A Constraint Programming Approach for Solving
Rigid Geometric Systems

Christophe Jermann*!, Gilles Trombettoni', Bertrand Neveu?, and Michel
Rueher!

! {jermann, rueher, trombe}@essi.fr
Université de Nice-Sophia Antipolis, I3S, ESSI, 930 route des Colles, B.P. 145, 06903
Sophia Antipolis Cedex, France
2 neveu@sophia.inria.fr
CERMICS, 2004 route des lucioles, 06902 Sophia.Antipolis cedex, B.P. 93, France

Abstract. This paper introduces a new rigidification method -using in-
terval constraint programming techniques- to solve geometric constraint
systems. Standard rigidification techniques are graph-constructive meth-
ods exploiting the degrees of freedom of geometric objects. They work in
two steps: a planning phase which identifies rigid clusters, and a solving
phase which computes the coordinates of the geometric objects in every
cluster. We propose here a new heuristic for the planning algorithm that
yields in general small systems of equations. We also show that inter-
val constraint techniques can be used not only to efficiently implement
the solving phase, but also generalize former ad-hoc solving techniques.
First experimental results show that this approach is more efficient than
systems based on equational decomposition techniques.

1 Introduction

Modeling by geometric constraints is a promising method in the CAD field. It
allows a user to build a shape by stating geometric constraints in a declarative
way. In practice, geometric systems contain numerous rigid subparts. Recur-
sive rigidification techniques [HLS97] allow a bottom-up computation of a rigid
system by discovering and aggregating rigid subsystems. We introduce a new
rigidification algorithm which is general enough to tackle systems in 2D or 3D.
This algorithm yields a decomposition of a rigid system into several subsystems
to be solved one by one. The paper aims at showing that this semantic-guided
approach proves to be efficient when every subsystem is solved by interval tech-
niques. Moreover, when the subsystems are small, the system may be tractable
by symbolic tools.

The paper is organized as follows. The next subsections introduce the prob-
lem and recursive rigidification. Section 2 describes the new planning phase we
have designed. Section 3 presents a solving phase based on interval techniques.
Section 4 provides first experimental results.

* Supported by CNRS and region Provence Alpes Cote d’Azur

1.1 Problem Description

The problem considered in this paper is the computation of all possible positions
and orientations of geometric objects satisfying constraints that make them rigid
relative to each other [FHO7].

Definition 1 A geometric constraint problem is defined by a set of geo-
metric objects and a set of geometric constraints.

A geometric object is defined by a set of generalized coordinates in a refer-
ence system of given dimension such as the Euclidean plane or 8D-space. Gen-
eralized coordinates are parameters defining the position and the orientation
of an object.

A geometric constraint is a relation between geometric objects.

Examples of geometric objects are points, lines, circles in 2D, or points, lines,
spheres, cylinders in 3D space. Geometric constraints can state properties like
incidence, tangency, orthogonality, parallelism, distance or angle.

Although the algorithms described in the paper works in 3D space, our im-
plementation is restricted to the following entities in the Euclidean plane:

— Geometric objects: points, lines and circles,
— Geometric constraints: incidence, orthogonality, parallelism, distance and
angle.

We will also assume that:

— The geometric constraints are binary. This is not a strong limitation since
most of geometric constraints are binary. Moreover, no restriction holds on
the arity of the corresponding algebraic equations. For instance, a distance
constraint involves only two points but the corresponding equation involves
four generalized coordinates: the points coordinates.

— All objects are non-deformable, that is, the involved generalized coordinates
cannot be independent from the reference system. For example, a circle is
defined by the two coordinates of the center, but the radius must be constant.
Moreover, constraints can only define relations which involve coordinates of
objects. For instance, a distance constraint for which the distance parameter
is variable cannot be handled.

The second limitation is intrinsic to recursive rigidification which performs
rigid-body transformations [JASR99.

1.2 Recursive rigidification
Recursive rigidification is based on a degree of freedom analysis performed on a

weighted geometric constraint graph [HLS97].

Definition 2 A weighted geometric constraint graph G = (0, C) is de-
fined as follows:

— A wvertex o € O represents a geometric object. Its weight w(o) characterizes
the number of its degrees of freedom, i.e., the number of generalized co-
ordinates that must be determined to fix it. For example, a point and a line
! have two degrees of freedom in the Euclidean plane.

— An edge ¢ € C represents a geometric constraint. Its weight w(c) gives the
number of parameters that are fized by the constraint; usually the number of
corresponding equations. For example, a distance constraint fizes 1 parame-
ter, and then has weight 1.

So, the degree of freedom analysis exploits a structural property of the geo-
metric constraint graph, called structural rigidity?.

Definition 3 Let S be a geometric constraint problem, and let G = (O,C) be
the corresponding weighted geometric constraint graph. Let W be the function
which computes the difference between the sum of object weights and the sum of

constraint weights: W(G) =3 5(w(0)) — > .c(w(c)).
In dimension d, the system S is structurally rigid (in short s-rigid) iff:

- W(G)=d(d+1)/2
— For every sub-graph G' of G, W(G") > d(d + 1)/2

An s-rigid sub-graph of a geometric constraint graph will be called a cluster
in this paper. Intuitively, in 2D, a cluster has 3 degrees of freedom since it can
be translated and rotated.

The structural rigidity is similar to the property P defined in [LM98] and to
the density notion introduced in [HLS97].

Recursive rigidification creates iteratively a new cluster in the graph: a single
node replaces the objects in the created cluster, and arcs connecting several
objects in this cluster to one object outside the cluster are condensed into a
single arc labeled by the sum of the weights of the synthesized arcs. Figure 1
illustrates the above notions.

The planning phase aims at decomposing the whole system into a sequence
of small blocks of equations. It interleaves two steps called merge and extension
steps which produce clusters recursively:

— The merge step finds how to form a bigger cluster based on several clusters
or geometric objects.

— The extension step extends the obtained cluster by adding to it connected
objects one by one.

! Roughly, the a and b of the corresponding equation: y = ax + b

2 The s-rigidity is a necessary condition to prove rigidity. However, it is not a suffi-
cient condition, except for distance constraints between points in 2D [Hen92|. Hence
it should only be considered as a heuristic to detect rigid subparts in a geomet-
ric constraint system. Several counterexamples in 2D and 3D show that redundant
constraints are the main cause of failure of the guess given by the s-rigidity [LM98].

K,(3 |
Ky(3)

B F G G

Fig. 1. Graphs associated to a geometric constraint problem.

(Left) All objects are points and distance constraints are posted between points. All
edges have weight 1 and all vertices have weight 2 (they are not labeled). Every pair
of connected points forms a cluster. Every triangle is also a cluster. Points C, D; E do
not form an s-rigid sub-graph since it has 4 degrees of freedom.

(Right) Another graph where triangles (A, B, C) and (D, E, F) have been condensed
in two clusters K; and K. The arc of weight 3 condenses the arcs (A, D), (C, E) and
(B, F).

Merge steps would be sufficient to perform a plan. However, a merge step can
traverse the whole constraint graph. So, an extension is more or less a heuristic to
perform an efficient merge step: one checks incrementally whether the s-rigidity
is maintained when only one object is added to the current cluster.

The solving phase, also called construction phase, follows the plan given by
the previous phase and computes the coordinates of the geometric objects in
every cluster.

1.3 Existing work

Recursive rigidification techniques have been developed [VSR92,BFHT 95 FH93]
[FH97,DMS98] to assemble points and lines in 2D systems constrained by dis-
tances and angles. [HV95] and [Kra92| describe first attempts to work in 3D. In
all these systems, a specific algorithm is used to merge two or three predefined
clusters. The possible construction "patterns" appear in a library.

Hoffmann et al. [HLS97,HLS98| have introduced a flow-based algorithm to
perform the merge step. This algorithm finds a minimal dense sub-graph in a
weighted geometric constraint graph, that is, it computes an s-rigid cluster of
minimal size (i.e. which has no proper s-rigid sub-graph). Ad-hoc solving meth-
ods are used to achieve the actual construction. The algorithm works in any
dimension, including 2D and 3D, and can be applied on any type of geometric
objects.

The main limitation of Hoffmann’s approach comes from the fact that no
general method is proposed to perform the solving phase. Symbolic tools could
also be considered but are generally not efficient enough to handle these prob-
lems. Of course, ad-hoc solving methods can be used, but they must be defined
for every cluster the flow-based algorithm can generate.

1.4 Contribution

In this paper, we propose:

1. A new extension step’s heuristic for Hoffmann’s planning algorithm [HLS97].
The aim is to generate smaller subsystems of equations.

2. A new and general solving framework which is based on interval techniques.
Interval narrowing algorithms [Lho93,HMD97] manage floating intervals and
can solve a system of numeric equations by using filtering and domain split-
ting methods. They are used to compute solutions in every subsystem.
Using interval techniques to carry out a construction step of recursive rigid-
ification has two advantages: the approach is general and can replace ad-hoc
methods related to specific patterns, and, no solutions are lost.

2 The Planning Phase

The goal of the planning phase is to find an ordering which can solve the con-
straints in an incremental way. More precisely, the aim is to identify rigid sub-
parts, that can be solved independently (and then assembled).

Hoffmann et al. [HLS97] have introduced an algorithm which achieves such
a planning. The main limit of their algorithm comes from the fact that large
blocks of constraints have to be added in some cases. Thus the solving process
may become very costly. We introduce here a heuristic to limit the number of
constraints that are added at each step.

Next sub-section illustrates the principle and the limits of Hoffmann’s algo-
rithm on a short example. Afterwards, we detail the proposed heuristic.

2.1 Hoffmann’s algorithm

Hoffmann’s planning algorithm builds a reverse tree of clusters called cluster
tree: the root is the final cluster covering the whole system; the leaves are the
geometric objects; there is an arc between a cluster K and all the clusters that
have been merged to yield K.

Roughly speaking, the algorithm builds clusters in sequence by interleaving
merge and extension steps. It stops as soon as the whole system has been rigid-
ified or when the system cannot be rigidified further. The algorithm updates
a geometric weighted graph G,, while achieving merge and extensions steps.
For instance, consider an example in 2D made of 15 points and 27 distance
constraints between them (see Figure 2 - G2,).

The first merge step finds the sub-graph G =< A, B > of G,,. This clus-
ter is extended until a fix-point is reached. The set of adjacent points of this
cluster is {C, H,I}. Since < A,B,I > is s-rigid, I is added to G. The same
process is performed to add H, C and J to G. Now the set of adjacent points
is {D,G, N, K}. None of these points can be added by extension, so we have
reached the fix-point G =< A, B,I,H,C,J >. A new vertex K; of weight 3 is
added and A, B, I, H,C, J are removed from G, as well as all constraints among
them (see Figure 2 - G1)). K; is placed into the cluster tree and the next merge

D E
G| Cluster Tree
K1 K2 K3
K,4(3) ABCHIJ| |[KLMNO| | DEFG
° \
K4
K41(3) K5(3) K1 K2 K3

Fig. 2. Snapshots of the graph G, during the execution of Hoffmann’s planning
method, and resulting cluster tree.

step is performed. It identifies < M, N > as minimal s-rigid sub-graph of G,,.
This cluster is extended to Ky =< M,N,O, K, L > (see Figure 2 - G2,). Note
that K5 could have been extended onto J if < M, N > were identified at the
beginning. Finally, G, F, D and E are merged into K3 (note again that C and L
could have been included in K3) (see Figure 2 - G2)).

Since clusters do not share points, inter-cluster constraints (i.e., the distance con-
straints dist(J, K), dist(J, N), dist(G,C), dist(G, L), dist(F, L) and dist(C, D)
) are handled by the last merge step (see Figure 2 - G), for which the solving
step can hence be expensive.

Therefore, we propose a new heuristic where clusters can share objects, the
aim being to maximize the extension capabilities, and thus, to reduce the number
of constraints which have to be handled during the merging steps. This heuristic
generalizes previous ad-hoc techniques |BFHT95].

2.2 The proposed heuristic

Like Hoffmann’s algorithm, Algorithm Rigidification interleaves merge and
extension steps. To facilitate object sharing it uses the following two graphs:

— The merge graph G, which corresponds to the graph of clusters used in
Hoffmann’s algorithm. However, in our algorithm, G, is used only for the
merge step.

— The extension graph GG, which is specially maintained for the extension step.
It contains the shared objects as well as the objects which have not yet been
included in a cluster.

The algorithm performs three main steps iteratively (within the while loop):
a merge step, an extension step and an update step.

One merge step is achieved by the MinimalSRigid(G, d, G,) function. This
function first computes Gy, a minimal dense sub-graph of G,,, with the flow-
based algorithm described in [HLS97]. The dense sub-graph is then converted
into a sub-graph of G, and returned. The empty set is returned if GG,,, contains
a single node or if no s-rigid sub-graph can be found.

One extension step extends the cluster G; found by the merge step. The
repeat loop incrementally adds one object to G;. Objects are added as long as
the obtained graph remains s-rigid.

The last step updates the two graphs G,,, and G..

Updating the graph G,,

A new cluster K is created in G, and replaces the included clusters and objects
(sub-graph G4). This is performed by the function Condense(G2, K, G,,) as
follows: (a) replace all vertices in GGy, the sub-graph of G, corresponding to G,
by a single node K in G,,; (b) combine all arcs from one vertex v of G,;, — G
to vertices of G4 into one arc from v to K with a weight equal to the sum of the
combined arcs.

The newly created cluster K may contain shared variables which have been
previously included in other clusters. Coincidence constraints are thus added in
G, to take them into account. Intuitively, coincidence constraints are added to
preserve the right number of degrees of freedom in G,,. They state that the
different occurrences of a shared object correspond in fact to a single object
(function AddCoincidences(K, Gy,)).

Updating the graph G,

The nodes in the newly created cluster K are partitioned into two sets: the
interface objects that are connected to other objects in G, and the internal
objects. Function RemoveVertices removes the internal objects since they are
s-rigid relative to each other (that results from the fact that they are included in
the same cluster K). In the opposite, interface objects remain in G, since they
may potentially be shared by other clusters in further steps.

To maintain the right number of degrees of freedom, the interface objects in
G must be rigidified. The function Rigidify adds interface constraints between
them in G, as follows: if the cluster K contains two interface objects o1 and os,
a weighted arc (o1, 02) is added to make them s-rigid; if there are more than two
interface objects, every other object o; in K is rigidified by adding arcs (o;, 01)
and (0;, 02) (see for coming [JTNROO]).

Algorithm Rigidification terminates since the number of objects in G,
decreases at each step. The correction is ensured by the fact that the s-rigidity
property is preserved in GG,,, and G, as long as the algorithm runs.

2.3 Example

Figure 3 illustrates the behavior of Algorithm Rigidification on the example
introduced in Figure 2.

Algorithm 1 Rigidification (in G: Graph; in d: Integer; out CT: Clus-
terTree)

{G is the initial weighted geometric graph; d is the dimension of the problem (2D,
3D); CT is the plan (cluster tree) that is produced by the algorithm.}
CT + 0; G + G; G +— G
G1 < MinimalSRigid(Gm, d, Ge) {First merge step}
while G1 # (0 do
{Extension step}
repeat
for all o € G¢|J01 € G1 and edge (0,01) € Edges(Ge) do
if G1 U {o} is s-rigid then
{Add o and corresponding edges to G1}
AddvVertex(G1, o, G.)
end if
end for
until FixPoint {G: is no more modified}
G, « Convert(G1, Gm) {G2 is a sub-graph of G corresponding to G1}
Condense(G2, K, Gm) {Replace G2 by a new verter K in G, }
AddCoincidences(K, Gn)
InsertCluster(K, CT) {Insert K in the cluster tree}
Rigidify(InterfaceObjects(G1)) {Add interface constraints of G1 in G}
RemoveVertices(InternalObjects(Gi), G.) {Remove from G. internal objects
and connected arcs}
G1 < MinimalSRigid(Gm, d, Ge) {Merge step}
end while

The first merge and extension steps are similar to Hoffmann’s one and yield a
sub-graph G containing the points A, B, I, H, C, J. A new vertex K; of weight
3 replaces these points in G,,. The internal points A, B, H, I are removed from
G, along with the internal constraints, but an interface constraint is added
between .J and C.

The cluster K is then created in the same way. It is condensed into G,,,. Since
K includes the point J which also belongs to K3, a coincidence constraint of
weight 2 is added in G, between K; and K.

The cluster K3 is finally created. It includes all the remaining points in G,
and in particular, the interface constraints. Then, the planning phase is finished.

2.4 Comparing with Hoffmann’s approach

Hoffmann’s algorithm uses a single graph to achieve merging steps and extension
steps whereas Algorithm Rigidification performs the extensions on a specific
graph that contains shared objects. Thus, Algorithm Rigidification may be
able to achieve more extensions. It is important to understand that one extension
implies the creation of a system of equations the size of which is not greater than
3 in 2D (6 in 3D), that is, the number of degrees of freedom of the added object.
Since this heuristic maximizes the number of extensions steps, it should reduce
the solving cost of the merge steps.

2 3
Ko(3) Ghn G

K3(3)
®

E

K/ \

D E

G2| Cluster Tree

’ K1 H K2 ‘
ABCHIJ| [JKLMNO

(V) (L)

Fig. 3. Snapshots of the graphs G,, and G. during the run of the algorithm, and
obtained cluster tree. Interface constraints are drawn in dotted lines.

For instance, on the previous example, Hoffmann’s algorithm builds clusters
K, Ky and K3 before merging them into K4 (see Figure 2). This corresponds
to 9 extension steps and 4 merge steps; the last one will have to merge 3 clusters
with 6 distance constraints between them. On the same example, Algorithm
Rigidification achieves 13 extensions and only 3 merges. None of these steps
involve more than 2 distance constraints.

3 The Solving Phase

This section shows how to use interval constraint techniques for solving the tree
of clusters built in the planning phase.

Atomic steps of the planning phase generate subsystems of equations, called
blocks in the paper, that can be solved in sequence. Interval constraint tech-
niques solve every block and yield numeric solutions®. When a solution is found
in a block, the corresponding variables are replaced by their value in subsequent,
blocks. When the resolution fails, a backtracking step occurs and another so-
lution is searched for in the previous block. The next subsections detail how
to generate the blocks of algebraic equations based on a cluster tree. Different
solving processes of the decomposed system are also described.

3.1 Generating the equations

A directed acyclic graph (DAG) of blocks is created while the cluster tree is
built.

3 A superset of the solutions is in fact obtained: eliminated parts of the search space
never contain any solution, but the remaining non-empty intervals might contain no
solution.

— A block contains a (sub)system of equations. It includes the equations cor-
responding to the arcs (geometric constraints) removed from G, during one
merge step or one extension step;

— There is an arc from a block A to a block B if a variable to be instantiated
in A also occurs in an equation of B.

Note that interface constraints are considered in the same way as others in
this process. Figure 4 provides an example of such a DAG of blocks.

Fig. 4. DAG of blocks associated to the cluster tree of the example in Fig. 3. Blocks
are represented by small rectangles showing the computed variables. All the blocks in
K3 are shown. The block at the top of K3 is created by the merge step (merging D
and F'). Descendant blocks are created by extension. The last block contains the two
interface constraints added during the process.

Now, let us detail how interface constraints are handled. Each block computes
its own set of variables. The variables corresponding to an interface object are
replicated in each cluster where the object occurs. Object J shared by clusters
K, K5 and K3 leads to define variables Tix,s YIxyr Trys Yxys Tggs Y, -
Variables z, , Yx, (resp. Ty yJK2) are computed when solving clusters
Ky (resp. K3). When solving cluster K3, the block computing z,, Yy, is
made of the 2 interface constraints dist(Js, L3) = dist(Ja, L2) and dist(Js,Cs3)
= dist(J1,C4). In this block, the last one in cluster K3, all the variables except
Tk, YJx, have already been computed in previous blocks.

Now we will describe the different solving processes based upon interval nar-
rowing techniques.

3.2 Domain splitting and filtering per block

A first approach to solve a DAG of blocks has been described at the beginning
of this section. Standard filtering and domain splitting can compute a set of

solutions in every block and an inter-block backtracking process is performed
when an inconsistent combination of block solutions occurs.

Performing interval narrowing on a block is straightforward, the variables of
the entire block being subject to domain splitting and filtering. However, one
should pay attention to the inter-block process: the computed values, which will
be replaced in a subsequent block, are not floating numbers, but an interval of
floating points (even very small, e.g., 108 large). We could handle such constant
intervals by slightly modifying the LNAR function of Numerica [HMD97] 4. We
have chosen another process: the middle point of the reduced constant interval
replaces the variable in equations included in subsequent blocks. This middle
point heuristic is easy and general. It is correct if the set of intervals obtained at
the end is checked, by a filtering process, against all the equations in the entire
system. In practice, this final check is very fast since the intervals are really
small. Of course, this process does not guarantee to find all solutions but we did
never lose any solution in practice on the tested examples.

This approach is very efficient because replacing a variable by a constant
simplifies the system of equations.

3.3 Performing propagation on the whole system

Another algorithm could be applied that limits domain splitting in one block at
a time, but performs filtering by propagation on the whole system. There are
two different ways to implement propagation:

1. All the blocks are managed by a standard inter-block backtracking process,
just like the pure backtracking algorithm described in the previous subsec-
tion. Two systems of equations are thus handled by the interval constraint
solver: one system corresponding to the current block to be solved by filter-
ing and domain splitting, and another one which includes the equations in
the blocks not yet solved. The second system can be filtered by propagation
when an interval is reduced in the first one. This approach will be called
block solving with propagation in the rest of the paper.

2. Another approach, where all the system is in a single block, is called global
solving in the following. It considers the given plan as a heuristic to select
the next variables for domain splitting with respect to the decomposition.
Their domains are split until the desired precision is reached. Filtering is
applied on the full system after each split.

The global solving algorithm is simpler to design than block solving with
propagation. However, global solving is less efficient for two reasons. First, all
blocks are checked for filtering anyway. Second, it cannot benefit from the middle
point heuristic.

Conceptually, it is possible to bring the inter-block backtracking process to-
gether with any solving algorithm that can yield several solutions for one block.

* The LNAR. function, applied to a variable in an equation, replaces all the other
variables by a constant interval and searches for the left most zero.

Symbolic algorithms can be used when no trigonometric equations are required
to model the system. Plugging such an algorithm in our inter-block process en-
sures completeness and could be considered for solving small blocks. On the
contrary, classical numerical algorithms should not be used in this decomposi-
tion scheme since they provide only one solution per block and those partial
solutions may not be combinable.

3.4 Unifying reference systems

Once the solving phase is finished, every object in the root cluster has been
placed in the final reference system. Only internal objects of clusters have not
yet been placed in this system. To do so, rigid-body transformations must be
done on the cluster tree. The cluster tree is traversed from the root to the leaves.
At each node, one performs a rigid body transformation, in the final reference
system, of the coordinates belonging to the internal objects of the cluster. More
precisely:

1. The coordinates of the interface objects are known in the final system, as the
tree is followed from the root to the leaves, and are used them to compute
the transformation coefficients.

2. The internal coordinates of the cluster are then recomputed in the final
reference system, based on the obtained transformation matrix.

By traversing the tree in reverse order of its construction, a coordinate of an
object is computed only once as an objects becomes internal only once.

4 Experimental Results

This section provides preliminary results on three examples (see Figure 5). Their
constraint systems contain points and distance constraints. Since we wanted
to compare the time spent for computing all solutions, we have adjusted the
distance values in order to obtain a limited number of solutions per problem
(128 for Ex1, 64 for Ex2 and 256 for Ex3).

Fig. 5. From left to right, the three 2D examples we consider, made of points and
distance constraints: Triangles (Ex1), Diamonds (Ex2) and Hexagon (Ex3)

First, we compare the decomposition obtained by recursive rigidification with
a more general equational decomposition which works at the equation and vari-
able level and does not take into account the s-rigidity property of the geometric
system [AAJM93,BNT98|. This approach is based upon a structural analysis
of the graph of variables and equations, using a maximum matching algorithm
and a Dulmage and Mendelsohn decomposition. We also apply our solving tech-
niques on this equational decomposition. For the sake of simplicity, we will use
the following abbreviations:

— ED stands for the equational decomposition based on a maximum matching;

— SD1 denotes the decomposition based on shared objets we have introduced
in Section 2 (Algorithm Rigidification);

— SD2 denotes Hoffmann’s rigidification algorithm.

4.1 Maximal block size

We can see in Table 1 that the SD1 decomposition leads to smaller blocks than
SD2.

The first two examples are decomposed by SD1 into blocks made of 2 e-
quations. With the SD2 decomposition, the maximum block size is 10 or 12. In
fact, these blocks of size 10 or 12 can further be decomposed by the equational
decomposition technique and the blocks finally solved have a maximum size of 6
in both cases (SD2+ED). For SD1, ED cannot further decompose the obtained
blocks. In the third example, a block of size 8 remains in both decompositions
and cannot be decomposed by ED anymore.

examples||SD1|SD1+ED|SD2(SD2+ED|ED|ND
Ex1 2 2 10 6 14| 26
Ex2 2 2 12 6 10| 20
Ex3 8 8 8 8 8120

Table 1. Size of the biggest equation block obtained by semantic decomposition with
shared points (SD1) and without shared points (SD2), the semantic decompositions
followed by the equational decomposition (SD1+ED, SD2+ED), equational decompo-
sition on the whole system (ED), and no decomposition (ND, which also represents the
size of the complete system)

4.2 Solving with interval narrowing techniques

We provide here the time spent to solve the examples for different decomposition-
s: SD1+ED, SD2+4+-ED, ED and ND. Times for solving with SD1 decomposition
are exactly the same as SD1+ED since the plan remains the same with or without
applying ED. Times for solving SD2+ED are necessarily better than times for
SD2 alone since SD2+ED provides a better decomposition. For the decomposed
systems, we run the 3 methods presented in Sections 3.2 and 3.3: the inter-block
backtracking (M1), the inter-block backtracking with propagation (M2), and the

global solving which uses the decomposition as a heuristic for choosing the next
domain to split (M3).

All experiments were performed on a Pentium IIT 500, using Ilog
Solver [ILO98], with the IlcNumerica library which implements domain filtering
by Box-Consistency [BAH94|.

Examples||SD14+ED| SD2+ED ED ND
M1|M2{M3|M1|M2| M3 (M1|M2|M3| -

Ex1 171 9 |455|43 | 28 |1322| 58 | 29 [385|5795
Ex2 14|11 (77|19 | 13 | 178 |56 (1174676640
Ex3 0.9]3.4]289|2.6(12.2{1646{1.5|3.7 [533|2744

Table 2. Results in CPU time (in seconds) for the decompositions SD1+ED, SD2+ED
and ED with the solving methods M1, M2 et M3 and for a solving without decompo-
sition (ND)

4.3 Analysis

These results show that:

— Any decomposition is always fruitful: without decomposition, the solving
times may be 2 orders of magnitude higher.

— The semantic decomposition (SD1) based on rigidification yields in general
smaller blocks than equational decomposition (ED). The performances are
better when the maximal block size is smaller.

— Methods M1 and M2 give even better results than M3, which shows the
interest, of the middle point heuristic.

— The effect of the propagation depends on the problem itself: when many
inter-block backtracks occur, like in Ex1, the inter-block constraint propa-
gation (M2) does pay off.

5 Conclusion

This paper has introduced a complete framework for handling geometric con-
straints. It is composed of:

— A new heuristic for the planning algorithm which allows us to build small
subsystems of equations. This semantic-guided phase yields a better decom-
position of a rigid system than a syntactic one.

— A solving phase based on interval techniques. This approach is general and
does not lose any solution. It is a promising alternative to ad-hoc or classical
numeric approaches.

To validate this framework, further experiments have to be performed.

References

[AAJM93] Samy Ait-Aoudia, Roland Jegou, and Dominique Michelucci. Reduction of

[BAHY4|

[BFH'95]

[BNTO8]

[DMS98]

[FHO3|

[FHO7|

[Hen92]|

[HLS97|

[HLS98]

[HMD97]

[HV95]

[ILO9S|
[JASR99]

[JTNROO]
[Kra92]
[Lho93]

[LM9g]

[VSR92|

constraint systems. In Compugraphic, 1993.

F. Benhamou, D. Mc Allester, and P. Van Hentenryck. Clp(intervals) revis-
ited. In Proc. Logic Programming, MIT Press, 1994.

William Bouma, Ioannis Fudos, Christoph Hoffmann, Jiazhen Cai, and
Robert Paige. Geometric constraint solver. Computer Aided Design,
27(6):487-501, 1995.

Christian Bliek, Bertrand Neveu, and Gilles Trombettoni. Using graph
decomposition for solving continuous csps. In Principles and Practice of
Constraint Programming, CP’98, volume 1520 of LNCS, pages 102-116.
Springer, 1998.

Jean-Francois Dufourd, Pascal Mathis, and Pascal Schreck. Geometric con-
struction by assembling subfigures. Artificial Intelligence, 99:73 119, 1998.
Taonnis Fudos and Christoph Hoffmann. Correctness proof of a geometric
constraint solver. Technical Report TR-CSD-93-076, Purdue University,
West Lafayette, Indiana, 1993.

Taonnis Fudos and Christoph Hoffmann. A graph-constructive approach to
solving systems of geometric constraints. ACM Transactions on Graphics,
16(2):179 216, 1997.

Bruce Hendrickson. Conditions for unique realizations. SIAM J Computing,
21(1):65-84, 1992.

Christoph Hoffmann, Andrew Lomonosov, and Meera Sitharam. Finding
solvable subsets of constraint graphs. In Proc. Constraint Programming
CP’97, pages 463-477, 1997.

Christoph Hoffmann, Andrew Lomonosov, and Meera Sitharam. Geometric
constraint decomposition. In B. Briiderlin and D. Roller, editors, Geometric
Constraint Solving and Applications, pages 170-195. Springer, 1998.
Pascal Van Hentenryck, Laurent Michel, and Yves Deville. Numerica : A
Modeling Language for Global Optimization. MIT Press, 1997.

C. M. Hoffmann and P. J. Vermeer. A spatial constraint problem. In J.-P.
Merlet and B. Ravani, editors, Computational Kinematics’95, pages 83-92.
Kluwer Academic Publishers, 1995.

ILOG. Ilog solver reference manual. Technical report, ILOG, 1998.

R. Joan-Arinyo and A. Soto-Riera. Combining constructive and equational
constraint solving techniques. ACM Transactions on Graphics, 18(3):35-55,
1999.

Christophe Jermann, Gilles Trombettoni, Bertrand Neveu, and Michel Rue-
her. A constraint programming approach for solving rigid geometric systems.
Technical Report 00-43, University of Nice, France, 2000.

G. Kramer. Solving Geometric Constraint Systems. MIT Press, 1992.

O. Lhomme. Consistency techniques for numeric csps. In Proc. IJCAI
Chambery, France, 1993.

Hervé Lamure and Dominique Michelucci. Qualitative study of geometric
constraints. In Beat Bruderlin and Dieter Roller, editors, Geometric Con-
straint Solving and Applications, pages 234-258. Springer, 1998.

A. Verroust, F. Schonek, and D. Roller. Rule oriented method for
parametrized computer aided design. Computer Aided Design, 24(6):531
540, 1992.

