1}^{N} P\left(X_{i}\right)^{2}: \quad P(\mathbf{z})=1\right\} .
\end{aligned}
$$

Degeneracy for large d : if $s(d) \geq N$, then

$$
\Lambda_{n}^{\mu_{N}}: \mathbf{z} \mapsto \begin{cases}0, & \mathbf{z} \neq \mathbf{x}_{i}, i=1 \ldots, N \\ \frac{1}{N}, & \text { otherwise }\end{cases}
$$

Fix using empirical Christoffel function

Empirical measure: $\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\mathrm{x}_{i}}$
Empirical christoffel function (no need for a valid scalar product)

$$
\begin{aligned}
\Lambda_{d}^{\mu_{N}}: \mathbb{R}^{p} & \mapsto[0,1] \\
\mathbf{z} & \mapsto \min _{P \in \mathbb{R}_{d}[X]}\left\{\frac{1}{N} \sum_{i=1}^{N} P\left(X_{i}\right)^{2}: \quad P(\mathbf{z})=1\right\} .
\end{aligned}
$$

Degeneracy for large d : if $s(d) \geq N$, then

$$
\Lambda_{n}^{\mu_{N}}: \mathbf{z} \mapsto \begin{cases}0, & \mathbf{z} \neq \mathbf{x}_{i}, i=1 \ldots, N \\ \frac{1}{N}, & \text { otherwise }\end{cases}
$$

How to ensure that $\Lambda_{d}^{\mu_{N}}$ retains the favorable properties of Λ_{d}^{μ} ?

Empirical measure: statistical setting

Statistical setting: $\left(X_{i}\right)_{i \in \mathbb{N}}, \mathbb{R}^{p}$ valued random variables, iid with distribution μ.

Empirical measure: statistical setting

Statistical setting: $\left(X_{i}\right)_{i \in \mathbb{N}}, \mathbb{R}^{p}$ valued random variables, iid with distribution μ. For any $N \in \mathbb{N}$, measurable subsets A_{1}, \ldots, A_{N} in \mathbb{R}^{p} :

$$
\mathbb{P}\left[\left(X_{1} \in A_{1}\right) \&\left(X_{2} \in A_{2}\right) \& \ldots \&\left(X_{N} \in A_{N}\right)\right]=\prod_{i=1}^{N} \mu\left(A_{i}\right) .
$$

Empirical measure: statistical setting

Statistical setting: $\left(X_{i}\right)_{i \in \mathbb{N}}, \mathbb{R}^{p}$ valued random variables, iid with distribution μ. For any $N \in \mathbb{N}$, measurable subsets A_{1}, \ldots, A_{N} in \mathbb{R}^{p} :

$$
\mathbb{P}\left[\left(X_{1} \in A_{1}\right) \&\left(X_{2} \in A_{2}\right) \& \ldots \&\left(X_{N} \in A_{N}\right)\right]=\prod_{i=1}^{N} \mu\left(A_{i}\right) .
$$

Empirical measure: For any $N \in \mathbb{N}$,

$$
\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta x_{i}
$$

Empirical measure: statistical setting

Statistical setting: $\left(X_{i}\right)_{i \in \mathbb{N}}, \mathbb{R}^{p}$ valued random variables, iid with distribution μ. For any $N \in \mathbb{N}$, measurable subsets A_{1}, \ldots, A_{N} in \mathbb{R}^{p} :

$$
\mathbb{P}\left[\left(X_{1} \in A_{1}\right) \&\left(X_{2} \in A_{2}\right) \& \ldots \&\left(X_{N} \in A_{N}\right)\right]=\prod_{i=1}^{N} \mu\left(A_{i}\right) .
$$

Empirical measure: For any $N \in \mathbb{N}$,

$$
\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta x_{i}
$$

Strong law of large numbers: for any continuous f, almost surely

$$
\lim _{N \rightarrow \infty} \int f(\mathbf{z}) d \mu_{N}(\mathbf{z})=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right)=\int f(\mathbf{z}) d \mu(\mathbf{z})
$$

Statistical consistency

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\left(X_{i}\right)_{i=1, \ldots, N}, \mathbb{R}^{p}$ valued random variables, iid with distribution μ $\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}$

Statistical consistency

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\left(X_{i}\right)_{i=1, \ldots, N}, \mathbb{R}^{p}$ valued random variables, iid with distribution μ
$\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}$
Consistency for fixed degree: $d \in \mathbb{N}$ fixed, as $N \rightarrow \infty$, almost surely, uniformly in \mathbf{x}

$$
\Lambda_{d}^{\mu_{N}}(\mathbf{x}) \rightarrow \Lambda_{d}^{\mu}(\mathbf{x})
$$

Statistical consistency

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density). $\left(X_{i}\right)_{i=1, \ldots, N}, \mathbb{R}^{p}$ valued random variables, iid with distribution μ $\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}$

Consistency for fixed degree: $d \in \mathbb{N}$ fixed, as $N \rightarrow \infty$, almost surely, uniformly in \mathbf{x}

$$
\Lambda_{d}^{\mu_{N}}(\mathbf{x}) \rightarrow \Lambda_{d}^{\mu}(\mathbf{x}) .
$$

Finite sample concentration: Set $m=\max _{\mathrm{x} \in \operatorname{supp}(\mu)} K_{d}^{\mu}(\mathbf{x}, \mathbf{x})$.

Statistical consistency

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density). $\left(X_{i}\right)_{i=1, \ldots, N}, \mathbb{R}^{p}$ valued random variables, iid with distribution μ $\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}$

Consistency for fixed degree: $d \in \mathbb{N}$ fixed, as $N \rightarrow \infty$, almost surely, uniformly in \mathbf{x}

$$
\Lambda_{d}^{\mu_{N}}(\mathbf{x}) \rightarrow \Lambda_{d}^{\mu}(\mathbf{x})
$$

Finite sample concentration: Set $m=\max _{\mathbf{x} \in \operatorname{supp}(\mu)} K_{d}^{\mu}(\mathbf{x}, \mathbf{x})$.
Then, for all $\alpha>0$, with probability at least $1-\alpha$,

$$
\sup _{\mathbf{x}}\left|\Lambda_{d}^{\mu_{N}}(\mathbf{x})-\Lambda_{d}^{\mu}(\mathbf{x})\right| \leq \max \left(\sqrt{\frac{16 m}{3 N} \log \left(\frac{s(d)}{\alpha}\right)}, \frac{16 m}{3 N} \log \left(\frac{s(d)}{\alpha}\right)\right)
$$

Statistical consistency

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density). $\left(X_{i}\right)_{i=1, \ldots, N}, \mathbb{R}^{p}$ valued random variables, iid with distribution μ $\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}$

Consistency for fixed degree: $d \in \mathbb{N}$ fixed, as $N \rightarrow \infty$, almost surely, uniformly in \mathbf{x}

$$
\Lambda_{d}^{\mu_{N}}(\mathbf{x}) \rightarrow \Lambda_{d}^{\mu}(\mathbf{x})
$$

Finite sample concentration: Set $m=\max _{\mathbf{x} \in \operatorname{supp}(\mu)} K_{d}^{\mu}(\mathbf{x}, \mathbf{x})$.
Then, for all $\alpha>0$, with probability at least $1-\alpha$,

$$
\sup _{\mathbf{x}}\left|\Lambda_{d}^{\mu_{N}}(\mathbf{x})-\Lambda_{d}^{\mu}(\mathbf{x})\right| \leq \max \left(\sqrt{\frac{16 m}{3 N} \log \left(\frac{s(d)}{\alpha}\right)}, \frac{16 m}{3 N} \log \left(\frac{s(d)}{\alpha}\right)\right)
$$

Nondegenerate regime: $N \geq \max _{\mathbf{x} \in \operatorname{supp}(\mu)} K_{d}^{\mu}(\mathbf{x}, \mathbf{x}) \geq s(d)$. Of order d^{p+1} for smooth boundary.

Statistical consistency

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density). $\left(X_{i}\right)_{i=1, \ldots, N}, \mathbb{R}^{p}$ valued random variables, iid with distribution μ $\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}$

Consistency for fixed degree: $d \in \mathbb{N}$ fixed, as $N \rightarrow \infty$, almost surely, uniformly in \mathbf{x}

$$
\Lambda_{d}^{\mu_{N}}(\mathbf{x}) \rightarrow \Lambda_{d}^{\mu}(\mathbf{x})
$$

Finite sample concentration: Set $m=\max _{\mathbf{x} \in \operatorname{supp}(\mu)} K_{d}^{\mu}(\mathbf{x}, \mathbf{x})$.
Then, for all $\alpha>0$, with probability at least $1-\alpha$,

$$
\sup _{\mathbf{x}}\left|\Lambda_{d}^{\mu_{N}}(\mathbf{x})-\Lambda_{d}^{\mu}(\mathbf{x})\right| \leq \max \left(\sqrt{\frac{16 m}{3 N} \log \left(\frac{s(d)}{\alpha}\right)}, \frac{16 m}{3 N} \log \left(\frac{s(d)}{\alpha}\right)\right)
$$

Nondegenerate regime: $N \geq \max _{\mathbf{x} \in \operatorname{supp}(\mu)} K_{d}^{\mu}(\mathbf{x}, \mathbf{x}) \geq s(d)$.
Of order d^{p+1} for smooth boundary.
Statistical tools: Concentration for random matrices (non commutative Bernstein).

Outline

1. CD kernel, Christoffel function, orthogonal polynomials, moments

2. Quantitative asymptotics
3. Empirical measures statistical aspects
4. Application to support inference from sample

Leveraging the exponential growth dichotomy

Smooth boundary: Let $S \subset \mathbb{R}^{p}$ compact, nonempty interior, boundary is a smooth embedded hypersurface. μ is the restriction of Lebesgue measures to S.

Leveraging the exponential growth dichotomy

Smooth boundary: Let $S \subset \mathbb{R}^{p}$ compact, nonempty interior, boundary is a smooth embedded hypersurface. μ is the restriction of Lebesgue measures to S.

Constants: Then for any $\alpha>0$, there exist constants C_{1}, C_{2}, C_{3} which depend on α and can be computed from problem data,

Leveraging the exponential growth dichotomy

Smooth boundary: Let $S \subset \mathbb{R}^{p}$ compact, nonempty interior, boundary is a smooth embedded hypersurface. μ is the restriction of Lebesgue measures to S.

Constants:Then for any $\alpha>0$, there exist constants C_{1}, C_{2}, C_{3} which depend on α and can be computed from problem data,

Degree choice and threshold: setting for all $N \in \mathbb{N}$,

$$
\begin{aligned}
& d_{N}:=\left\lfloor C_{1} N^{\frac{1}{p+2}}\right\rfloor \\
& \gamma_{N}:=C_{2} d_{N}^{\frac{3 p}{2}} \\
& S_{N}:=\left\{\mathbf{x} \in \mathbb{R}^{p}, K_{d_{N}}^{\mu_{N}}(\mathbf{x}, \mathbf{x}) \leq \gamma_{N}\right\}
\end{aligned}
$$

Leveraging the exponential growth dichotomy

Smooth boundary: Let $S \subset \mathbb{R}^{p}$ compact, nonempty interior, boundary is a smooth embedded hypersurface. μ is the restriction of Lebesgue measures to S.

Constants:Then for any $\alpha>0$, there exist constants C_{1}, C_{2}, C_{3} which depend on α and can be computed from problem data,

Degree choice and threshold: setting for all $N \in \mathbb{N}$,

$$
\begin{aligned}
& d_{N}:=\left\lfloor C_{1} N^{\frac{1}{p+2}}\right\rfloor \\
& \gamma_{N}:=C_{2} d_{N}^{\frac{3 p}{2}} \\
& S_{N}:=\left\{\mathbf{x} \in \mathbb{R}^{p}, K_{d_{N}}^{\mu_{N}}(\mathbf{x}, \mathbf{x}) \leq \gamma_{N}\right\}
\end{aligned}
$$

Set convergence: it holds with probability at least $1-\alpha$ that

$$
d_{H}\left(S, S_{N}\right) \leq \frac{C_{3}}{N^{\frac{1}{2 p+4}}} \quad d_{H}\left(\partial S, \partial S_{N}\right) \leq \frac{C_{3}}{N^{\frac{1}{2 p+4}}}
$$

Leveraging the exponential growth dichotomy

Smooth boundary: Let $S \subset \mathbb{R}^{p}$ compact, nonempty interior, boundary is a smooth embedded hypersurface. μ is the restriction of Lebesgue measures to S.

Constants:Then for any $\alpha>0$, there exist constants C_{1}, C_{2}, C_{3} which depend on α and can be computed from problem data,

Degree choice and threshold: setting for all $N \in \mathbb{N}$,

$$
\begin{aligned}
& d_{N}:=\left\lfloor C_{1} N^{\frac{1}{p+2}}\right\rfloor \\
& \gamma_{N}:=C_{2} d_{N}^{\frac{3 p}{2}} \\
& S_{N}:=\left\{\mathbf{x} \in \mathbb{R}^{p}, K_{d_{N}}^{\mu_{N}}(\mathbf{x}, \mathbf{x}) \leq \gamma_{N}\right\}
\end{aligned}
$$

Set convergence: it holds with probability at least $1-\alpha$ that

$$
d_{H}\left(S, S_{N}\right) \leq \frac{C_{3}}{N^{\frac{1}{2 p+4}}} \quad d_{H}\left(\partial S, \partial S_{N}\right) \leq \frac{C_{3}}{N^{\frac{1}{2 p+4}}}
$$

Hausdorff Distance: $d_{H}(X, Y)$ between two compact sets X, Y :

$$
d_{H}(X, Y)=\max \left\{\sup _{\mathbf{x} \in X} \inf _{\mathbf{y} \in Y}\|\mathbf{x}-\mathbf{y}\|, \sup _{\mathbf{y} \in Y} \inf _{\mathbf{x} \in X}\|\mathbf{x}-\mathbf{y}\|\right\}
$$

Numerical illustration

Numerical illustration

Takeaway

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).

Takeaway

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).

RKHS: K_{d}^{μ} is the reproducing kernel of $\mathbb{R}_{d}[X]$ with dot product $(P, Q) \mapsto \int P Q d \mu$.

Takeaway

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).

RKHS: K_{d}^{μ} is the reproducing kernel of $\mathbb{R}_{d}[X]$ with dot product $(P, Q) \mapsto \int P Q d \mu$. Inverse moment matrix: $\mathbf{v}_{d}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{s(d)}$ basis of $\mathbb{R}_{d}[X]$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$,

$$
K_{d}^{\mu}(\mathbf{x}, \mathbf{y})=\mathbf{v}_{d}(\mathbf{x})^{T} M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{y})
$$

Takeaway

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).

RKHS: K_{d}^{μ} is the reproducing kernel of $\mathbb{R}_{d}[X]$ with dot product $(P, Q) \mapsto \int P Q d \mu$. Inverse moment matrix: $\mathbf{v}_{d}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{s(d)}$ basis of $\mathbb{R}_{d}[X]$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$,

$$
K_{d}^{\mu}(\mathbf{x}, \mathbf{y})=\mathbf{v}_{d}(\mathbf{x})^{T} M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{y})
$$

Variational formulation: Christoffel function, for all $\mathbf{x} \in \mathbb{R}^{p}$,

$$
\frac{1}{K_{d}^{\mu}(\mathbf{x}, \mathbf{x})}=\Lambda_{d}^{\mu}(\mathbf{x}):=\min _{P \in \mathbb{R}_{d}[x]}\left\{\int P^{2} d \mu: \quad P(\mathbf{z})=1\right\}
$$

Takeaway

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).

RKHS: K_{d}^{μ} is the reproducing kernel of $\mathbb{R}_{d}[X]$ with dot product $(P, Q) \mapsto \int P Q d \mu$.
Inverse moment matrix: $\mathbf{v}_{d}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{s(d)}$ basis of $\mathbb{R}_{d}[X]$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$,

$$
K_{d}^{\mu}(\mathbf{x}, \mathbf{y})=\mathbf{v}_{d}(\mathbf{x})^{T} M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{y})
$$

Variational formulation: Christoffel function, for all $\mathbf{x} \in \mathbb{R}^{p}$,

$$
\frac{1}{K_{d}^{\mu}(\mathbf{x}, \mathbf{x})}=\Lambda_{d}^{\mu}(\mathbf{x}):=\min _{P \in \mathbb{R}_{d}[x]}\left\{\int P^{2} d \mu: \quad P(\mathbf{z})=1\right\}
$$

Exponential growth dichotomy: as d grows, $K_{d}^{\mu}(\mathbf{x}, \mathbf{x})$ goes to infinity

- At most in $O(d)$ in the interior of the support of μ.
- At least exponentially outside the support of μ.

Takeaway

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\left(X_{i}\right)_{i=1, \ldots, N}, \mathbb{R}^{p}$ valued random variables, iid with distribution μ
$\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}$.
RKHS: K_{d}^{μ} is the reproducing kernel of $\mathbb{R}_{d}[X]$ with dot product $(P, Q) \mapsto \int P Q d \mu$.
Inverse moment matrix: $\mathbf{v}_{d}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{s(d)}$ basis of $\mathbb{R}_{d}[X]$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$,

$$
K_{d}^{\mu}(\mathbf{x}, \mathbf{y})=\mathbf{v}_{d}(\mathbf{x})^{T} M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{y})
$$

Variational formulation: Christoffel function, for all $\mathbf{x} \in \mathbb{R}^{p}$,

$$
\frac{1}{K_{d}^{\mu}(\mathbf{x}, \mathbf{x})}=\Lambda_{d}^{\mu}(\mathbf{x}):=\min _{P \in \mathbb{R}_{d}[X]}\left\{\int P^{2} d \mu: \quad P(\mathbf{z})=1\right\}
$$

Exponential growth dichotomy: as d grows, $K_{d}^{\mu}(\mathbf{x}, \mathbf{x})$ goes to infinity

- At most in $O(d)$ in the interior of the support of μ.
- At least exponentially outside the support of μ.

Takeaway

μ : Borel probability measure in \mathbb{R}^{p} (compact support, density).
$\left(X_{i}\right)_{i=1, \ldots, N}, \mathbb{R}^{p}$ valued random variables, iid with distribution μ
$\mu_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}$.
RKHS: K_{d}^{μ} is the reproducing kernel of $\mathbb{R}_{d}[X]$ with dot product $(P, Q) \mapsto \int P Q d \mu$.
Inverse moment matrix: $\mathbf{v}_{d}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{s(d)}$ basis of $\mathbb{R}_{d}[X]$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$,

$$
K_{d}^{\mu}(\mathbf{x}, \mathbf{y})=\mathbf{v}_{d}(\mathbf{x})^{T} M_{\mu, d}^{-1} \mathbf{v}_{d}(\mathbf{y})
$$

Variational formulation: Christoffel function, for all $\mathbf{x} \in \mathbb{R}^{p}$,

$$
\frac{1}{K_{d}^{\mu}(\mathbf{x}, \mathbf{x})}=\Lambda_{d}^{\mu}(\mathbf{x}):=\min _{P \in \mathbb{R}_{d}[x]}\left\{\int P^{2} d \mu: \quad P(\mathbf{z})=1\right\}
$$

Exponential growth dichotomy: as d grows, $K_{d}^{\mu}(\mathbf{x}, \mathbf{x})$ goes to infinity

- At most in $O(d)$ in the interior of the support of μ.
- At least exponentially outside the support of μ.

Statistical approximation: $\Lambda_{d}^{\mu_{N}} \sim \Lambda_{d}^{\mu}$ provided that

$$
N \geq \sup _{\mathbf{x} \in \operatorname{supp}(\mu)} K_{d}^{\mu}(\mathbf{x}, \mathbf{x}) \geq s(d)
$$

Thanks

