
A Constraint Programming Approach for SolvingRigid Geometric SystemsChristophe Jermann�1, Gilles Trombettoni1, Bertrand Neveu2, and MichelRueher11 {jermann, rueher, trombe}@essi.frUniversité de Nice�Sophia Antipolis, I3S, ESSI, 930 route des Colles, B.P. 145, 06903Sophia Antipolis Cedex, France2 neveu@sophia.inria.frCERMICS, 2004 route des lucioles, 06902 Sophia.Antipolis cedex, B.P. 93, FranceAbstract. This paper introduces a new rigidi�cation method -using in-terval constraint programming techniques- to solve geometric constraintsystems. Standard rigidi�cation techniques are graph-constructive meth-ods exploiting the degrees of freedom of geometric objects. They work intwo steps: a planning phase which identi�es rigid clusters, and a solvingphase which computes the coordinates of the geometric objects in everycluster. We propose here a new heuristic for the planning algorithm thatyields in general small systems of equations. We also show that inter-val constraint techniques can be used not only to e�ciently implementthe solving phase, but also generalize former ad-hoc solving techniques.First experimental results show that this approach is more e�cient thansystems based on equational decomposition techniques.1 IntroductionModeling by geometric constraints is a promising method in the CAD �eld. Itallows a user to build a shape by stating geometric constraints in a declarativeway. In practice, geometric systems contain numerous rigid subparts. Recur-sive rigidi�cation techniques [HLS97] allow a bottom-up computation of a rigidsystem by discovering and aggregating rigid subsystems. We introduce a newrigidi�cation algorithm which is general enough to tackle systems in 2D or 3D.This algorithm yields a decomposition of a rigid system into several subsystemsto be solved one by one. The paper aims at showing that this semantic-guidedapproach proves to be e�cient when every subsystem is solved by interval tech-niques. Moreover, when the subsystems are small, the system may be tractableby symbolic tools.The paper is organized as follows. The next subsections introduce the prob-lem and recursive rigidi�cation. Section 2 describes the new planning phase wehave designed. Section 3 presents a solving phase based on interval techniques.Section 4 provides �rst experimental results.* Supported by CNRS and region Provence Alpes Côte d'Azur

1.1 Problem DescriptionThe problem considered in this paper is the computation of all possible positionsand orientations of geometric objects satisfying constraints that make them rigidrelative to each other [FH97].De�nition 1 A geometric constraint problem is de�ned by a set of geo-metric objects and a set of geometric constraints.A geometric object is de�ned by a set of generalized coordinates in a refer-ence system of given dimension such as the Euclidean plane or 3D-space. Gen-eralized coordinates are parameters de�ning the position and the orientationof an object.A geometric constraint is a relation between geometric objects.Examples of geometric objects are points, lines, circles in 2D, or points, lines,spheres, cylinders in 3D space. Geometric constraints can state properties likeincidence, tangency, orthogonality, parallelism, distance or angle.Although the algorithms described in the paper works in 3D space, our im-plementation is restricted to the following entities in the Euclidean plane:� Geometric objects: points, lines and circles,� Geometric constraints: incidence, orthogonality, parallelism, distance andangle.We will also assume that:� The geometric constraints are binary. This is not a strong limitation sincemost of geometric constraints are binary. Moreover, no restriction holds onthe arity of the corresponding algebraic equations. For instance, a distanceconstraint involves only two points but the corresponding equation involvesfour generalized coordinates: the points coordinates.� All objects are non-deformable, that is, the involved generalized coordinatescannot be independent from the reference system. For example, a circle isde�ned by the two coordinates of the center, but the radius must be constant.Moreover, constraints can only de�ne relations which involve coordinates ofobjects. For instance, a distance constraint for which the distance parameteris variable cannot be handled.The second limitation is intrinsic to recursive rigidi�cation which performsrigid-body transformations [JASR99].1.2 Recursive rigidi�cationRecursive rigidi�cation is based on a degree of freedom analysis performed on aweighted geometric constraint graph [HLS97].De�nition 2 A weighted geometric constraint graph G = (O;C) is de-�ned as follows:

� A vertex o 2 O represents a geometric object. Its weight w(o) characterizesthe number of its degrees of freedom, i.e., the number of generalized co-ordinates that must be determined to �x it. For example, a point and a line1 have two degrees of freedom in the Euclidean plane.� An edge c 2 C represents a geometric constraint. Its weight w(c) gives thenumber of parameters that are �xed by the constraint; usually the number ofcorresponding equations. For example, a distance constraint �xes 1 parame-ter, and then has weight 1.So, the degree of freedom analysis exploits a structural property of the geo-metric constraint graph, called structural rigidity2.De�nition 3 Let S be a geometric constraint problem, and let G = (O;C) bethe corresponding weighted geometric constraint graph. Let W be the functionwhich computes the di�erence between the sum of object weights and the sum ofconstraint weights: W (G) =Po2O(w(o)) �Pc2C(w(c)).In dimension d, the system S is structurally rigid (in short s-rigid) i�:� W (G) = d(d+ 1)=2� For every sub-graph G0 of G, W (G0) � d(d+ 1)=2An s-rigid sub-graph of a geometric constraint graph will be called a clusterin this paper. Intuitively, in 2D, a cluster has 3 degrees of freedom since it canbe translated and rotated.The structural rigidity is similar to the property P de�ned in [LM98] and tothe density notion introduced in [HLS97].Recursive rigidi�cation creates iteratively a new cluster in the graph: a singlenode replaces the objects in the created cluster, and arcs connecting severalobjects in this cluster to one object outside the cluster are condensed into asingle arc labeled by the sum of the weights of the synthesized arcs. Figure 1illustrates the above notions.The planning phase aims at decomposing the whole system into a sequenceof small blocks of equations. It interleaves two steps called merge and extensionsteps which produce clusters recursively:� Themerge step �nds how to form a bigger cluster based on several clustersor geometric objects.� The extension step extends the obtained cluster by adding to it connectedobjects one by one.1 Roughly, the a and b of the corresponding equation: y = ax+ b2 The s-rigidity is a necessary condition to prove rigidity. However, it is not a su�-cient condition, except for distance constraints between points in 2D [Hen92]. Henceit should only be considered as a heuristic to detect rigid subparts in a geomet-ric constraint system. Several counterexamples in 2D and 3D show that redundantconstraints are the main cause of failure of the guess given by the s-rigidity [LM98].

A

B

C

D

E

F G

I

K (3)

K (3)

G
H

I

H 1

23

Fig. 1. Graphs associated to a geometric constraint problem.(Left) All objects are points and distance constraints are posted between points. Alledges have weight 1 and all vertices have weight 2 (they are not labeled). Every pairof connected points forms a cluster. Every triangle is also a cluster. Points C, D, E donot form an s-rigid sub-graph since it has 4 degrees of freedom.(Right) Another graph where triangles (A;B;C) and (D;E; F) have been condensedin two clusters K1 and K2. The arc of weight 3 condenses the arcs (A;D), (C;E) and(B;F).Merge steps would be su�cient to perform a plan. However, a merge step cantraverse the whole constraint graph. So, an extension is more or less a heuristic toperform an e�cient merge step: one checks incrementally whether the s-rigidityis maintained when only one object is added to the current cluster.The solving phase, also called construction phase, follows the plan given bythe previous phase and computes the coordinates of the geometric objects inevery cluster.1.3 Existing workRecursive rigidi�cation techniques have been developed [VSR92,BFH+95,FH93][FH97,DMS98] to assemble points and lines in 2D systems constrained by dis-tances and angles. [HV95] and [Kra92] describe �rst attempts to work in 3D. Inall these systems, a speci�c algorithm is used to merge two or three prede�nedclusters. The possible construction "patterns" appear in a library.Ho�mann et al. [HLS97,HLS98] have introduced a �ow-based algorithm toperform the merge step. This algorithm �nds a minimal dense sub-graph in aweighted geometric constraint graph, that is, it computes an s-rigid cluster ofminimal size (i.e. which has no proper s-rigid sub-graph). Ad-hoc solving meth-ods are used to achieve the actual construction. The algorithm works in anydimension, including 2D and 3D, and can be applied on any type of geometricobjects.The main limitation of Ho�mann's approach comes from the fact that nogeneral method is proposed to perform the solving phase. Symbolic tools couldalso be considered but are generally not e�cient enough to handle these prob-lems. Of course, ad-hoc solving methods can be used, but they must be de�nedfor every cluster the �ow-based algorithm can generate.

1.4 ContributionIn this paper, we propose:1. A new extension step's heuristic for Ho�mann's planning algorithm [HLS97].The aim is to generate smaller subsystems of equations.2. A new and general solving framework which is based on interval techniques.Interval narrowing algorithms [Lho93,HMD97] manage �oating intervals andcan solve a system of numeric equations by using �ltering and domain split-ting methods. They are used to compute solutions in every subsystem.Using interval techniques to carry out a construction step of recursive rigid-i�cation has two advantages: the approach is general and can replace ad-hocmethods related to speci�c patterns, and, no solutions are lost.2 The Planning PhaseThe goal of the planning phase is to �nd an ordering which can solve the con-straints in an incremental way. More precisely, the aim is to identify rigid sub-parts, that can be solved independently (and then assembled).Ho�mann et al. [HLS97] have introduced an algorithm which achieves sucha planning. The main limit of their algorithm comes from the fact that largeblocks of constraints have to be added in some cases. Thus the solving processmay become very costly. We introduce here a heuristic to limit the number ofconstraints that are added at each step.Next sub-section illustrates the principle and the limits of Ho�mann's algo-rithm on a short example. Afterwards, we detail the proposed heuristic.2.1 Ho�mann's algorithmHo�mann's planning algorithm builds a reverse tree of clusters called clustertree: the root is the �nal cluster covering the whole system; the leaves are thegeometric objects; there is an arc between a cluster K and all the clusters thathave been merged to yield K.Roughly speaking, the algorithm builds clusters in sequence by interleavingmerge and extension steps. It stops as soon as the whole system has been rigid-i�ed or when the system cannot be rigidi�ed further. The algorithm updatesa geometric weighted graph Gm while achieving merge and extensions steps.For instance, consider an example in 2D made of 15 points and 27 distanceconstraints between them (see Figure 2 - G0m).The �rst merge step �nds the sub-graph G =< A;B > of Gm. This clus-ter is extended until a �x-point is reached. The set of adjacent points of thiscluster is fC;H; Ig. Since < A;B; I > is s-rigid, I is added to G. The sameprocess is performed to add H , C and J to G. Now the set of adjacent pointsis fD;G;N;Kg. None of these points can be added by extension, so we havereached the �x-point G =< A;B; I;H;C; J >. A new vertex K1 of weight 3 isadded and A;B; I;H;C; J are removed from Gm as well as all constraints amongthem (see Figure 2 - G1m). K1 is placed into the cluster tree and the next merge

K

O

MN

L

G F

ED

K (3)

G F

ED

K (3)

K (3)

Gm
1 2

3

m

m

G

G

Gm
0

K

O

MN

LJ

G F

EDCB

HI

A

2(
JN

,J
K

)

Cluster Tree

K1

K4

A B C H I J
K2

K L M N O

 K1 K2 K3

2(
JN

,J
K

)

2(CG,CD)

2(FL,G
L)

K3
 D E F G

4
mG

1 1

K (3)

K (3)

K (3)

K (3)

1

2

2

3

4

Fig. 2. Snapshots of the graph Gm during the execution of Ho�mann's planningmethod, and resulting cluster tree.step is performed. It identi�es < M;N > as minimal s-rigid sub-graph of Gm.This cluster is extended to K2 =< M;N;O;K;L > (see Figure 2 - G2m). Notethat K2 could have been extended onto J if < M;N > were identi�ed at thebeginning. Finally, G;F;D and E are merged into K3 (note again that C and Lcould have been included in K3) (see Figure 2 - G3m).Since clusters do not share points, inter-cluster constraints (i.e., the distance con-straints dist(J;K), dist(J;N), dist(G;C), dist(G;L), dist(F;L) and dist(C;D)) are handled by the last merge step (see Figure 2 - G4m), for which the solvingstep can hence be expensive.Therefore, we propose a new heuristic where clusters can share objects, theaim being to maximize the extension capabilities, and thus, to reduce the numberof constraints which have to be handled during the merging steps. This heuristicgeneralizes previous ad-hoc techniques [BFH+95].2.2 The proposed heuristicLike Ho�mann's algorithm, Algorithm Rigidification interleaves merge andextension steps. To facilitate object sharing it uses the following two graphs:� The merge graph Gm which corresponds to the graph of clusters used inHo�mann's algorithm. However, in our algorithm, Gm is used only for themerge step.� The extension graph Ge which is specially maintained for the extension step.It contains the shared objects as well as the objects which have not yet beenincluded in a cluster.The algorithm performs three main steps iteratively (within the while loop):a merge step, an extension step and an update step.

One merge step is achieved by the MinimalSRigid(Gm, d, Ge) function. Thisfunction �rst computes G1, a minimal dense sub-graph of Gm, with the �ow-based algorithm described in [HLS97]. The dense sub-graph is then convertedinto a sub-graph of Ge and returned. The empty set is returned if Gm containsa single node or if no s-rigid sub-graph can be found.One extension step extends the cluster G1 found by the merge step. Therepeat loop incrementally adds one object to G1. Objects are added as long asthe obtained graph remains s-rigid.The last step updates the two graphs Gm and Ge.Updating the graph GmA new cluster K is created in Gm and replaces the included clusters and objects(sub-graph G2). This is performed by the function Condense(G2, K, Gm) asfollows: (a) replace all vertices in G2, the sub-graph of Gm corresponding to G1,by a single node K in Gm; (b) combine all arcs from one vertex v of Gm �G2to vertices of G2 into one arc from v to K with a weight equal to the sum of thecombined arcs.The newly created cluster K may contain shared variables which have beenpreviously included in other clusters. Coincidence constraints are thus added inGm to take them into account. Intuitively, coincidence constraints are added topreserve the right number of degrees of freedom in Gm. They state that thedi�erent occurrences of a shared object correspond in fact to a single object(function AddCoincidences(K, Gm)).Updating the graph GeThe nodes in the newly created cluster K are partitioned into two sets: theinterface objects that are connected to other objects in Ge and the internalobjects. Function RemoveVertices removes the internal objects since they ares-rigid relative to each other (that results from the fact that they are included inthe same cluster K). In the opposite, interface objects remain in Ge since theymay potentially be shared by other clusters in further steps.To maintain the right number of degrees of freedom, the interface objects inGe must be rigidi�ed. The function Rigidify adds interface constraints betweenthem in Ge as follows: if the cluster K contains two interface objects o1 and o2,a weighted arc (o1, o2) is added to make them s-rigid; if there are more than twointerface objects, every other object oi in K is rigidi�ed by adding arcs (oi, o1)and (oi, o2) (see for coming [JTNR00]).Algorithm Rigidification terminates since the number of objects in Gmdecreases at each step. The correction is ensured by the fact that the s-rigidityproperty is preserved in Gm and Ge as long as the algorithm runs.2.3 ExampleFigure 3 illustrates the behavior of Algorithm Rigidification on the exampleintroduced in Figure 2.

Algorithm 1 Rigidification (in G: Graph; in d: Integer; out CT : Clus-terTree){G is the initial weighted geometric graph; d is the dimension of the problem (2D,3D); CT is the plan (cluster tree) that is produced by the algorithm.}CT ;; Gm G; Ge GG1 MinimalSRigid(Gm , d, Ge) {First merge step}while G1 6= ; do{Extension step}repeatfor all o 2 Gej9o1 2 G1 and edge (o; o1) 2 Edges(Ge) doif G1 [fog is s-rigid then{Add o and corresponding edges to G1}AddVertex(G1, o, Ge)end ifend foruntil FixPoint {G1 is no more modi�ed}G2 Convert(G1, Gm) {G2 is a sub-graph of Gm corresponding to G1}Condense(G2, K, Gm) {Replace G2 by a new vertex K in Gm}AddCoincidences(K, Gm)InsertCluster(K, CT) {Insert K in the cluster tree}Rigidify(InterfaceObjects(G1)) {Add interface constraints of G1 in Ge}RemoveVertices(InternalObjects(G1), Ge) {Remove from Ge internal objectsand connected arcs}G1 MinimalSRigid(Gm , d, Ge) {Merge step}end whileThe �rst merge and extension steps are similar to Ho�mann's one and yield asub-graph G1 containing the points A, B, I , H , C, J . A new vertex K1 of weight3 replaces these points in Gm. The internal points A, B, H , I are removed fromGe, along with the internal constraints, but an interface constraint is addedbetween J and C.The clusterK2 is then created in the same way. It is condensed into Gm. SinceK2 includes the point J which also belongs to K1, a coincidence constraint ofweight 2 is added in Gm between K1 and K2.The cluster K3 is �nally created. It includes all the remaining points in Ge,and in particular, the interface constraints. Then, the planning phase is �nished.2.4 Comparing with Ho�mann's approachHo�mann's algorithm uses a single graph to achieve merging steps and extensionsteps whereas Algorithm Rigidification performs the extensions on a speci�cgraph that contains shared objects. Thus, Algorithm Rigidification may beable to achieve more extensions. It is important to understand that one extensionimplies the creation of a system of equations the size of which is not greater than3 in 2D (6 in 3D), that is, the number of degrees of freedom of the added object.Since this heuristic maximizes the number of extensions steps, it should reducethe solving cost of the merge steps.

K

O

MN

LJ

G F

EDC

LJ

G F

EDC

K

O

MN

L

G F

ED

G F

ED

Gm

e

1 2 3
m m

e
1 2

G G

G G

K

O

MN

LJ

G F

EDC

Gm

e

0

0G

B

HI

A

K

O

MN

LJ

G F

EDCB

HI

A

2(J)

Cluster Tree

K1

K3

(CJ) (JL)

A B C H I J
K2

J K L M N O

C D E F G L J

K (3)1 K (3)1

K (3)2

K (3)3

Fig. 3. Snapshots of the graphs Gm and Ge during the run of the algorithm, andobtained cluster tree. Interface constraints are drawn in dotted lines.For instance, on the previous example, Ho�mann's algorithm builds clustersK1, K2 and K3 before merging them into K4 (see Figure 2). This correspondsto 9 extension steps and 4 merge steps; the last one will have to merge 3 clusterswith 6 distance constraints between them. On the same example, AlgorithmRigidification achieves 13 extensions and only 3 merges. None of these stepsinvolve more than 2 distance constraints.3 The Solving PhaseThis section shows how to use interval constraint techniques for solving the treeof clusters built in the planning phase.Atomic steps of the planning phase generate subsystems of equations, calledblocks in the paper, that can be solved in sequence. Interval constraint tech-niques solve every block and yield numeric solutions3. When a solution is foundin a block, the corresponding variables are replaced by their value in subsequentblocks. When the resolution fails, a backtracking step occurs and another so-lution is searched for in the previous block. The next subsections detail howto generate the blocks of algebraic equations based on a cluster tree. Di�erentsolving processes of the decomposed system are also described.3.1 Generating the equationsA directed acyclic graph (DAG) of blocks is created while the cluster tree isbuilt.3 A superset of the solutions is in fact obtained: eliminated parts of the search spacenever contain any solution, but the remaining non-empty intervals might contain nosolution.

� A block contains a (sub)system of equations. It includes the equations cor-responding to the arcs (geometric constraints) removed from Ge during onemerge step or one extension step;� There is an arc from a block A to a block B if a variable to be instantiatedin A also occurs in an equation of B.Note that interface constraints are considered in the same way as others inthis process. Figure 4 provides an example of such a DAG of blocks.
Xj ,YjK1 K1 Xc ,YcK1 K1 Xj ,YjK2 K2 Xl ,YlK2 K2

Xj ,YjK3 K3

Xf Yf Xd

Yd

Xe,Ye Xg,Yg

Xc ,YcK3 K3 Xl ,YlK3 K3

K1 K2

K3

Fig. 4. DAG of blocks associated to the cluster tree of the example in Fig. 3. Blocksare represented by small rectangles showing the computed variables. All the blocks inK3 are shown. The block at the top of K3 is created by the merge step (merging Dand F). Descendant blocks are created by extension. The last block contains the twointerface constraints added during the process.Now, let us detail how interface constraints are handled. Each block computesits own set of variables. The variables corresponding to an interface object arereplicated in each cluster where the object occurs. Object J shared by clustersK1, K2 and K3 leads to de�ne variables xJK1 , yJK1 , xJK2 , yJK2 , xJK3 , yJK3 .Variables xJK1 , yJK1 (resp. xJK2 , yJK2) are computed when solving clustersK1 (resp. K2). When solving cluster K3, the block computing xJK3 , yJK3 ismade of the 2 interface constraints dist(J3; L3) = dist(J2; L2) and dist(J3; C3)= dist(J1; C1). In this block, the last one in cluster K3, all the variables exceptxJK3 , yJK3 have already been computed in previous blocks.Now we will describe the di�erent solving processes based upon interval nar-rowing techniques.3.2 Domain splitting and �ltering per blockA �rst approach to solve a DAG of blocks has been described at the beginningof this section. Standard �ltering and domain splitting can compute a set of

solutions in every block and an inter-block backtracking process is performedwhen an inconsistent combination of block solutions occurs.Performing interval narrowing on a block is straightforward, the variables ofthe entire block being subject to domain splitting and �ltering. However, oneshould pay attention to the inter-block process: the computed values, which willbe replaced in a subsequent block, are not �oating numbers, but an interval of�oating points (even very small, e.g., 10�8 large). We could handle such constantintervals by slightly modifying the LNAR function of Numerica [HMD97] 4. Wehave chosen another process: the middle point of the reduced constant intervalreplaces the variable in equations included in subsequent blocks. This middlepoint heuristic is easy and general. It is correct if the set of intervals obtained atthe end is checked, by a �ltering process, against all the equations in the entiresystem. In practice, this �nal check is very fast since the intervals are reallysmall. Of course, this process does not guarantee to �nd all solutions but we didnever lose any solution in practice on the tested examples.This approach is very e�cient because replacing a variable by a constantsimpli�es the system of equations.3.3 Performing propagation on the whole systemAnother algorithm could be applied that limits domain splitting in one block ata time, but performs �ltering by propagation on the whole system. There aretwo di�erent ways to implement propagation:1. All the blocks are managed by a standard inter-block backtracking process,just like the pure backtracking algorithm described in the previous subsec-tion. Two systems of equations are thus handled by the interval constraintsolver: one system corresponding to the current block to be solved by �lter-ing and domain splitting, and another one which includes the equations inthe blocks not yet solved. The second system can be �ltered by propagationwhen an interval is reduced in the �rst one. This approach will be calledblock solving with propagation in the rest of the paper.2. Another approach, where all the system is in a single block, is called globalsolving in the following. It considers the given plan as a heuristic to selectthe next variables for domain splitting with respect to the decomposition.Their domains are split until the desired precision is reached. Filtering isapplied on the full system after each split.The global solving algorithm is simpler to design than block solving withpropagation. However, global solving is less e�cient for two reasons. First, allblocks are checked for �ltering anyway. Second, it cannot bene�t from the middlepoint heuristic.Conceptually, it is possible to bring the inter-block backtracking process to-gether with any solving algorithm that can yield several solutions for one block.4 The LNAR function, applied to a variable in an equation, replaces all the othervariables by a constant interval and searches for the left most zero.

Symbolic algorithms can be used when no trigonometric equations are requiredto model the system. Plugging such an algorithm in our inter-block process en-sures completeness and could be considered for solving small blocks. On thecontrary, classical numerical algorithms should not be used in this decomposi-tion scheme since they provide only one solution per block and those partialsolutions may not be combinable.3.4 Unifying reference systemsOnce the solving phase is �nished, every object in the root cluster has beenplaced in the �nal reference system. Only internal objects of clusters have notyet been placed in this system. To do so, rigid-body transformations must bedone on the cluster tree. The cluster tree is traversed from the root to the leaves.At each node, one performs a rigid body transformation, in the �nal referencesystem, of the coordinates belonging to the internal objects of the cluster. Moreprecisely:1. The coordinates of the interface objects are known in the �nal system, as thetree is followed from the root to the leaves, and are used them to computethe transformation coe�cients.2. The internal coordinates of the cluster are then recomputed in the �nalreference system, based on the obtained transformation matrix.By traversing the tree in reverse order of its construction, a coordinate of anobject is computed only once as an objects becomes internal only once.4 Experimental ResultsThis section provides preliminary results on three examples (see Figure 5). Theirconstraint systems contain points and distance constraints. Since we wantedto compare the time spent for computing all solutions, we have adjusted thedistance values in order to obtain a limited number of solutions per problem(128 for Ex1, 64 for Ex2 and 256 for Ex3).

Fig. 5. From left to right, the three 2D examples we consider, made of points anddistance constraints: Triangles (Ex1), Diamonds (Ex2) and Hexagon (Ex3)

First, we compare the decomposition obtained by recursive rigidi�cation witha more general equational decomposition which works at the equation and vari-able level and does not take into account the s-rigidity property of the geometricsystem [AAJM93,BNT98]. This approach is based upon a structural analysisof the graph of variables and equations, using a maximum matching algorithmand a Dulmage and Mendelsohn decomposition. We also apply our solving tech-niques on this equational decomposition. For the sake of simplicity, we will usethe following abbreviations:� ED stands for the equational decomposition based on a maximum matching;� SD1 denotes the decomposition based on shared objets we have introducedin Section 2 (Algorithm Rigidification);� SD2 denotes Ho�mann's rigidi�cation algorithm.4.1 Maximal block sizeWe can see in Table 1 that the SD1 decomposition leads to smaller blocks thanSD2.The �rst two examples are decomposed by SD1 into blocks made of 2 e-quations. With the SD2 decomposition, the maximum block size is 10 or 12. Infact, these blocks of size 10 or 12 can further be decomposed by the equationaldecomposition technique and the blocks �nally solved have a maximum size of 6in both cases (SD2+ED). For SD1, ED cannot further decompose the obtainedblocks. In the third example, a block of size 8 remains in both decompositionsand cannot be decomposed by ED anymore.examples SD1 SD1+ED SD2 SD2+ED ED NDEx1 2 2 10 6 14 26Ex2 2 2 12 6 10 20Ex3 8 8 8 8 8 20Table 1. Size of the biggest equation block obtained by semantic decomposition withshared points (SD1) and without shared points (SD2), the semantic decompositionsfollowed by the equational decomposition (SD1+ED, SD2+ED), equational decompo-sition on the whole system (ED), and no decomposition (ND, which also represents thesize of the complete system)4.2 Solving with interval narrowing techniquesWe provide here the time spent to solve the examples for di�erent decomposition-s: SD1+ED, SD2+ED, ED and ND. Times for solving with SD1 decompositionare exactly the same as SD1+ED since the plan remains the same with or withoutapplying ED. Times for solving SD2+ED are necessarily better than times forSD2 alone since SD2+ED provides a better decomposition. For the decomposedsystems, we run the 3 methods presented in Sections 3.2 and 3.3: the inter-blockbacktracking (M1), the inter-block backtracking with propagation (M2), and the

global solving which uses the decomposition as a heuristic for choosing the nextdomain to split (M3).All experiments were performed on a Pentium III 500, using IlogSolver [ILO98], with the IlcNumerica library which implements domain �lteringby Box-Consistency [BAH94].Examples SD1+ED SD2+ED ED NDM1 M2 M3 M1 M2 M3 M1 M2 M3 -Ex1 17 9 455 43 28 1322 58 29 385 5795Ex2 1.4 11 77 9 13 178 56 117 467 6640Ex3 0.9 3.4 289 2.6 12.2 1646 1.5 3.7 533 2744Table 2. Results in CPU time (in seconds) for the decompositions SD1+ED, SD2+EDand ED with the solving methods M1, M2 et M3 and for a solving without decompo-sition (ND)4.3 AnalysisThese results show that:� Any decomposition is always fruitful: without decomposition, the solvingtimes may be 2 orders of magnitude higher.� The semantic decomposition (SD1) based on rigidi�cation yields in generalsmaller blocks than equational decomposition (ED). The performances arebetter when the maximal block size is smaller.� Methods M1 and M2 give even better results than M3, which shows theinterest of the middle point heuristic.� The e�ect of the propagation depends on the problem itself: when manyinter-block backtracks occur, like in Ex1, the inter-block constraint propa-gation (M2) does pay o�.5 ConclusionThis paper has introduced a complete framework for handling geometric con-straints. It is composed of:� A new heuristic for the planning algorithm which allows us to build smallsubsystems of equations. This semantic-guided phase yields a better decom-position of a rigid system than a syntactic one.� A solving phase based on interval techniques. This approach is general anddoes not lose any solution. It is a promising alternative to ad-hoc or classicalnumeric approaches.To validate this framework, further experiments have to be performed.

References[AAJM93] Samy Ait-Aoudia, Roland Jegou, and Dominique Michelucci. Reduction ofconstraint systems. In Compugraphic, 1993.[BAH94] F. Benhamou, D. Mc Allester, and P. Van Hentenryck. Clp(intervals) revis-ited. In Proc. Logic Programming, MIT Press, 1994.[BFH+95] William Bouma, Ioannis Fudos, Christoph Ho�mann, Jiazhen Cai, andRobert Paige. Geometric constraint solver. Computer Aided Design,27(6):487�501, 1995.[BNT98] Christian Bliek, Bertrand Neveu, and Gilles Trombettoni. Using graphdecomposition for solving continuous csps. In Principles and Practice ofConstraint Programming, CP'98, volume 1520 of LNCS, pages 102�116.Springer, 1998.[DMS98] Jean-François Dufourd, Pascal Mathis, and Pascal Schreck. Geometric con-struction by assembling sub�gures. Arti�cial Intelligence, 99:73�119, 1998.[FH93] Iaonnis Fudos and Christoph Ho�mann. Correctness proof of a geometricconstraint solver. Technical Report TR-CSD-93-076, Purdue University,West Lafayette, Indiana, 1993.[FH97] Iaonnis Fudos and Christoph Ho�mann. A graph-constructive approach tosolving systems of geometric constraints. ACM Transactions on Graphics,16(2):179�216, 1997.[Hen92] Bruce Hendrickson. Conditions for unique realizations. SIAM J Computing,21(1):65�84, 1992.[HLS97] Christoph Ho�mann, Andrew Lomonosov, and Meera Sitharam. Findingsolvable subsets of constraint graphs. In Proc. Constraint ProgrammingCP'97, pages 463�477, 1997.[HLS98] Christoph Ho�mann, Andrew Lomonosov, and Meera Sitharam. Geometricconstraint decomposition. In B. Brüderlin and D. Roller, editors, GeometricConstraint Solving and Applications, pages 170�195. Springer, 1998.[HMD97] Pascal Van Hentenryck, Laurent Michel, and Yves Deville. Numerica : AModeling Language for Global Optimization. MIT Press, 1997.[HV95] C. M. Ho�mann and P. J. Vermeer. A spatial constraint problem. In J.-P.Merlet and B. Ravani, editors, Computational Kinematics'95, pages 83�92.Kluwer Academic Publishers, 1995.[ILO98] ILOG. Ilog solver reference manual. Technical report, ILOG, 1998.[JASR99] R. Joan-Arinyo and A. Soto-Riera. Combining constructive and equationalconstraint solving techniques. ACM Transactions on Graphics, 18(3):35�55,1999.[JTNR00] Christophe Jermann, Gilles Trombettoni, Bertrand Neveu, and Michel Rue-her. A constraint programming approach for solving rigid geometric systems.Technical Report 00-43, University of Nice, France, 2000.[Kra92] G. Kramer. Solving Geometric Constraint Systems. MIT Press, 1992.[Lho93] O. Lhomme. Consistency techniques for numeric csps. In Proc. IJCAI,Chambery, France, 1993.[LM98] Hervé Lamure and Dominique Michelucci. Qualitative study of geometricconstraints. In Beat Bruderlin and Dieter Roller, editors, Geometric Con-straint Solving and Applications, pages 234�258. Springer, 1998.[VSR92] A. Verroust, F. Schonek, and D. Roller. Rule oriented method forparametrized computer aided design. Computer Aided Design, 24(6):531�540, 1992.

