
Constructive Interval Disjunction

Gilles Trombettoni and Gilles Chabert

University of Nice-Sophia and COPRIN Project, INRIA, 2004 route des lucioles,
06902 Sophia.Antipolis cedex, B.P. 93, France
{trombe, gchabert}@sophia.inria.fr

Abstract. Shaving and constructive disjunction are two main refutation
principles used in constraint programming. The shaving principle allows
us to compute the singleton arc-consistency (SAC) of finite-domain CSPs
and the 3B-consistency of numerical CSPs. Considering the domains as
unary disjunctive constraints, one can adapt the constructive disjunction,
proposed by Van Hentenryck et al. in the nineties, to provide another
general-purpose refutation operator. One advantage over the shaving is
that the partial consistency performed to refute values in the domains is
not entirely lost.
This paper presents a new filtering operator for numerical CSPs, called
CID, based on constructive disjunction, and a hybrid algorithm, called
3BCD, mixing shaving and constructive disjunction. Experiments have
been performed on 20 benchmarks. Adding CID to bisection, hull or box
consistency, and interval Newton, produces a gain in performance of 1,
2 or 3 orders of magnitude on several benchmarks. 3BCD and adaptive
CID filtering algorithms with no additional parameters compare advanta-
geously to the 3B-consistency operator. Finally, the CID principle has
led us to design a new splitting strategy.

1 Introduction

In constraint programming and operational research, shaving is based on a sim-
ple refutation principle. A value is temporarily assigned to a variable (the other
values are temporarily discarded) and a partial consistency is computed on the
remaining subproblem. If an inconsistency is obtained then the value can be
safely removed from the domain of the variable. Otherwise, the value is kept in
the domain. This principle of refutation has two drawbacks. Contrarily to arc
consistency, this consistency is not incremental [2]. Intuitively, the work of the
underlying partial consistency algorithm on the whole subproblem explains why
a single value can be removed. Thus, obtaining the singleton arc consistency
on finite-domain CSPs requires an expensive fixed-point propagation algorithm
where all the variables must be handled again every time a single value is re-
moved [11]. SAC2 [1] and SAC-optim [2] and other SAC variants obtain better
average or worst time complexity by managing heavy data structures for the
supports of values (like with AC4) or by duplicating the CSP for every value.
However, using these filtering operators inside a backtrack scheme is far from
being competitive with the standard MAC algorithm in the current state of

research. In its QuickShaving [7], Lhomme uses this shaving principle in a prag-
matic way, i.e., with no overhead because the promising variables (i.e., those
that can possibly produce gains with shaving in the future) are learnt during
the search. Researchers and practitioners also use for a long time the shaving
principle in scheduling problems. The variables are generally handled only once
so that no fixed-point is reached neither. On numerical CSPs, the 2B-consistency
is the refutation algorithm used by 3B-consistency [6] as arc-consistency is used
to refute values in the SAC property. This weaker property limited to the bounds
of intervals explains that 3B-consistency filtering can solve some systems very
quickly (although it is counterproductive on a majority of numerical CSPs).
The second drawback of shaving is that the pruning performed by the partial
consistency operator to refute a given value is lost, which is not the case with
constructive disjunction.

Constructive disjunction produces a significant filtering when dealing with
disjunctions of constraints, and not only with conjunctions of constraints as in
the standard CSP model [17]. The idea is to propagate independently every
term of the disjunction, and to perform the union of the different pruned search
spaces. In other terms, a value that is removed by every propagation process
(run with one term/constraint of the disjunct) can be safely removed from the
ground CSP. This idea is fruitful in several fields, such as in scheduling where
a common constraint is that two given tasks cannot overlap, or in bin/strip
packing optimization problems where two rectangles must not overlap.

It is known, but not so widespread, that constructive disjunction can also
be used to handle the classical CSP model. Indeed, every variable domain can
be viewed as a unary disjunctive constraint that imposes one value among the
different possible ones (x = v1 ∨ ... ∨ x = vn, where x is a variable and v1, ..., vn

are the different values). In this specific case, similarly to shaving, the construc-
tive disjunction principle can be applied as follows. Every variable in a domain
is iteratively (and temporarily) assigned to a value (the other values are tem-
porarily discarded), one computes a partial consistency on the corresponding
subproblems and one computes the union of the resulting search spaces. This
constructive “domain” disjunction is not very much exploited right now while it
can sometimes produce impressive gains in performance. In particular, in addi-
tion to all-diff constraints [13], incorporating constructive domain disjunctions
into the famous Sudoku problem (launched for instance when the variables/cases
have only two remaining possible values/digits) often leads to a backtrack-free
solving. The same phenomenon is observed with the shaving, but at an even
higher cost [14].

This observation has precisely motivated the research described in this paper
that studies how to apply constructive domain disjunction to numerical CSPs. In
other terms, is the above intuition also true for numerical CSPs solved by inter-
val solving techniques? The continuous nature of interval domains is particularly
convenient for constructive domain disjunction. By splitting an interval into sev-
eral smaller intervals, constructive domain disjunction leads in a straightforward

way to the constructive interval disjunction (CID) filtering operator introduced
in this paper.

After useful notations and definitions introduced in Section 2, Section 3 de-
scribes the CID partial consistency and the corresponding filtering operator. The
experiments, presented in Section 7, have led us to design adaptive variants of
the CID filtering operator with no additional parameters (see Section 4). A hy-
brid algorithm mixing shaving and CID is described in Section 5. Finally, a new
CID-based splitting strategy is presented in Section 6.

2 Definitions

The algorithms presented in this paper aims at solving systems of equations.

Definition 1 A numerical CSP (NCSP) P = (X, C, B) contains a set of
constraints C and a set X of n variables. Every variable xi ∈ X can take a real
value in the interval xi (the box B = x1 × ... × xn). A solution of P is an
assignment of the variables in X such that all the constraints in C are satisfied.

Because real numbers cannot be represented in computer architectures, the
bounds of an interval xi are floating-point numbers.

CID filtering performs a union operation between two boxes.

Definition 2 Let Bl and Br be two boxes corresponding to a same set C of
constraints and a same set V of variables.

The hull (box) of Bl and Br, denoted by Hull(Bl, Br), is the minimal box
including Bl and Br.

To compute a bisection point based on a new (splitting) strategy, we need
calculate the size of a box. In this paper, the size of a box is given by its perimeter.

Definition 3 Let B = x1 × ... × xn be a box. The size of B is
∑n

i=1 xi − xi,
where xi and xi are respectively the upper and lower bounds of the interval xi.

As mentioned in the introduction, the CID partial consistency has several
common points with the well-known 3B-consistency partial consistency [6].

Definition 4 (3B-consistency)
Let P = (X, C, B) be an NCSP.

Let Pxi
be P where the domain of xi ∈ X is reduced to its lower bound.

Let Pxi
be P where the domain of xi ∈ X is reduced to its upper bound. Let

P ′
xi

be the closure of Pxi
by 2B-consistency. Let P ′

xi
be the closure of Pxi

by

2B-consistency.
A variable xi in X is 3B-consistent iff P ′

xi
and P ′

xi
are both non empty

(i.e., iff the bounds cannot be refuted by 2B-consistency).
The NCSP P is 3B-consistent iff all the variables in X are 3B-consistent.

The 2B-consistency (or hull-consistency) is a form of arc consistency re-
stricted to the bounds of the domains [6].

For practical considerations, and contrarily to finite-domain CSPs, a partial
consistency of an NCSP is generally obtained with a precision w [6]. This pre-
cision avoids a slow convergence to obtain the property. The definition above is
generalized by considering respectively the intervals [xi,xi + w] and [xi −w,xi]
in Pxi

and Pxi
.

When “subfiltering” is performed by Box consistency, instead of 2B-consistency,
we obtain the so-called Bound consistency property [16].

3 CID-consistency

The CID-consistency is a new partial consistency that can be obtained on nu-
merical CSPs. Following the principle given in the introduction, the CID(2)-
consistency can be formally defined as follows.

Definition 5 (CID(2)-consistency)
Let P = (X, C, B) be an NCSP. Let F be a partial consistency.

Let Bl
i the sub-box of B in which xi is replaced by [xi, x̌i] (where x̌i is the

float in the middle of the interval xi). Let Br
i the sub-box of B in which xi is

replaced by [x̌i,xi].
A variable xi in X is CID(2)-consistent w.r.t. P and F iff

B = Hull(F (X, C, Bl
i), F (X, C, Br

i)). The NCSP P is CID(2)-consistent iff all
the variables in X are CID(2)-consistent.

For every dimension, the number of slices considered in the CID(2)-consistency
is equal to 2. The definition can be generalized to the CID(s)-consistency in which
every variable is split into s slices by VarCID.

In practice, like 3B-w-consistency, the CID consistency is obtained with a
precision that avoids a slow convergence onto the fixed-point. We will consider
that a variable is CID(2,w)-consistent if the hull of the corresponding left and
right boxes resulting from sub-filtering reduces no variable more than w.

Definition 6 (CID(2,w)-consistency)
Let P = (X, C, B) be an NCSP and B′ = Hull(F (X, C, Bl

i), F (X, C, Br
i)).

A variable xi in X is CID(2,w)-consistent iff ∀i ∈ [1..n], |xi| − |x′
i| ≤ w,

where |xi| is the size of xi in B and |x′
i| is the size of xi in B′.

The NCSP P is CID(2,w)-consistent iff all the variables in X are CID(2,w)-
consistent.

Algorithm CID details the CID(s,w)-consistency filtering algorithm. Like the
3B-consistency algorithm, CID iterates on all the variables until a stop criterion,
depending on w, is reached. The procedure VarCID details the work on a given

variable xi. The interval of xi is split into s slices of size |xi|
s

each by the procedure
SubBox. The partial consistency operator F (e.g., 2B, Box-consistency) reduces
the corresponding sub-boxes, and the union of the resulting boxes is computed by

the Hull operator. Note that if the subfiltering operator F applied to a given sub-
box sliceBox detects an inconsistency, then sliceBox’ is empty. This means
that there is no use to perform the union of sliceBox’ with the current box in
construction.

Algorithm CID (s: number of slices, w: precision, in-out P = (X, C, B): an NCSP,
F : subfiltering operator and its parameters)

repeat
Pold ← P

LoopCID (X, s, P , F)

until StopCriterion(w, P , Pold)

end.
Procedure LoopCID (X, s, in-out P , F)

for every variable xi ∈ X do
VarCID (xi, s, P , F)

end
end.
Procedure VarCID (xi, s, (X, C, in-out B), F)

B′ ← empty box
for j ← 1 to s do

sliceBox ← SubBox (j, s, xi, B) /* the jth sub-box of B on xi */
sliceBox’ ← F (X, C, sliceBox) /* perform a partial consistency */
B′ ← Hull(B′, sliceBox’) /* Union with previous subboxes */
B ← B′

end
end.

The stop criterion related to w is given in Definition 6: the Repeat loop is
interrupted when no variable interval has been reduced more than w. This stop
criterion does not guarantee a convergence onto a unique fixed-point. Indeed,
practionners of interval programming solvers know that, when a precision w is
used, the final box depends on the order of the filtering operations. Moreover,
from a theoretical point of view, in order that the stop criterion leads to a non
unique fixed-point, it is necessary to return the box obtained just before the
last filtering, i.e., the box in Pold in Algorithm CID. In the following, CID(s,w)
denotes the CID operator obtaining the CID(s,w)-consistency.

Comparison with 3B-consistency

The 3B algorithm follows a scheme similar to CID, in which VarCID is replaced
by a shaving process, called VarShaving in this paper. In particular, both al-
gorithms are not incremental, hence the outside repeat loop possibly reruns the
treatment of all the variables, as shown in Algorithm 3B.

The procedure VarShaving reduces the left and right bounds of variable xi

by trying to refute intervals with a width at least equal to ws. Starting from the
interval of xi, our implementation tries to iteratively refute the half part of the
current interval (e.g., the left part when reducing the left bound) [6] if the left
bound (i.e., a single float) can be removed by subfiltering.

The following proposition allows a better understanding of the difference
between 3B filtering and CID filtering.

Algorithm 3B (w: stop criterion precision, ws : shaving precision, in-out P =
(X, C, B): an NCSP, F : subfiltering operator and its parameters)

repeat
for every variable xi ∈ X do

VarShaving (xi, ws, P , F)

end

until StopCriterion(w, P)

end.

Proposition 1 Let P = (X, C, B) be an NCSP. Let F be a partial consistency.
Consider the box B′ obtained by CID w.r.t. F , where VarCID splits intervals
on every included float. Consider the box B ′′ obtained by 3B w.r.t. F , where
VarShaving splits intervals on every included float. Then,

CID filtering is stronger than 3B filtering, i.e., B ′ is included in or equal to
B′′.

This theoretical property is based on the fact that, due to the hull operation
in VarCID, the whole box B can be reduced on several, possibly all, dimensions.
With VarShaving, the pruning effort can impact only xi, losing all the temporary
reductions obtained on the other variables by the different calls to F . 1

In the general case however, if no assumption is made on ws and s, 3B-
consistency and CID-consistency are not comparable. This has motivated the
design of the hybrid 3BCD operator decribed in Section 5. In practice, as shown
by experiments, the number of slices s in CID and the precision ws in 3B are
specified such that the number of calls to F in VarShaving is generally greater
to the number of calls to F in VarCID. In other words, on a given instance, the
adequate parameters for the CID operator leads to a small number of slices. Since
CID is often more efficient than 3B both in terms of running time and pruning
capacity (i.e., CID requires a smaller number of generated boxes to compute all
the solutions), this clearly shows that it is better to perform a rough work on a
given variable xi (e.g., setting s = 2 or s = 3) and performing the union of the
possible deductions than to perform a fine and more costly work on xi and to
forget the deductions on the other variables, as it is done by 3B.

4 Adaptive variants of CID

We have presented a CID(s,w) operator with two additional parameters : the
number of slices s and a fixed-point parameter w. Based on the feedback from
experiments, we wanted to design filtering operators with no additional param-
eter. This section introduces such adaptive variants of CID.

1 Note that optimized implementations of SAC reuse the domains obtained by subfil-
tering in subsequent calls to “VarShaving” [5].

4.1 Reaching a fixed-point is not fruitful

Although useful to compute the CID-consistency or 3B-consistency properties,
the fixed-point repeat loop does not pay off in practice (see Section 7). In other
words, running more than once LoopCID on all the variables is generally coun-
terproductive, even if the value of w is finely tuned. We will call CID(s) (or
CID(s,∞)) this simple variant of CID2.

We have first envisaged that measuring the pruning effect on a single variable
(with w) was not relevant. Let us remember that LoopCID is relaunched even if
only one variable interval is reduced more than w. Indeed, as opposed to 2B or
Box consistency, the CID-consistency and 3B-consistency are not incremental.
There is thus no reason to apply the same stop criterion as in propagation
algorithms (like 2B-consistency). That is why we have measured instead several
dimensions simultaneously, i.e., the size of the box (perimeter or volume): a new
LoopCID is run if the reduction of box size is sufficiently significant. Without
detailing, the corresponding experimental results (not reported here) provide
similar results as with the presented version, for CID as well as for 3B. (We have
also envisaged a second explanation that has led to another variant of CID whose
detailed description will appear in the extended version of this paper [15].)

This analysis has led us to forget the w parameter in CID, i.e., to use CID(s,∞).

4.2 Increasing the number of slices is fruitful

As shown by the experiments, for a given instance, increasing the number s of
slices often produces an additional pruning effect (clearly related to a smaller
number of splits) until the induced overhead does not pay off w.r.t. running time.
On the tested instances, small values for s (i.e., less than 8), often induce the
best performance. However, even if the best number of slices is small, we have
no idea of the specific value, so that the parameter s should be tuned.

As said above, another observation is that running the same LoopCID twice
is generally counterproductive. This could mean that there is a few interest of
performing a same VarCID (i.e., with the same number of slices) twice.

These two observations have led us to design a variant of CID(s,∞). In this
variant, the number s of splits is modified between two splits: it is alternatively
2, 4 or 6 : s = ((i modulo 3) + 1) × 2), where i indicates the ith call to LoopCID.
It appears that CID(2|4|6,∞) generally outperforms CID(sbest,∞) called with
the best number of slices (sbest), so that it seems not necessary in practice to
tune the parameter s (see Section 7.4).

4.3 Adaptive CID-based strategies: CID1 and CID246

The algorithms CID1 and CID246 are straightforward adaptations of the previous
ideas. They use a splitting strategy, CID filtering and an interval Newton to find
all the solutions of a numerical CSP. More precisely:

2 It also appears that running only once VarShaving on all the variables in 3B is
generally not so bad (see Section 7).

– The CID operator is CID(2,∞) in CID1, that is, VarCID performs only two
slices on every variable, and LoopCID is called only once between two bisec-
tions.
The CID operator is CID(2|4|6,∞) in CID246 where VarCID performs 2, 4
or 6 slices alternatively (see Section 4.2).

– The subfiltering operator F is Box or 2B with one fixed-point parameter
%w2B.

– Between two bisections, two operations are run in sequence:

1. a call to CID(2,∞) (or CID(2|4|6,∞)), that is, one call to LoopCID,
2. and finally, a call to an Interval Newton operator.

Different combinations have been tried. Experiments (not reported here) have
shown that the presented combination of operators is the best one, but it worth-
while noticing that several combinations are nearly as efficient as the chosen one.
In particular, mixing 2B and an interval Newton in the sub-filtering F (i.e., inside
CID filtering) produces interesting results as well, whereas such a combination
with 3B-consistency is couterproductive.

In the following, we denote by CID1(RR), CID246(RR) the algorithms de-
scribed above when they are called with a round-robin splitting strategy. We
denote by CID1(LI), CID246(LI) these algorithms when the next variable to be
split has the Largest Interval. CID1(CIDBis), CID246(CIDBis) refer to a new
bisection strategy based on CID filtering and described in Section 6.

5 The 3BCD filtering algorithm

As mentioned above, the 3B-consistency and CID filtering operators follow the
same scheme, so that several hybrid algorithms can be imagined. One of them
is presented below.

Until a stop criterion, related to a precision w, is fulfilled, 3BCD performs
two iterations. Constructive disjunction is first applied because it is not ex-
pensive (only s calls to subfiltering F per variable) and can filter on several
variables simultaneously (in the same VarCID operation). The second iteration
calls VarShaving on all the variables in order to perform left and right interval
reductions on every variable.

The following property has motivated the design of 3BCD.

Proposition 2 Let P = (X, C, B) be an NCSP obtained by a fixed-point 3BCD(s,w)
algorithm.

P is both 3B(w)-consistent and CID(s,w)-consistent.

The proof is straightforward if we assume than the algorithm returns Pold

and not P .
An alternative consists in calling VarCID and VarShaving in a unique For

loop. Experimental results, not reported in this paper, have shown that this
variant is less efficient, confirming thus that the CID principle produces a good
filtering at a lower cost.

Algorithm 3BCD (s: number of slices, w: stop criterion and shaving precision, in-out
P=(X,C, in-out B): an NCSP, F : subfiltering operator and its parameters)

repeat
Pold ← P

for every variable xi ∈ X do
VarCID (xi, s, P , F)

end
for every variable xi ∈ X do

VarShaving (xi, w, P , F)

end

until StopCriterion(w, P , Pold)

end.

More sophisticated variants could also be envisaged. An interesting hybridiza-
tion would be to perform constructive interval disjunction “during” a shaving
refutation. Unfortunately, the interval that is refuted by shaving and the com-
plementary interval have generally very different sizes, making the approach not
promising.

With 3BCD, the number of calls to F due to VarCID is in practice negligible
as compared to the number of calls to F due to VarShaving (i.e., necessary
to shave left and right bounds of intervals). Hence, 3BCD can be viewed as an
improved version of 3B-consistency where constructive disjunction produces
an additional pruning effect with a low overhead.

6 A new CID-based splitting strategy

There are three main splitting strategies (i.e., variable choice heuristics) used
for solving numerical CSPs. The simplest one follows a round-robin strategy
and loops on all the variables. Another heuristics selects the variable with the
largest interval. A third one, based on the smear function [8], selects a variable
xi implied in equations whose derivative w.r.t. xi is large.

The round-robin strategy ensures that all the variables are split in a branch
of the search tree. Indeed, as opposed to finite-domain CSPs, note that a vari-
able interval is generally split (i.e., instantiated) several times before finding a
solution (i.e., obtaining a small interval of width less than the precision). The
largest interval strategy also leads the solving process to not always select a
same variable as long as its domain size decreases. The strategy based on the
smear function sometimes splits always the same variables so that an interleaved
schema with round-robin, or a preconditionning phase, is sometimes necessary
to make it effective in practice.

We introduce in this section a new CID-based splitting strategy. Let us first
consider different box sizes related to (and learnt during) the VarCID procedure
applied to a given variable xi :

– Let OldBoxi be the box B just before the call to VarCID on xi. Let NewBoxi

be the box obtained after the call to VarCID on xi.
– Let Bl′

i and Br′

i be the left and right boxes computed in VarCID, after a
reduction by the F filtering operator, and before the Hull operation. Let
Bmax

i be the box with the maximal size among Bl′

i and Br′

i , and let Bmin
i

be the other box, i.e., the box with the smaller size.

The sizes of these boxes provide two interesting measures. A first ratio is

ratioCID= Size(NewBox)
Size(OldBox) . This ratio measures the pruning obtained by VarCID.

Although interesting in theory, this ratio only yields an indication concerning the
past, i.e., concerning the pruning effect we have obtained. However, it provides
no clear indication about the future (see [15]), so that we have not exploited
ratioCID.

The second measure leads to an “intelligent” splitting strategy. The ratio

ratioBis=
f(Size(Bl

′

i
),Size(Br

′

i
))

Size(NewBox) in a sense computes the size lost by the (box)

Hull operation of VarCID. In other words, Bl′

i and Br′

i represent precisely the
boxes one would obtain if one split the variable xi (instead of performing the
hull operation) immediatly after the call to VarCID; NewBox is the box obtained
by the Hull operation used by CID to avoid a combinatorial explosion due to a
choice point.

Thus, after a call to LoopCID, the CID principle allows us to learn about a
good variable interval to be split: one selects the variable having led to the lowest
ratioBis. This splitting strategy is called CIDBis (for CID-based Bisection).
Although not related to disjunctive construction, similar strategies have been
applied to finite-domain CSPs [3, 12].

In our experiments, we have chosen ratioBis=
Size(Bmax

i
)+0.1×Size(Bmin

i
)

Size(NewBox)) . In-

deed, solving a numerical CSP is NP-complete and, even in practice, the time
does generally not grow linearly with the size. Thus, in case of bisection, the
time is generally dominated by the time required for solving the largest sub-

tree among the two ones. Because of the 0.1 factor, we have
Size(Bmax

i
)

Size(NewBox)) ≤

ratioBis ≤ 1.1 ×
Size(Bmax

i
)

Size(NewBox) . This allows the splitting strategy to break ties

in case two variables have approximately the same maximum box size (i.e., when
the difference in size between both is less than 10%).

7 Experiments

We have performed a lot of comparisons and tests on a sample of 20 instances.
These tests have helped us to confirm several intuitions and to design efficient
variants of CID filtering.

7.1 Benchmarks and tuned parameters

Twenty benchmarks are briefly presented in this section. Five of them are sparse
systems found in [9]. They are challenging for general-purpose interval-based

techniques, but the algorithm IBB can efficiently exploit a preliminary decompo-
sition of the systems into small subsystems [9]. The other benchmarks have been
found in the Web page of the COPRIN research team or in the COCONUT Web
page where the reader can find more details about them [10]. All the selected
instances can be solved in an acceptable amount of time by a standard algorithm
in order to make possible comparisons between different variants. No selected
benchmark has been discarded for any other reason!

Name n #sols Ref. Precision Subflt. %w2B %w2B in CID ws w

BroydenTri 32 2 [10] 1e-08 2B 10% 10% 1e-02 1e-02

Hourglass 29 8 [9] 1e-08 2B 20% 5% 1e-02 1e-02

Tetra 30 256 [9] 1e-08 2B 5% 10% 1e-03 1e-03

Tangent 28 128 [9] 1e-08 2B 30% 50% 10 10

Reactors 20 38 [10] 1e-08 2B 10% 10% 1e-01 1

Trigexp1 30 1 [10] 1e-08 2B 20% 20% 1 1

Discrete25 27 1 [10] 1e-08 2B 0.1% 1% 1e-01 1e-01

I5 10 30 [10] 1e-08 2B 5% 5% 1e-03 1e-03

Transistor 12 1 [10] 1e-08 2B 10% 10% 1e-01 1

Ponts 30 128 [9] 1e-08 2B 10% 10% 10 10

Yamamura8 8 7 [10] 1e-08 Box+2B 1% 1% 1e-02 1e-02

Design 9 1 [10] 1e-08 2B 10% 10% 1e-01 1e-01

D1 12 16 [10] 1e-08 2B 10% 10% 1e-01 1

Mechanism 98 448 [9] 5e-06 2B 0.5% 1% 1e-01 1e-01

Kinematics1 6 16 [10] 1e-08 2B 10% 10% 1 10

Hayes 8 1 [10] 1e-08 2B 1% 50% 1e-02 1e-02

Eco9 8 16 [10] 1e-08 2B 20% 20% 1 1

Trigexp2 5 1 [10] 1e-08 2B 10% 10% 1 10

Bellido 9 8 [10] 1e-08 2B 10% 10% 1e-01 1e-01

Caprasse 4 18 [10] 1e-08 2B 5% 5% 1 10

Table 1. The tested benchmarks. n is the number of variables; #sols is the number
of solutions; Ref. indicates the reference in which the reader can get a more precise
description of the system; Precision is the size of interval under which a variable
interval is not split; Subflt. designs the filtering algorithm used in 3B or in CID;
%w2B is a user-defined parameter used by 2B or Box: a constraint is not pushed in
the propagation queue if the projection on its variables has reduced the corresponding
intervals less than %w2B (percentage of the interval width); %w2B in CID indicates the
same parameter when 2B or Box is used as subfiltering inside CID; ws is the width
parameter used in VarShaving while w is used to stop the outside loop. w is also used
by CID(s, w).

Note that CID filtering generally uses a smaller precision in subfiltering, i.e.,
a larger parameter %w2B, than 2B alone.

Although not reported in this paper, it appears that %w2B does not need to
be finely tuned in CID. For instance, setting %w2B to 10% always produces good
results.

7.2 Interval-based solver

All the tests have been performed on a Pentium IV 2.66 Ghz using the interval-
based library in C++ developed by the second author. This new solver provides the
main standard interval operators such as Box filtering, 2B-consistency filtering,
interval Newton [8]. The solver provides a round-robin, a largest-interval and a
CIDBis splitting strategies. Although recent and under developement, the library
seems competitive with up-to-date solvers like RealPaver [4]. The reader can
refer to [9] to have a first evaluation of it on several sparse equation systems.

The implementation of 3B-consistency filtering is rather sophisticated. It
uses splitting and interleaves refutation tests on floats and slices. In our imple-
mentation, we distinguish two precision parameters: ws used in VarShaving and
w used to interrupt the outside loop.

For all the presented solving techniques, including 3B and 3BCD, an interval
Newton is called just before a splitting operation iff the width of the largest
variable interval is less than 1e − 2.

Note that the parameter %w2B used in the subfiltering operator has been
finely tuned to offer the best performance for 2B/Box+Newton and CID.

7.3 Comparing CID and shaving

The main conclusions deduced from Table 2 are the following:

– The drastic reduction in the number of required bisections (often several
orders of magnitude) clearly underlines the filtering power of CID: Best CID
or 3BCD always obtains the lowest number of splits. 3B is rather competitive
with Best CID or 3BCD on only six benchmarks.

– 3BCD always outperforms 3B, except on Yamamura8, Trigexp2 and Caprasse.
In this case, the loss in running time is not significant.

– CID(2,w) is always worse than CID1(2,∞), except for Trigexp1 and D1.
This explains why we have removed the w fixed-point parameter in subse-
quent variants of CID.

– This phenomenon is generally true for 3BCD and sometimes also for 3B.

– Best CID outperforms almost all the other algorithms. Only 3B or 3BCD
are slightly better on BroydenTri and Trigexp1. Moreover, 2B+Newton
(see column 1) is slightly better on Bellido and Trigexp2, and better on
Caprasse. Note that these benchmarks, especially Trigexp2 and Caprasse,
have a very small number of variables. Thus, a non expensive filtering algo-
rithm is fruitful because there is no combinatorial explosion due to bisection.

– Impressive gains in running time are obtained by Best CID for the bench-
marks on the top of the table.

Note that the three algorithms behind Best CID have no additional param-
eter, as opposed to 3B with its ws (and/or w) parameter.

Name 2B/Box 3B(w) 3B(∞) 3BCD(w) 3BCD(∞) CID(2,w) CID1(2,∞) Best CID

BroydenTri 2910 0.14 0.14 0.15 0.14 6.67 0.39 0.26
2e+07 2 5 2 2 1102 168 42

Hourglass 29 5.3 4 1.71 1.09 0.81 0.54 0.44
81134 1684 1416 26 31 132 156 62

Tetra 433 129 83 30.3 20.5 19.2 14.3 12.4
9e+05 12352 11019 1362 1405 1728 2458 804

Tangent 43.1 81.6 81.8 13.8 24.6 34.4 32.5 3.47
2e+05 1e+05 1e+05 5506 10738 15955 15113 645

Reactors 131 60 50 34 30 27 23 9.3
7e+05 57896 47302 3250 3893 5090 7144 1361

Trigexp1 3.4 0.24 0.23 0.18 0.19 0.19 0.27 0.2
5025 1 1 1 2 1 20 7

Discrete25 6.5 3.76 4.28 2.92 3.68 3.95 1.9 0.98
1923 1 3 1 2 38 78 18

I5 708 616 454 597 427 399 251 142
3e+06 57900 59204 10795 14434 53633 97605 24541

Transistor 137 216 221 152 155 152 147 35
6e+05 3e+05 3e+05 48018 49011 62787 61019 6970

Ponts 11.4 11.1 9.51 5.38 4.14 4.33 3.7 2.75
23818 4315 4142 333 415 488 710 170

Yamamura8 13.2 12.32 10.68 16.78 12.22 22.88 17.27 5.27
1032 197 307 49 79 117 142 44

Design 444 994 896 665 591 455 434 234
3e+06 1e+06 1e+06 2e+06 2e+06 2e+05 2e+05 63454

D1 4.54 6.87 7.24 3.17 3.15 2.33 2.57 2.48
34888 19716 20623 1689 1626 1426 1624 682

Mechanism 111 390 333 227 227 195 187 83.9
24538 6819 6781 1811 2299 2647 3229 5386

Kinematics1 94 248 248 116 116 94 94 76
7e+05 7e+05 7e+05 9160 9160 9180 9180 4060

Hayes 155 191 197 141 151 126 126 124
3e+05 2e+05 2e+05 1e+05 1e+05 1e+05 1e+05 79780

Eco9 25.3 53.5 43.7 51.8 40.9 29.7 27.6 24.9
3e+05 70982 71833 19383 21043 22881 25195 24091

Bellido 92 239 194 214 169 143 126 98.6
7e+05 3e+05 3e+05 69678 78473 98137 1e+05 42724

Trigexp2 3.45 5.9 5.9 8.6 8.6 6.77 6.77 4.46
11428 11322 11322 5871 5871 3445 3445 2030

Caprasse 2.68 6.71 6.98 7.09 7.3 5.16 5.16 5.14
31196 21649 21525 8801 8701 9416 9416 9000

Table 2. First comparison between 2B, 3B, 3BCD and CID. The column 2B/Box

reports the results obtained by filtering with 2B or 2B+Box, followed by a call to an
interval Newton and a round-robin splitting. A similar combination is used with 3B or
3BCD in the following four columns. A parameter w =∞ means that only one LoopCID
(or “LoopShaving”) is called between two bisections in 3B, 3BCD or CID. Best CID

reports the best result obtained by CID1(CIDBis), CID246(CIDBis) or CID246(RR) (see
Table 4). Every cell contains two values: the CPU time in seconds to compute all the
solutions (top), and the number of required bisections (bottom). For every benchmark,
the best result is bold-faced.

Name CID(2,∞) CID(3,∞) CID(4,∞) CID(8,∞) CID(16,∞) CID(2|4|6, ∞) Sensitivity

BroydenTri 0.39 0.74 0.46 0.23 0.24 0.31 Yes
168 130 50 16 10 35

Hourglass 0.54 0.52 0.54 0.56 0.81 0.56 No
156 90 74 38 28 76

Tetra 14.3 13.1 14.7 22.2 34.7 14.7 No
2458 1492 1306 1122 1026 1336

Tangent 32.4 5.1 3.7 4.7 6.3 3.5 Very
15113 1333 653 485 357 645

Reactors 22.9 17.3 17.2 17.4 26.1 18.1 Yes
7144 3157 2127 1079 808 2311

Trigexp1 0.26 0.34 0.16 0.11 0.12 0.25 Yes
20 16 4 1 1 8

Discrete25 1.9 1.33 0.8 0.9 1.5 0.99 Yes
78 35 14 5 3 20

I5 250 177 148 142 174 141 Yes
97605 41905 25339 11805 7294 24541

Transistor 147 115 89 72 77 82 Yes
61019 28420 15838 6179 3312 15171

Ponts 3.73 3.22 3.21 4.35 6.54 3.04 Yes
710 364 304 270 266 304

Yamamura8 17.3 12.8 13.7 16.6 22 14.1 Yes
142 70 54 28 20 55

Design 435 340 317 310 412 297 Yes
229545 112742 77022 36502 24139 74244

D1 2.57 1.80 1.80 2.70 3.18 2.48 Yes
1624 672 484 298 190 682

Mechanism 186 171 184 181 194 181 No
3229 1993 2012 1323 986 1963

Kinematics1 94 95 90 100 122 85 Yes
9180 5837 4049 2246 1356 3965

Hayes 124 134 126 141 193 124 No
138310 108233 79609 47989 33848 79780

Eco9 27.6 26.2 27.3 35.8 55.8 28.5 No
25195 15781 12145 7995 6231 13133

Bellido 126 110 105 116 159 107 Yes
110713 61657 43908 24324 16922 45823

Trigexp2 6.9 7.5 6.7 7.9 6.7 8.9 No
3445 2760 1825 1023 446 2494

Caprasse 5.19 5.19 5.38 6.78 10.49 5.53 No
9416 6572 5300 3456 2704 5608

Table 3. Performance of CID1 with a round-robin splitting strategy and various num-
bers s of slices in CID filtering. CID246(RR) is CID246 with a round-robin splitting
strategy. The column Sensitivity indicates whether increasing the number of slices
has a positive impact on running time.

7.4 Playing with slices

The following conclusions can be drawn from Table 3.

– Playing with the number of slices in CID1 has a positive impact on 13 of the
20 instances. The impact on Tangent is significant.

– The “optimal” number of slices is generally small, typically 3 or 4. Selecting
s = 8 is better for BroydenTri, Trigexp1 and Transistor.

– CID246 is a judicious variant of CID1. Its running time is rarely far from the
time of CID1 with the optimal s. Its running time is even sometimes better
than the time of CID1 with the optimal s (6 instances among 20).

7.5 Comparison between splitting strategies

Table 4 applies the three available splitting strategies to CID1 and CID246. We
underline some observations.

– CID1(RR) never produces the best running CPU time (except for Hayes

although CID1(CIDBis) turns out to be as efficient as it).
– CID246 is better than CID1 on 15 on 20 instances. Tangent and Mechanism

have opposite behaviors.
– The new CIDBis splitting is better than the other strategies on 12 of the

20 instances. The largest interval strategy is the best on 4 instances. The
round-robin strategy is the best on 4 instances.

– On the 8 instances for which CIDBis is not the best strategy, the loss in
performance is significant on 4 of them: BroydenTri, Tangent, I5 and Hayes.

– CID1 is sometimes very bad with the largest interval strategy (see Tangent

and Hayes).

8 Conclusion

This paper has introduced a new filtering operator based on the constructive
disjunction principle exploited in combinatorial problems. This operator also
opens the door to a new splitting strategy, called CIDBis learning from the
work of CID filtering. The first experimental results are very promising and we
believe that CID1 or a variant has the potential to become a standard operator
in interval constraint solvers. Note that the number of additional user-defined
parameters is null. More precisely, we can consider that this paper has brought a
new “metaCID” operator with two possible CID-based filtering (CID1 or CID246)
and an additional splitting strategy (CIDBis). The %w2B parameter used in CID
subfiltering can be arbitrarily set to 10% with no significant loss in performance.

Bisection is a combinatorial way to make an assumption about the variable
values. On the opposite, constructive interval disjunction, like 3B-consistency,
can be viewed as a polynomial way to do it. This explains the fine analysis
that should be performed about CID filtering and about a relevant splitting
strategy. Thus, a future work is to better exploit the result of a VarCID operation.

Filtering 2B/Box 3B CID1 CID246 CID1 CID246 CID1 CID246

Splitting RR RR RR RR Largest I. Largest I. CID based CID based

BroydenTri 2910 0.14 0.39 0.31 7.06 0.18 9.34 0.26
2e+07 2 168 35 3120 31 4305 42

Hourglass 29 4 0.54 0.56 2.69 0.52 0.79 0.44
81134 1416 156 76 888 56 270 62

Tetra 433 83 14.3 14.7 51.3 25.7 17.85 12.42
9e+05 11019 2458 1336 10564 2008 3406 804

Tangent 43.1 81.6 32.4 3.5 2388 22 329 15.2
2e+05 1e+05 15113 645 1.5e+06 4840 207430 3148

Reactors 131 50 23 18 14.9 12.3 17 9.3
7e+05 47302 7144 2311 5413 1793 6183 1361

Trigexp1 3.4 0.23 0.26 0.25 0.21 0.22 0.27 0.20
5025 1 20 8 13 6 23 7

Discrete25 6.5 3.76 1.9 0.99 1.22 1.52 1.55 0.98
1923 1 78 20 37 21 58 18

I5 708 454 250 141 742 416 389 245
3e+06 59204 97605 24541 297843 78527 156399 46389

Transistor 137 216 147 82 91 33 61 35
6e+05 3e+05 62787 15171 41755 6895 27886 6970

Ponts 11.4 9.51 3.73 3.04 7.69 5.48 3.53 2.75
23818 4142 710 304 1852 520 652 170

Yamamura8 13.2 10.68 17.3 14.1 4.88 6.91 5.27 8.03
1032 307 142 55 39 24 44 27

Design 444 896 435 297 809 337 454 234
3e+06 1e+06 229545 74244 425011 94924 244930 63454

D1 4.54 6.87 2.57 2.48 3.97 2.87 3.48 2.52
34888 19716 1624 682 2424 728 2110 626

Mechanism 111 333 186 181 81 152 84 157
24538 6781 3229 1963 4406 1011 5386 1340

Kinematics1 94 248 94 85 96 79 91 76
69398 69034 9180 3965 9454 4127 8958 4060

Hayes 155 191 124 124 1198 567 554 501
3e+05 2e+05 138310 79780 949034 285626 420747 252542

Eco9 25.3 43.7 27.6 28.5 29.3 31.1 24.9 28.4
3e+05 71833 25195 13133 28185 15298 24091 13870

Bellido 92 194 126 107 110 103 103.7 98.6
7e+05 3e+05 110713 45823 94957 43082 91484 42724

Trigexp2 3.45 5.87 6.77 8.92 5.41 5.74 4.46 4.96
11428 11322 3445 2494 2345 1399 2030 1342

Caprasse 2.68 6.71 5.19 5.53 5.47 5.93 5.14 5.40
31196 21649 9416 5608 9120 5300 9000 5400

Table 4. Comparison between CID1 and CID246 with three splitting strategies: round-
robin (RR), largest interval (LI) and the new CID-based strategy (CIDBis).

According to the CID pruning obtained on a given variable xi, when should we
filter again xi (with CID)? Is xi a good candidate for the next bisection? A first
tool, based on a variant of CID, called ACID, is presented in the extended paper
to investigate these questions [15].

A near-term future work is of course to use CID techniques to solve challeng-
ing benchmarks.

Acknowledgements

Special thanks to Olivier Lhomme for useful comments on the paper. Also thanks
to the anonymous reviewers.

References

1. R. Barták and R. Erben. A new Algorithm for Singleton Arc Consistency. Proc.
FLAIRS’04. 2004.

2. C. Bessière and Debruyne R. Optimal and Suboptimal Singleton Arc Consistency
Algorithms. Proc. IJCAI’05. pages 54–59, 2005.

3. P.A. Geelen. Dual Viewpoint Heuristics for Binary Constraint Satisfaction Prob-
lems. In Proc. ECAI’92, pages 31–35, 1992.

4. L. Granvilliers. Realpaver: An interval solver using constraint satisfaction tech-
niques. ACM Transactions on Mathematical Software, , Accepted for publication.

5. C. Lecoutre and S. Cardon. A Greedy Approach to Establish Singleton Arc Con-
sistency. In Proc. of IJCAI’05, pages 199–204, 2005.

6. O. Lhomme. Consistency Tech. for Numeric CSPs. In IJCAI, pages 232–238, 1993.
7. O. Lhomme. Quick Shaving. pages 411–415, 2005.
8. A. Neumaier. Interval Methods for Systems of Equations. Cambridge University

Press, 1990.
9. B. Neveu, G. Chabert, and G. Trombettoni. When Interval Analysis helps In-

terblock Backtracking. In Proc. CP’06, LNCS 4204, pages 390–405, 2006.
10. Web page of COPRIN: www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html

COCONUT benchs: www.mat.univie.ac.at/ neum/glopt/coconut/Benchmark/Benchmark.html.
11. Debruyne R. and C. Bessière. Some Practicable Filtering Techniques for the Con-

straint Satisfaction Problem. Proc. IJCAI’97. pages 412–417, 1997.
12. P. Refalo. Impact-Based Search Strategies for Constraint Programming. In Proc.

CP’04, LNCS 3258, pages 557–571, 2004.
13. J.C. Régin. A Filtering Algorithm for Constraints of Difference in CSPs. Proc.

AAAI’94. pages 362–367, 1994.
14. H. Simonis. Sudoku as a Constraint Problem. In CP Workshop on Modeling and

Reformulating Constraint Satisfaction Problems. pages 13–27, 2005.
15. G. Trombettoni and G. Chabert. Constructive Interval Disjunction. Technical

report, INRIA, 2006. Extended version of this paper, in preparation.
16. P. Van Hentenryck, L. Michel, and Y. Deville. Numerica : A Modeling Language

for Global Optimization. MIT Press, 1997.
17. P. Van Hentenryck, V. Saraswat, and Deville Y. Design, Implementation, and Eval-

uation of the Constraint Language CC(FD). J. Logic Programming, 37(1–3):139–
164, 1994.

