New Light on Arc-Consistency over Continuous
Domains

Gilles Chabert, Gilles Trombettoni and Bertrand Neveu

PROJET COPRIN I3S-INRIA-CERTIS, 2004 route des Lucioles BP 93
06902 Sophia Antipolis Cedex, FRANCE

{chabert, trombe, neveul}@sophia.inria.fr

Abstract. Hyvonen [5] and Faltings [4] observed that propagation al-
gorithms with continuous variables are computationally extremely inef-
ficient when unions of intervals are used to precisely store refinements of
domains.

These algorithms were designed in the hope of obtaining the interesting
property of arc-consistency, that guarantees every value in domains to
be consistent w.r.t. every constraint.

In this paper, we show that a pure backtrack-free filtering algorithm
enforcing arc-consistency will never exist. But surprisingly, we show that
it is easy to obtain a property stronger than arc-consistency with a few
steps of bisection.

We define this so-called boz-set consistency and detail an efficient algo-
rithm to enforce it.

1 Introduction

Solving systems of nonlinear equations over the reals with interval constraint
programming usually resorts to a combination of local filtering, interval analysis
and domain splitting.

Local filtering techniques are based on an interval narrowing operator, called
projection, that computes compatible values for different variables linked by a
constraint. Sometimes, the projection results in a union of intervals: for instance
with the constraint 2 = v, if y varies within [1, 4] then the domain of variation
for = obtained by projection is either [-2,—1] or [1, 2].

In this case, the hull consistency algorithm [1] (also known as 2B consistency
[6]) computes the enclosing interval of the union immediately, therefore losing
track of each “gap” between intervals. Another approach, inspired by the well-
known arc-consistency, would be to store and propagate unions of intervals.

Arc-consistency has never been applied successfully. We explain with an ex-
ample that this failure is not due to bad algorithmic choices, but to a property
inherent to continuous CSPs.

Yet, we show that it is possible in a solving strategy that includes a specific
splitting technique, called natural splitting, to obtain boxes that verify not only
arc consistency but another property called boz-continuity. The lazy version of
this new algorithm causes no time overhead in practice and gives promises.

The paper is organized as follows. In section 2, we sum up the concepts of con-
straint programming over the reals. In section 3, we explain why arc-consistency
cannot be achieved. We define a stronger consistency and show related proper-
ties. In section 4, an algorithm that enforces this consistency is given.

2 Background

2.1 Constraint Reasoning over the Reals

A numerical constraint satisfaction problem (NCSP) is a 3-uple (C,V,B).
C is a set of constraints c¢i, ..., ¢, (equations or inequations) relating a set V
of variables z1,...,2,. Each variable is given an initial domain of real values
D,,,..,D,,, and the problem is to find all the n-tuples of values (v1,...,v,),
v; € Dy, (1 <4 < n), such that constraints are all satisfied when simultaneously
each variable z; is assigned to v;. Such a n-tuple is called a solution. Usually,
domains are represented by intervals and a box designates a cartesian product of
domains. B = D, x...x D,_ is the initial box of the problem. In this paper, we
will resort also to a more complex representation of domains, where a variable
domain is assigned a union of intervals. In this case, the cartesian product B of
domains will be called a h-box (a box with “gaps”).

We will use intensively a relation of problem inclusion. Let us define it once
and for all.

Definition 1 (Sub-NCSP). Let P = (C,V,B) and P' = (C',V',B') be two
NCSP. P is included in P' iff C =C', V =V’ and B C B’

In practice, NCSP are large nonlinear problems that are intractable by sym-
bolic solving techniques. Traditional numerical methods do not suit either be-
cause we are looking for all the solutions. Solving can be achieved by combining
local filtering, domain splitting, and interval analysis.

Local filtering techniques refine domains of variables thanks to partial prop-
erties of the problem, that is, properties which hold on subproblems. These
techniques converge in polynomial time, and the resulting box (or h-box) is said
to be locally consistent.

The general scheme for finding solutions consists in a search tree, where local
filtering is enforced at each node. Once local consistency is reached, the domain
of one variable is chosen and split in two sub-domains, which leads to two sub-
nodes in the tree.

A major approach for local filtering is the well-known hull consistency, ob-
tained by a Waltz-like propagation algorithm [9]. The algorithm is detailed fur-
ther. Here are the underlying concepts :

- Projection: Refine the domain of a variable z with respect to a specific con-
straint ¢, using interval arithmetics [8].

- Propagation: Propagate reductions over the other variables linked to z by
another constraint c’.

2.2 Projections

Let ¢ be a binary constraint relating variables z and y. We denote IT¢ the
projection ' of ¢ over x, a function that takes an h-box B = D, X ... x D, x
.. X Dy x ... x D, as input and computes all possible values for z in D, as y
varies within D,. Formally, if D’ is the result of IT{ applied on B, we have:
D, ={veD,|3dwe D, c(v,w)issatisfied}. This definition can be easily
generalized to k-ary constraints:

Definition 2 (Projection). Let ¢ be a constraint relating variables z,y1, ..., Y.
We call projection of ¢ over x the following function:
It : B—{veDy|3(v1,...,) € Dy, X ... x Dy, ¢(v,01,...,0) is satisfied}

Example 1. c:x4+y=1=z2

II{ :D, x Dy x D, — (D,5 D,)N D,

where & is the natural extension of the arithmetic operator minus. Note that
computing this projection requires also an intersection with D,.

Basically, the projection of a constraint f(y,z1,...,Zn) = 0 over y requires to
find an implicit function ¢ such that f(y,z1,....,z,) =0 & y = ¢(z1, ..., Tpn).

Sometimes, there is not a unique implicit function but several continuous
functions (¢1, ¢2, ...), then we talk about disjunction and in this case II; gives a
union of intervals:

Ezample 2. c: 22 =y
IT¢ applied on D, x Dy with D, = [-2,2] and D, = [1,4] gives the union
Dlz = [_27_1]U[17 2]

The set of values returned by a projection may be either an interval (exam-
ple 1) or a union of intervals (example 2). To place our discussion in the most
general case, we consider hereinafter that a projection returns a set U of dis-
joint intervals, that we will call abusively a union, and write |U| the number of
intervals contained in U 2.

2.3 Propagation

Modifying (or revising) the domain of a variable may have repercussions on the
other variables. Propagate means to memorize in a queue (or an agenda) all the
pairs < ¢,x > of constraint/variable such that the projection of ¢ over z can
be effective. When the queue is empty, we are sure that no more reduction is
possible and that we have reached a fix point.

! Also called Solution function [5].

2 Unions of disjoint intervals could be defined algebraically with their operators and
their arithmetic. But their use is rather intuitive, so we will not give such a formalism
here. Sometimes we just substitute unions for intervals, to avoid to overwhelm this
paper with definitions.

In this paper, we will refer to a procedure Propagate (NCSP (C,V, B), in-out
Queue (), Constraint ¢, Variable z), that updates the propagation queue
Q after a projection of ¢ over x.

If revising a domain consists in applying the projection operator IT defined
above, the resulting NCSP is arc-consistent:

Definition 3 (Arc-Consistency). Let P = (C,V,B = D,, x ... x D) be a
NCSP.
P is arc consistent iff V< c,x >€ C x V with related by ¢, D, = IIS(B)

Remark 1. In this paper, we will talk about the arc-consistency of a boz (or an
h-bozx) B to designate the arc-consistency of the problem (C,V, B) with the set
C and V given by the context.

We will see in section 3.1 that arc-consistency is not feasible with continu-
ous variables, so usually the revising operation is not the projection itself, but
an outer approximation. Computations are all interval-based and this operator
avoids to manage unions. The resulting problem is hull-consistent:

Definition 4 (Hull-Consistency). Let P = (C,V,B = D,, x ...x D,) be a
NCSP.
P is hull consistent iff ¥V < ¢,x >€ C x V with x related by ¢, D, = OIIS(B)

The symbol O stands for the hull operation. Example: [I{[0, 1], [2, 3]} = [0, 3].

Propagation, arc-consistency, and hull consistency are extensively covered
in literature, see [2] for example. To summarize, here is a generic algorithm
HC_Filtering of hull consistency filtering.

Procedure 1 HC_Filtering(NCSP (C,V, B))

var Q : Queue
for all pairs < ¢,z > in C x V do
if z is related by ¢ then
add < ¢,z > in Q
while @ is not empty do
pop a pair < ¢,z > from Q
D!, — O II5(B)
if D), C D, then
Propagate((C, V; B), @, ¢, @)
D, «— D, // Dy is the domain of z in B

This algorithm originates from Waltz [9] and was applied first over finite
domain constraints under the acronym AC3 [7] to obtain arc-consistency. With
intervals, HC3 [3] introduces a decomposition of the system into primitive con-
straints ® for which projections can be computed, and HC4 [2] is an upgraded

3 A primitive constraint is a basic mathematical relation (such as z =z +y or y =
cos(z)) for which projections are known. A system of standard equations can always
be decomposed into an equivalent system of primitive constraints.

version of HC3 that produces the same result sparing decomposition. Both enforce
hull-consistency.

3 A stronger property than arc-consistency

In this section, we introduce a new kind of consistency, on a theoretical point
of view. The rest of the paper will be devoted to the way it can be enforced.
Contrary to arc-consistency, it can be obtained in reasonable time and even
more, in some cases, provide improvements compared to the classical approach
just given above.

3.1 Arc-Consistency

First of all, let us rule out an ambiguity. Talking about the arc-consistency of
a problem may have two different meanings, depending on the context. We may
refer to the property, which can be either true or false. But we may talk also
about the largest arc-consistent subproblem. In the latter case, we will use the
following definition:

Definition 5 (AC Part). The AC part of a NCSP is the mazimal arc-consistent
sub-NCSP, for the order relation of inclusion (see definition 1).

Ezample 3. Let P = ({z = y},{z,y}, D x D) be a NCSP with D, = [-1,1]
and Dy = [0,2]

In the AC part of P, domains become [0, 1] x [0, 1]. Indeed, any arc-consistent
sub-NCSP of P has an h-box with intervals [o, 3], 0 < @ < 8 < 1, and the
(unique) maximal element of these h-boxes is [0,1] x [0, 1].

We show below that even with very simple constraints, the AC part of a
problem may have a non-representable domain, as an infinity of intervals. Hence,
arc-consistency filtering is not applicable over continuous domains, whatever the
underlying algorithm is.

We are going to illustrate our claim on the following system of 2 equations:

Ezample 4. Let P = ({c1,c2}, {z,y}, B) be the following NC'SP:
B=D,xD,=11,9] x[1,9]

(a): (Gl@-5))Y=y

(c2): y==

Lemma 1. In the AC part of P, domains of x and y are an infinity of disjoint
non-empty intervals.

Necessary condition Let f; and f> be the following (real-valued) functions:
firy— %\/@ +5

fary — 53y

Let F; (resp. Fy) be the “optimal” extensions to intervals * of f; (resp. fa),
&, (resp. P5) the extension to unions of intervals associated to F; (resp. Fb).
Finally, let @ be the function such that #(U) = &1(U) U &5(U).

Consider an algorithm that, in turn, computes the following operations:
D, — &(D,) et D, — D,. We omit intersections with domains on purpose, and
this is why, a priori, we do not call these operations projections . Let us denote
X, (resp. Y,,) the domain of x (resp. y) after the n*" execution of D, « &(D,)
(resp. Dy «— D). X and Yp are initial domains.

The figures below depict the first steps of propagation. The h-boxes shown
are successively Xg X Yy, X1 X Yy, X1 x Y7 and X» x Y5.

i

=
i
=

]

P
“\j&@

0

Fig. 1. First steps of AC filtering

As we see, the size of unions grows exponentially. Let us show some properties
of this algorithm.

4 F is optimal iff for any interval I, F(I) = Of(I)

Property 1. Yn > 1, X, C X,,—1 and Y,, C Y,,_1. In other words, the result of
each operation is included in the current domain of the variable.

Proof. By induction. We can check by hand that X; C Xy and Y; C Y. Assume
Xn C Xn_1:

X, CXno1 = Yo11 CY, = &(Y,y1) C &(Y,) because interval arithmetic is
inclusion monotonic, and then X,,;1 C X,,. A

Property 2. The number of intervals doubles at each step (Vn | X,| = 2% |Xp—1]),
and more precisely, each interval is split into two disjoint intervals.

Proof. Assume that X,, and Y,, contain p disjoint intervals whose bounds are
between 1 and 9. As functions f; and f» are monotonous on [1,9], $;(Y,,) and
&5(Y,,) will contain both p disjoint intervals . Still with inclusion monotonicity
of interval arithmetic, since Fi([1,9]) N F>([1,9]) = 0, the 2 x p intervals obtained
will be all disjoint and then |Y,11| = | Xnt1] = [®(Yn)] = 2 X p.

Moreover, (Xy) = #([1,9]) C [1,9] and thanks to the property 1, we can check
that intervals of X, 41 and Y,,41 are included in [1,9]. A

Property 8. Bounds of intervals are always maintained in domains. That is to
say, if [a,b] is an interval of X,, ¢, then Vp > n, a and b are interval bounds of
X,.
Proof. First of all, since fi and f» are monotonous, for any interval I, bounds
of Fi(I) and F>(I) take support on bounds of I. Now, the property is shown by
induction: First, bounds 1 and 9 for x and y are always maintained because:

- (x=9, y=9) is a solution of the problem

- x=1 cannot be removed by computing X « &(Y) since y=9 is a support.

- y=1 cannot be removed by computing ¥ «— X since x=1 is a support.

If we assume now that the bounds of all the intervals in the representation of
X, are maintained for all p > n, then bounds of X,,;; will also be maintained
for all p > n + 1 since they take support on bounds of Y,,, i.e. X,,, and they are
included in X,, (property 1). A

Now, property 1 allows us to say that adding an intersection with domains
at each step has no effect. Therefore, this algorithm computes successively pro-
jections over z and over y:

(D, — II%/(B)) — (D, — II2*(B)) — (D, — I2(B)) — ...

Property 2 leads immediately to the following fact : The number of intervals
in X,, tends to infinity, and even if the size of intervals may tend to zero, each
interval contains necessarily one non-removable point (property 3), so we are
dealing with an infinity of non-empty disjoint intervals. The AC part of the
problem is contained in the result of this algorithm after an infinity of iterations.
In a nutshell :

5 Fy and F; are optimal

5 We cannot carry on regardless of a bit of rigor here. By saying that [a, b] is an interval
of Xn, we mean that [a, b] is an element of an union seen as a set of disjoint intervals.
So we consider [a,b] € Xn, and not only [a,b] C X,

In the AC part of P, domains are included in an infinity of non-empty disjoint
intervals.

Sufficient condition Consider the following numerical series :
Ug = 9
Up = f2 (unfl)
We prove easily that u, — % when n — +o00. This convergent series is
represented on the following picture :

Let A be the set {un,n € N} U{2}. Clearly, the h-box X x Y = A x A is
arc-consistent since each point u, has a support for both constraints. This h-box
being included in the initial box [1,9] x [1,9] of P, then by definition, the AC
part of P contains necessarily this h-boz.

Now, it suffices to observe that for all n, u, is exactly a bound of an interval
of X,, (a bound “discovered” at the n** step of the algorithm above). Proof is
similar to property 2: It comes from the monotonicity of f; and fs, and from
the fact that Fi([1,9]) N Fx([1,9]) = 0.

Conclusion We have shown that in the AC part of P, the domain (either for
z or for y) includes a set of points w,, (sufficient condition), these points being
separated by “gaps” because they are bounds of disjoint intervals (necessary
condition). These gaps are inconsistent values that do not belong to the AC
part of P. So we have proven the lemma, 1.

Remark : In the AC part of P, intervals can be punctual.

3.2 Box-Set Consistency

We have seen that arc-consistency cannot be achieved over continuous domains.
We formally present in this section a stronger consistency that can be achieved.

Let us go back to the example of the previous section, at any step. Let I be
an interval of D, which contains none of the 2 solutions. If we build a box with
I and any interval of the current domain D,, it is not arc-consistent and does
not contain any arc-consistent sub-box (see definition 3 and remark 1).

Actually, there are exactly 2 arc-consistent sub-boxes in this example, which
are zero-sized boxes around the solutions.

Let us generalize. The following figure depicts a system of 3 variables pair-
wisely linked by binary constraints. Domains have several intervals, and an arrow
between two intervals I and J means that every value of I has a compatible value
in J and conversely.

X X1 / IXZ N .
Y Y1 /{ Y2

|
z &L \ 122 \\\\‘23\

We see that the h-box (X; UX>2) x (Y1 UY3) X (Z1 U Zy U Z3) is arc-consistent.
But there are only two arc-consistent sub-boxes composed with these intervals,
which are Xo X Y5 X Z5 and X5 X Y5 X Z3.

The box X; x Y7 X Z; is not arc-consistent because X; and Z; are not linked.
Actually, X1, Y7 and Z; do not belong to any arc-consistent sub-box, and they
can be removed from the domains.

In this paper, we present algorithms that find the maximal arc-consistent
sub-boxes of a problem.

Definition 6 (Box-set Consistency). Let P = (C,V,B) be a NCSP. The
boz-set consistency of P is the set {B'} of mazimal bozes such that (C,V,B') is
an arc-consistent sub-NCSP of P.

We can either use each of these boxes as a choice point in the original system
P (and therefore carry on with splitting), or collect these boxes to get one h-box,
which would be X3 x Y3 x (Z3 U Z3) in this example.

Box-set consistency is stronger than arc-consistency as the following example
illustrates:

Ezample 5. D, =D, =D, =[-2,2] D, =[1,4]

Constraints are 22 = w, z =y, y = z and & = —2.

Arc-consistency is achieved with the following domains :
D,=D,=D,=[-2,-1U[1,2], D, =[1,4]

And box-set consistency discards the whole box (in the domain of z, neither
[—2,—1] or [1,2] belong to an arc-consistent sub-box).

But it is weaker than global solving. It suffices to consider this NCSP:

Ezample 6. D, =[0,2] D, =10,2] D,=]0,2]

Constraints are x =y, z + 2z =2 and y = z.

As the initial box is already arc-consistent, it is box-set consistent. But the real
solution is {(1,1,1)}.

3.3 Remark

Box-set consistency can be defined in another fashion. We can characterize arc-
consistent boxes as solutions of a problem over the intervals, i.e. a problem where
variables take interval values instead of real values. In this way, Z; (in the figure
above) would not belong to a solution, and could be discarded as an inconsistent
“value”. To introduce the definition of this induced problem over the intervals,
let us start with a single constraint:

Definition 7 (Arc-Extension of a constraint). I represents the set of inter-
vals.

Let c(z,y) be a constraint relating variables and y. We call arc-extension of ¢
and denote arc(c) the relation defined on I x 1 such that:

Ve e X, JyeY |c(z,vy)
arc(c)(X,Y) < {Vy €Y, 3z € X | c(z,y) (1)
In a nutshell, arc(c)(X,Y) states that c is arc-consistent. The definition of
arc-extension for n-ary constraints is straightforward.
Now the arc-extension of a NCSP is simply defined as follows:

Definition 8 (Arc-Extension of a NCSP). Let P be o NCSP with m con-
straints cy, ..., ¢, Telating n variables xy, ..., T, in an initial box Dy, X ... X D, .
The arc-extension of P is the set of

— n variables Xy, ..., X, with X; € 1
— m constraints arc(cy), ..., arc(cy,)
— Initial domains : Vi (1 <i<n) X, C Dy,

The solutions of this problem are the maximal arc-consistent boxes.

3.4 Number of boxes of a box-set consistent problem

[5] has shown that the number of intervals for a given variable v in a box-set
consistent problem is bounded by ((p — 1) x a) + 1) = O(p X a), where p is the
maximum number of intervals obtained by one projection, and «a is the arity of
the variable, that is the number of constraints in which v appears. This leads
to a total number of boxes of a box-set consistent problem that is bounded by
(p X a)™. In Hyvonen’s terminology, this number bounds the size of the global
application space.

This result holds on problems with only primitive constraints, and without
multiple occurrences of a variable in a same constraint.

The result can easily be extended to problems with any type of constraints by
considering, instead of n, the number n’ of variables in the decomposed system.

On the contrary, the result seems difficult to hold in the general case. In-
deed, the box-set consistency of a problem where the variables with multiple
occurrences are renamed does not imply the box-set consistency of the (initial)
problem, and we have not found straightforward bounds.

4 The natural splitting algorithm

In this section, we show an algorithm that enforces box-set consistency. This
algorithm is based on a strategy of bisection called natural splitting. Two versions
are presented. Both resort to a projection operator that computes unions, but
the second version uses this operator only once per box whereas in the first
version it is embedded in a propagation loop.

4.1 The key idea

Let us go back to the algorithm of hull-consistency filtering HC_Filtering (see
2.3), and assume that this procedure has been applied on a box B. If for every
variable the latest projection has produced only one interval, we will show that
B is arc-consistent. If one of the last projections produced at least 2 intervals, the
idea is to split the domain of this variable into these 2 intervals. This bisection
is called natural splitting, to contrast with the semantic-less midpoint splitting.

We hope in this way that such a disjunction will not occur anymore on both
sub-boxes. We apply the same process on each of the sub-boxes : hull filtering
and natural splitting, until we obtain a fix point.

To distinguish constraints whose projections produce 1 interval from those
that produce several intervals, we use the term boz-continuity. We begin by
introducing this notion and give the algorithm afterwards.

4.2 Box-Continuity

Box-continuity is the key property of our approach. We will say that a constraint
¢ is boz-continuous on a given box when projections of ¢ do not create gaps, i.e.
when the result set of a projection of ¢ over whatever variable contains a single
interval. Formally:

Definition 9 (Box-Continuity). Let ¢ be a constraint relating variables xy, ..., Ty,
B a boz.
c is boz-continuous on B <= Vi (1 <i < k) |II; (B)| = 1.

Box-continuity is not related to the “classical” mathematical definition of
continuity for the functions involved in the constraint : for instance, the function
fi: (z,y) — 2? —y is continuous on B = D, x D, = [-2,2] x [1,4] whereas
1 : fi(z,y) = 0 is not box-continuous since IT,(c1)(B) = {[-2,-1],[1, 2]}.

Conversely, f2 : (z,y) — I(x — y), where I(z) is the integer part of z, is
not continuous on D = D, x D, = [—-2,2] x [—2,2] whereas ¢z : fa(z,y) =0 is
box-continuous since II,(c2)(B) = I (¢c2)(B) = {[-2,2]}

4.3 First version

To perform natural splitting, we need to know where are the gaps produced by
the last projections of HC_Filtering. One way to retrieve this information im-
mediately is to modify HC_Filtering to allow union labeling. When the domain

of a variable is revised, instead of computing the hull of the projection imme-
diately, we can keep a union and computes the hull only when this domain is
used as a parameter of another projection. Without changing anything to the
algorithm, this trick provides a way to detect box-continuity very easily. Indeed,
once hull-consistency is achieved, if the domain of every variable is a single in-
terval, it means that the latest projection performed over any variable resulted
in a unique interval, i.e. that all the constraints are box-continuous (on the box).

The following procedure is the first version of our algorithm. It applies the
“union” variant of HC_Filtering, and split the box as long as a domain in the
box contains a gap:

Procedure 2 Naive_BoxSet(NCSP (C,V, B), in-out solutions)

2: for all pairs < ¢,z > in C x V do

if z is related by c then
4: add < c,z > in Q

while @ is not empty do

6: pop a pair < ¢,z > from Q

D, — (0D, x ... xOD,,)
8 if (OD, c OD,) then

Propagate((C, V’ B)7 Qa Cy .76)

10: Dy — D;

12: if (exists a variable z; with |Ds;| > 1) then
for j =1 to |Ds,| do

14: B — 0Dz, X ... xODy,_, x Di. x OD;,,, x..0D,,
Naive_BoxSet((C,V, B), solutions)
16: else
if (B is not empty) then
18: add B to solutions

Lines 2-10 are the union variant of HC_Filtering. Lines 12-15 perform nat-
ural splitting.

4.4 Properties

Consider, in the execution of Naive_BoxSet, the point where the box B is added
to solutions, i.e. at line 18. If we have reached this point, it means that no gap
could be found in B, or in other words, that every constraint is box-continuous
on B. But B is also hull-consistent so the following proposition applies to B:

Proposition 1. If every constraint is box-continuous on a box B then:
B is hull-consistent <= B is arc-consistent

Proof. Once the fix point of a hull consistency filtering is reached, we have
for every pair < ¢,z > of constraint/variable: D, = OII$(B). As ¢ is box-

continuous, OITS(B) = II5(B) and then D, = IT¢(B), which means that the
domain of x is arc-consistent regarding c¢. The converse relation is obvious. A

Hence, B is an arc-consistent box. As a rule of thumb: Hull consistency and
Natural Splitting gives the box-set consistency of the problem.

4.5 Lazy version

In practice, managing unions in HC_Filtering is highly inefficient. Moreover,
results of projections are computed all along the propagation loop although
we are interested only by the last ones. Imagine now that we got a way to
check quickly whether a constraint is box-continuous or not. We could apply
HC_Filtering as it is (without unions), and once the fix point is reached check
the constraints one after the other until we find a constraint ¢ that is not box-
continuous. If one is found, there is at least one variable = involved in ¢ for which
we can exhibit a gap inside the domain. So we compute an exact projection this
time to disclose the gap, and finally use it as a candidate for splitting.

So, our solving strategy now is simply a combination of three steps: hull-
consistency filtering, gap search, and natural splitting:

Procedure 3 Lazy_BoxSet(NCSP (C,V, B), in-out solutions)
2: HC_Filtering((C, V, B))

4: if B is empty then

return
6: C' —C

found < false

8: while (not found) and (C’ # 0) do

pop ¢ from C’
10: if c is not box-continuous then

V' « the set of variables in V related by c

12: while (not found) and (V' # 0) do
pop z from V'

14: U — I15(B)
if |U| > 1 then

16: found « true

18: if found then
for all intervals I in U do
20: Dy +— 1
Lazy BoxSet((C, V, B), solutions)
22: else
add B to solutions

Line 2 in Lazy_BoxSet enforces a hull consistency filtering. In lines 6 to 16,
we try to find a gap in the box. In case of success, lines 19 to 21 execute a natural
split, otherwise, the box is stored in solutions (lines 23).

4.6 Detection of Box-Continuity

With an implementation of HC_Filtering like HC4 [2], it is easy to detect box-
continuity of a constraint during the filtering step of Lazy_BoxSet.

The projection operator of HC4 must be slightly modified to update this
property while exploring the syntax tree of a constraint. The rule is simple:
before projecting a constraint ¢, the projection operator sets the box-continuity
boolean of ¢ to true. If a disjunction appears somewhere in the tree, this boolean
is set to false.

Thus, in practice, detecting box-continuity is computationally insignificant
and permits to dramatically reduce the number of calls to the general projection
operator embedded in Lazy_BoxSet. This remark is relevant for all the prob-
lems, because at some point in the search, a majority of boxes are small enough
for functions to be all monotonous. It is straightforward that with monotonous
functions, detection of box-continuity always succeeds so that the projection
operation is not costly.

4.7 Difference with Hyvonen’s method

In [5], natural splitting is also used in a similar solving strategy. But an impor-
tant difference makes our version much more powerful. In [5], no hull filtering is
used before splitting and only box-continuous constraints are projected before
instantiating variables. In a majority of non-linear problems, this extremely de-
creases the performances by generating an exponential number of “overlapping
situations” [5], as this example illustrates:

Ezample 7. Let P = (C,{z1,...,%50,Y}, Dgy X ... X Dy, x Dy) be a NCSP.
D;, =..=Dg, =[-2,2] and D, = [1,4].
C includes the following constraints:
2
1 =Y

230 =y
Finally, C' contains a trivially unsatisfiable constraint: z2 = —z?
We assume that constraints are treated in their declaration order. For all
i (1 < i < 50), projection of z2 = y over z; gives {[—2,—1],[1,2]} so that
HC_Filtering will not perform any reduction (bounds of [—2, 2] are preserved).
After these 50 unfruitful projections, HC_Filtering will fall on the last con-
straint, that makes the whole box inconsistent. So Lazy_BoxSet terminates al-
most immediately.
In contrast, as no constraint is box-continuous, the method in [5] will intro-
duce a choice point for every variable z; and deploy a search tree of 23 leaves

before detecting inconsistency. A combinatorial explosion occurs. We observed
this difference with simple problems of distance equations. In the general case,
the proposed algorithm is more costly than our naive version.

Another drawback is that the domain of a variable must be divided statically
into sub-intervals (the actual application space) where constraints are all box-
continuous. This computation is only possible with primitive constraints.

5 Conclusion

We have tried to put an end to the question of arc-consistency with continuous
domains, by showing precisely on a simple example that it is not applicable.

However, we have given a way to obtain the boz-set consistency, i.e. all the
arc-consistent sub-boxes of a problem, using a new splitting strategy called nat-
wral splitting.

The Lazy_BoxSet algorithm enforcing box-set consistency has been imple-
mented, and so far, validated on toy problems. This implementation includes
a projection operator for handling any type of constraints (not only primitive
constraints). We will discuss about this crucial operator in a future paper, along
with the conditions under which it can be applied.

Beyond this implementation, we believe that box-set consistency is a strong
hence interesting property. We are currently investigating possible combinations
of box-set filtering and interval analysis.

References

1. F. Benhamou. Interval constraint logic programming. In A. Podelski, editor, Con-
straint Programming: Basics and Trends, LNCS no 910, pages 1-21. Springer Verlag,
1995.

2. F. Benhamou, F. Goualard, L. Granvilliers, and J-F. Puget. Revising hull and box
consistency. In International Conference on Logic Programming, pages 230-244,
1999.

3. F. Benhamou, D. McAllester, and P. Van Hentenryck. Clp(intervals) revisited. In
International Symposium on Logic programming, pages 124-138. MIT Press, 1994.

4. B. Faltings. Arc-consistency for continuous variables. Artificial Intelligence, 65,
1994.

5. E. Hyvonen. Constraint reasoning based on interval arithmetic—The tolerance
propagation approach. Artificial Intelligence, 58:71-112, 1992.

6. O. Lhomme. Contribution a la résolution de contraintes sur les réels par propagation
d’intervalles. Phd thesis, University of Nice-Sophia Antipolis, 1994.

7. A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99-118, 1977.

8. R. Moore. Interval analysis. Prentice-Hall, 1977.

9. D.L. Waltz. Understanding line drawings of scenes with shadows. The Psychology
of Computer Vision, pages 19-91, 1975.

