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Abstract

We present a novel semantics for extracting bounded-level
modules from RDF ontologies and databases augmented with
safe inference rules, à la Datalog. Dealing with a recursive
rule language poses challenging issues for defining the mod-
ule semantics, and also makes module extraction algorithmi-
cally unsolvable in some cases. Our results include a set of
module extraction algorithms compliant with the novel se-
mantics. Experimental results show that the resulting frame-
work is effective in extracting expressive modules from RDF
datasets with formal guarantees, whilst controlling their suc-
cinctness.

Introduction
The Semantic Web consolidated a legacy of ontologies and
databases today seen as reference systems for building new
Semantic Web applications. To illustrate, consider a medi-
cal application for anatomy, whose goal is to showcase the
structure of the human body, the most common patholo-
gies and diseases, and the scientists that contributed to their
study. A structural description of human anatomy can be
drawn from FMA1 or My Corporis Fabrica (MyCF).2 A tax-
onomy of clinical terms about diseases can be extracted from
SNOMED, 3 while biographical informations about scien-
tists implied in studies can be taken from DBPedia.4 These
reference system contain knowledge that can be reused to
minimize the introduction of errors in the application. How-
ever, it is inconvenient to integrate in the application the
whole datasets, as they contain complementary data and on-
tology axioms that are logically redundant. It is thus prefer-
able to extract lightweight fragments of these reference sys-
tems - the modules - that are relevant for the application, and
then to build on top of them.

While extracting modules from ontologies has
been largely investigated for Description Logics (DL)
(Grau et al. 2008; Konev et al. 2008), module extrac-
tion from RDF triplestores has received little attention.
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Yet, more and more huge RDF datasets are flourishing in
the Linked Data and some of them, like DBPedia or YAGO
(Suchanek, Kasneci, and Weikum 2007), are increasingly
reused in other more specialized datasets. RDF is a graph
data model based on triples accepted as the W3C standard
for Semantic Web data, with a simple ontology language,
RDF Schema (RDFS). The W3C proposed OWL for
writing expressive ontologies based on DL constructors.
Whereas OWL is often seen as an extension of RDFS, this
is not exactly the case. Both RDFS and the RDF query
language (SPARQL) feature the possibility of accessing at
the same time the ontology data and schema, by making
variables ranging over classes or properties. This domain
meta-modeling goes beyond the first-order setting typically
considered in DL (De Giacomo, Lenzerini, and Rosati
2011). As a consequence, DL modularization frameworks
are not applicable to popular RDF datasets like DBpedia
or YAGO. Also, the clear separation between the ABox
and the TBox made in DL to define the semantics of
modules is not appropriate for RDF where facts and schema
statements can be combined within a single RDF triplestore
to accommodate heterogeneous knowledge from the Web.
Another limit of the current approaches is that the existing
semantics do not allow to limit the size of the extracted
modules. As discussed in (Grau et al. 2008), the risk in
practice is to output large portions of the initial ontologies,
thus jeopardizing the gains of modularization.

Contributions. As a first contribution, we propose a uni-
fying framework for RDF ontologies and databases we call
deductive RDF triplestores, which is based on RDF triple-
stores equipped with safe Datalog inference rules. This rule
language allows to capture in a uniform manner OWL con-
straints that are useful in practice, such as property transtiv-
ity or symmetry, but also domain-specific rules with practi-
cal relevance for users in many domains of interest.

The second and main contribution of the paper is a para-
metric semantics for bounded-level modules allowing to ef-
fectively control their size. We employ a notion of level of
detail for modules in such a deductive setting. For example,
a signature ( subClassOf, partOf )3[ eye ] limits the module-
data extracted from a triplestore, by allowing to retrieve a
description of all subclasses and subparts of the eye up to
three levels.



t(tendon, subClassOf, anatomical structure)
t(anatomical structure, type, anatomical entity)
t(tendon gastr. muscle, insertOn, knee)
t(tendon gastr. muscle, subClassOf, tendon)
t(knee, subClassOf, anatomical structure)
t(knee, type, anatomical entity)
t(irm42, type, knee)

Figure 1: Triplestore D1

The modules in our framework are constituted of both
data and rules entailed by a reference system. Dealing with
recursive Datalog rules makes properly defining the para-
metric modules challenging, and module extraction algorith-
mically unsolvable in some cases. Therefore, we focus on a
class of rules meeting a mild condition on indirect recur-
sion. This is still expressive enough to state for instance
transitivity rules. As a third contribution, we then provide
sound and complete module extraction algorithms, and out-
line their complexity. Our approach has been implemented
on top of an RDF engine and experimentally tested. Proofs
and experiment details are reported in (Rousset and Ulliana
2014).

Deductive RDF Triplestores
Data Along the lines of (Calı̀, Gottlob, and Pieris 2011)
and (Libkin, Reutter, and Vrgoc 2013), we assume an infi-
nite universe of constants CONST, which forms the triple-
store domain, and an infinite set of variables VARS used
in rules. We range over constants by a, b, p, q. We de-
note by x , y , z and x̄ , ȳ , z̄ , variables and sequences of
variables belonging to VARS, respectively. A term, de-
noted by u, v is either a constant or a variable. We de-
fine RDF triplestores as relational databases over a schema
restricted to a single ternary relation t(·, ·, ·). An atomic
formula t is of the form t = t(u1, u2, u3), with ui a
term. A triplestore D is a finite set of atoms of the form
t(u1, u2, u3) with ui ∈ CONST. Triplestores essentially rep-
resent RDF graph data over a relational vocabulary. A path
p(u0,un) = t(u0, v1, u1), t(u1, v2, u2), . . . , t(un−1, vn, un)
is a sequence of atoms where each ui, vi are terms.
The length of a path is the number of its atoms, here
|p(u0,un)| = n.

Figure 1 presents an RDF triplestore, together with its
graph version. The example is inspired by the MyCF on-
tology (Palombi et al. 2014), which classifies digital repre-
sentation of human body parts, acquired by IRMs or tomo-
graphies, according to anatomical knowledge. For instance,
the type edge connecting irm42 with knee, corresponds to
the triplestore atom t(irm42, type, knee), which is the stan-
dard RDF syntax for class membership.

Rules Deductive triplestores are equipped with safe Data-
log rules. These are first-order logic formulas of the form
∀x̄ ȳ . φ(x̄ , ȳ) → t(x̄ ) where x̄ and ȳ are sequences of vari-
ables belonging to VARS, and t(x̄ ) and φ(x̄ , ȳ) are an atom
and a conjunction of atoms over the ternary relation t(·, ·, ·),
constituting the head and the body of a rule, respectively.
We denote a rule by r and a set of rules by R. To illustrate,
the rules for class subsumption
r1 : t(x , type, y), t(y , subClassOf, z )→ t(x , type, z )
r2 : t(x , subClassOf, y), t(y , subClassOf, z )
→ t(x , subClassOf, z )
on D1 entail that irm42 has type anatomical structure, and
that a subclass of this last one is tendon gastr. muscle.

Datalog supports recursion by design. A rule r is said to
be recursive if its conclusion unifies with one of its premises.
In this work, we consider sets of rules where recursion is
limited to recursive rules, like

r1 : t(x , hasPart, y)→ t(y , partOf, x )
r2 : t(x , insertOn, y), t(y , partOf, z )→ t(x , insertOn, z )
r3 : t(x , partOf, y), t(y , partOf, z )→ t(x , partOf, z )

and, we exclude the presence of indirect recursion, in all
cases where this involves non-recursive rules, like

r4 : t(x , contains, y)→ t(x , partOf, y)
r5 : t(x , partOf, y), t(y , partOf, z )→ t(z , contains, x )

This mild restriction on recursion is of practical relevance,
as it is enjoyed by the most relevant RDFS rules, like the
mutually recursive ones for domain and range.
rdom : t(x , domain, z ), t(y , x , y ′)→ t(y , type, z )
rran : t(x , range, z ′), t(y , x , y ′)→ t(y ′, type, z ′)

Datalog semantics is defined as the least fix-point of the
immediate consequence operator (denoted by `1).

Definition 1 (Datalog Inference) The single-step Datalog
inference, denoted by D,R `1 D′, holds when
D′=D ∪ {µ(head(r)) |µ(body(r)) ∈ D and r ∈ R}, with
µ an homomorphism from variables to constants. Then,
we write D,R ` D′ when there exists a positive integer n
such that Di, R `1 Di+1 for all 0≤i<n, with D=D0 and
D′⊆Dn. The triplestore D saturated with R, is defined as
SAT(D,R) = {t ∈ D′ |D,R ` D′}.

We write D,R ` p(u0,un) for the entailment of a path that
holds if all path atoms are in SAT(D,R). Rule entailment,
also referred as the immediate consequence operator for
rules defines, by means of semantic conditions, when a Dat-
alog rule r is entailed by a set R.

Definition 2 (Rule Entailment) A rule r is entailed by a set
R, denoted by R ` r, if for all triplestore D it holds that
SAT(D, r) ⊆ SAT(D,R). A set R′ is entailed from R, de-
noted by R ` R′ when R ` r for all r ∈ R′.

A deductive RDF triplestore is a pair 〈D,R〉 where D is a
triplestore and R is a finite set of (possibly recursive) rules.
Triplestore entailment, denoted by 〈D,R〉 ` 〈D′, R′〉, holds
when D,R ` D′ and R ` R′.



Figure 2: Triplestore examples

Bounded-level Modules
A module is declared by means of a signature Σ of the form
Σ = ( p1, . . . , pn )k[ a ] where the constants p1, . . . , pn rep-
resent the properties of interest of the module, the constant a
represents an object of interest of the module, and k is a pos-
itive integer denoting the level of detail of the module. An
example of module signature is ( partOf )3[ eye ]. Intuitively,
a module M induced by a signature Σ on a reference system
〈D,R〉 is a deductive triplestore M=〈DM , RM 〉 which is
logically entailed by 〈D,R〉 and conforming to Σ, in the
sense that all data and rule atoms employ the properties
p1, . . . , pn only. Furthermore, to control the module size,
the facts in M are restricted to the paths rooted at the object
of interest a, of length bounded by k.

We say that an atom conforms to Σ, denoted by
t(v1, u, v2) ◦

◦ Σ, if u is a property of Σ or u ∈ VARS. A
set of atoms ∆ conforms to Σ if all of its atoms do. Then,
〈D,R〉 conforms to Σ if so do D and R. In Figure 2(c) it
holds that D3

◦
◦ ( partOf, subClassOf )2[ knee ]. However, it

does not hold that D3
◦
◦ ( subClassOf )1[ knee ].

Restricting the module paths is a way to effectively con-
trol the module size. Nevertheless, for the completeness of
the module data, it is essential to guarantee that the module
entails all of such bounded paths entailed by 〈D,R〉. In a
deductive setting, adding new paths in the graph, defining
properly DM becomes challenging.

First, we observe that to avoid incomplete modules, the
paths of DM have to be drawn from SAT(D,R). To see
this, consider D2 in Figure 2(a) and a rule inferring pairs of
organs (y , z ) physically connected by a tendon
r2 : t(x , insertOn, y), t(x , insertOn, z ),
t(x , subClassOf, tendon)→t(y , tendonConnected, z )

A user interested in the organs directly and indirectly
connected to the femur of this triplestore can declare
the module signature Σ2=( tendonConnected )2[ femur ].
By restricting the module data DM to the paths in
D2 of length bounded by 2 that are rooted at femur
and that use the property tendonConnected only, we
get DM = {t(femur, tendonConnected, gastroc.Muscle)}.
This dataset has however to be considered incomplete.

As shown in Figure 2(b), the rule r2 entails on D2 also
the fact t(gastroc.Muscle, tendonConnected, knee). This

forms a path of length two together with the original triple
t(femur, tendonConnected, gastroc.Muscle), that should be
included in DM . The example illustrates clearly that DM

depends from the rules in R.
However, taking into account all paths in SAT(D,R) is

not desirable for defining modules of bounded size. In some
cases, the triples entailed by recursive rules may produce
new edges in the data graph that behave like shortcuts be-
tween resources, thereby wasting the module parametricity.
Consider D3 in Figure 2(c) and the recursive rule r3 defin-
ing the transitivity of partOf

r3 : t(x , partOf, y), t(y , partOf, z )→ t(x , partOf, z )

The saturated triplestore SAT(D3, r3) is depicted in Fig-
ure 2(d). It contains t(patella, partOf, knee) but also
t(patella, partOf, leg) and t(patella, partOf, inferiorBody).
More generally, it contains all triples of the form tb =
t(patella, partOf, b) entailed by the transitivity of partOf.
This means that if we take into account the recursive
rule r3 for defining the module paths, then all triples tb
are likely to be part of the module induced by signature
( partOf )1[ knee ]. This undermines the module parametric-
ity because it retrieves all resources connected with knee re-
gardless of the level of detail k.

Our solution to both keep into account implicit triples and
make parametricity effective, is to define the module data as
a subgraph of a partially-saturated triplestore obtained by
applying non-recursive rules only, while fully delegating to
the module the recursive rules. This leads to the following
novel definition of module.

Definition 3 (Module) Let 〈D,R〉 be a deductive triple-
store and Σ = ( p1, . . . , pn )k[ a ] a signature. Then,
M=〈DM , RM 〉 is a module for Σ on 〈D,R〉 if

1. 〈DM , RM 〉 ◦
◦ Σ

2. 〈D,R〉 ` 〈DM , RM 〉
3. if p(a,b)

◦
◦ Σ and |p(a,b)| ≤ k then

(a) D,RNonRec ` p(a,b) implies DM , RM ` p(a,b)

(b) DM , R ` p(a,b) implies DM , RM ` p(a,b)

Point 1 and 2 of the definition state the well-formedness and
the logical entailment of the modules, respectively. Point
3 is the crux of the definition. Property 3(a) says that ev-
ery path rooted at a of k-bounded length and conforming
to Σ, that is entailed by the non-recursive rules of the refer-
ence systemRNonRec, must also be inferable byM . Property
3(b) enforces that the module rules RM infer the same paths
conforming to Σ as the whole set of rules R, but only when
applied to the module dataDM . In contrast with the spirit of
previous approaches (e.g., (Grau et al. 2008)), our definition
does not enforce that every fact in the signature entailed by
the reference triplestore also belongs to the module. Relax-
ing the module conditions in this way allows to control the
module size, and cope with recursive rules.

To illustrate the definition, consider the triplestore D4 of
Figure 3(a) equipped with the rules below.
r4 : t(x , hasFunction, y)→ t(x , participatesTo, y)
r′4 : t(x , participatesTo, y), t(y , subClassOf, z )→
t(x , participatesTo, z )



Figure 3: Triplestore and module examples

Figure 3(b) depicts SAT(D4, {r4, r
′
4}). Consider now

Σ4=( participatesTo, subClassOf )2[ knee ]. A module M4

for Σ4 contains all paths rooted at knee of length at most 2,
employing participatesTo and subClassOf only.

Note that if the recursive rule r′4 is considered, then the
triple t1=t(knee, participatesTo, bodyPosture) is included
in the module dataset, which is not desirable. In contrast,
t2 = t(knee, participatesTo, kneePosture) is expected to be
in a module for the signature Σ4. A structure satisfying Def-
inition 3 isM4 = 〈DM4

, RM4
〉withDM4

depicted in Figure
3(c) and RM4

= {r′4}. Note that t2 is not explicitly in the
module dataset DM4

but can be inferred by r′4 as shown in
Figure 3(d).

Next, we present two algorithms for extracting module
data and rules compliant with this novel semantics.

Extracting Module Data
The extraction of the module dataset can be done by lever-
aging on the evaluation of Datalog queries and implemented
on top of existing engines. Given a module signature Σ =
( p1, . . . , pn )k[ a ], the set of Datalog rules ΠΣ below com-
putes all paths rooted at a, of length bounded by k, and built
on the properties of interest of Σ. It does so, in the extension
of the relation m, starting from a triplestore modeled with a
single relation t.

ΠΣ=


m1(a, pi, x ) ← t(a, pi, x )

mj+1(x , pi, y) ← mj(x1, y1, x ) , t(x , pi, y)

m(x , y , z ) ← mj(x , y , z )

An instance of the rules is included for each i = 1..n and
j = 1..k. ΠΣ is a non-recursive set of rules of size O(nk)
that can always be evaluated in at most k steps. Then, to
infer all paths of bounded length entailed by non-recursive
rules of a reference system, the set ΠΣ is evaluated to-
gether with RNonRec. As a result, the union ΠΣ ∪ RNonRec

gives a non-recursive set of rules that can be evaluated in
LOGSPACE data-complexity. The completeness of module
data extraction follows from the completeness of Datalog
query evaluation. Below, we write Qm(D,ΠΣ∪RNonRec)
for the answer set of the evaluation of the Datalog program

ΠΣ∪RNonRec defining the relation m, on top of the dataset
D. This constitutes the module data DM .
Theorem 4 (Module Data Extraction) For all path
p(a,b)

◦
◦ Σ with |p(a,b)| ≤ k we have D,RNonRec ` p(a,b) if

and only if p(a,b) ∈ Qm(D,ΠΣ∪RNonRec).

Extracting Module Rules
We now present an algorithm for module rule extraction that,
together with the dataset extracted in the previous section,
yields a module compliant with our semantics.

By Definition 3, a module is constituted of rules entailed
by that of the reference system, and built on the properties of
interest only. As the properties of interest of a module may
restrict those employed by a reference system, the module
rules cannot be just a subset of the original ones. Rule ex-
traction is thus performed by an unfolding algorithm, that
proceeds by replacing the premises of a rule with that of an-
other one, until obtaining a set conforming to the signature.
To illustrate, consider Σ = ( p, q )k[ a ] and the rules below.
r1 : t(x , q, y), t(y , partOf, x )→ t(x , q, y)
r2 : t(x , p, y)→ t(x , partOf, y)

Although the rule r1 does not conform to Σ, it can be un-
folded with r2 so as to obtain a module rule. As the atom
t(y , partOf, x ) in the body of r1 unifies with the conclusion
of r2, it can be replaced by t(y , p, x ), so as to get the rule
r̄ = t(x , q, y), t(y , p, x ) → t(x , q, y). Rule r̄ is called an
unfolding of r1 with r2.

In the above example, one unfolding step is enough to
have a rule r̄ that is conform to the module signature and
that, by construction, is entailed by {r1, r2}. It is easy to
see that this can be generalized, and that rules belonging to
unfoldings of a set of rules R are entailed by R. However,
in presence of recursive rules the set of unfoldings of a rule
may be infinite, as illustrated below.

Example 5 Consider Σ = ( p, q )3[ a1 ] and R with
r1 : t(x , partOf, y)→ t(x , q, y)
r2 : t(x , partOf, y), t(y , partOf, z )→ t(x , partOf, z )
r3 : t(x , p, y)→ t(x , partOf, y)

Here, r1 can be unfolded with r2 and r3, thus obtaining
r̄ : t(x1, p, x2), t(x2, p, x3)→ t(x1, q, x3)

However, there exist infinitely many unfoldings of
rule r2 with itself that yield expressions of the form
t(x1, p, x2), t(x2, p, x3), t(x3, p, x4) → t(x1, q, x4) that use
any finite sequence of variables x1, . . . , xn. This set of un-
foldings cannot be strictly speaking a set of triplestore or
module rules, because it is infinite.

To avoid ending up with infinite sets of module rules,
we devised an unfolding algorithm based on a breadth-first
strategy. Algorithm MRE performs Module Rules Extrac-
tion. It takes as input a set of rules to be unfolded NToUnfold,
a set of rules to be used for the unfolding RToApply, and
a signature Σ. Given a deductive triplestore 〈D,R〉 the
first call to the algorithm is MRE(NToUnfold, R,Σ). The set
NToUnfold ⊆ R is constituted of all rules r ∈ R that conclude
on a property of interest, that is head(r) ◦

◦ Σ. Any rule be-
longing to NToUnfold (whose premises use properties that are



Algorithm 1: MRE(NToUnfold, RToApply,Σ)

1 forall the r1 ∈ NToUnfold do
2 if r1

◦
◦ Σ then

3 RM ← r1

4 remove r1 from RToApply

5 else
6 forall the r2 ∈ RToApply s.t. r1 6= r2 do
7 forall the r ∈ RuleUnfolding(r1, r2) do
8 if r ◦

◦ Σ then
9 RM ← r

10 RM ←MRE({r}, RToApply\{r, r2},Σ)

11 return RM

not in Σ) is unfolded in a breadth-first fashion until no rule
in RToApply can be applied. All rules in R are considered for
unfolding (RToApply = R). Procedure RuleUnfolding(r1, r2)
progressively unfolds each subset of atoms in the body of
r1 that unify with the conclusion of r2. For example, the
three breadth-first unfoldings of r1 : t(x , p, y), t(x , p, z )→
t(x , p, y) with r2 : t(x , partOf, y)→ t(x , p, y) are
r̄3 : t(x , p, y), t(x , partOf, z )→ t(x , p, y)
r̄4 : t(x , partOf, y), t(x , p, z )→ t(x , p, y)
r̄5 : t(x , partOf, y), t(x , partOf, z )→ t(x , p, y)

Note that a rule is never unfolded with itself by the algo-
rithm (thus avoiding a depth-first fashion). The fact that r2

used for the unfolding is discarded from RToApply (line 10)
ensures the termination of the extraction procedure, even in
the presence of recursive rules.

Theorem 6 (Rule Extraction Algorithm) LetR be a set of
rules and Σ a module signature. Algorithm MRE always
terminates in O(2|R|×|r|) and produces a set of rules RM

conforming to Σ such that for all r ◦
◦ Σ it holds

RM ` r implies R ` r (SOUNDNESS)

Furthermore, when RRec ◦
◦ Σ we also have

R ` r implies RM ` r (COMPLETENESS)

Algorithm MRE is sound, in the sense that it computes a
set of rules entailed by R. Furthermore, for the case where
all recursive rules in R conform to Σ, the algorithm is also
complete, in the sense that it produces a set of rules RM that
entails all rules R can entail on the properties of Σ. As a
consequence, any dataset DM (computed as for Theorem 4)
paired with RM constitutes a module meeting Definition 3,
and in particular the point 3(b). If this condition does not
hold, module extraction may be incomplete. To see this,
consider again 〈D,R〉 of Example 5 withD = {t(a1, p, a2),
t(a2, p, a3), t(a3, p, a4)}. Recall that Σ = ( p, q )3[ a1 ], and
then notice that the recursive rule r2 6 ◦◦ Σ. Here, module
data extraction yields DM = D. Observe now that the
atom t(a1, q, a4) belongs to SAT(DM , R). As MRE out-
puts the set RM = {t(x , p, y), t(y , p, z ) → t(x , q, z )}, the
triple t(a1, q, a4) does not belong to SAT(DM , RM ), while
it should. Hence, 〈DM , RM 〉 does not satisfy Definition 3.

Surprisingly enough, this case of incompleteness is inde-
pendent of algorithm MRE. In fact, when R includes recur-
sive rules that do not conform to Σ, it does not exist an algo-
rithm that outputs a finite set of rules RM such that R ` r
implies RM ` r, for all r ◦

◦ Σ. As Example 5 illustrates, the
extracted RM must mimic an infinite set of rules of the form
t(x1, p, x2), t(x2, p, x3). . .t(xn−1, p, xn)→t(x1, q, xn). One
may think of capturing this infinite set by adding a recur-
sive rule rp : t(x , p, y), t(y , p, z )→ t(x , p, z ) together with
r̄ : t(x1, p, x2), t(x2, p, x3)→ t(x1, q, x3). However, adding
this recursive rule makes infer triples using p that are not
entailed by the reference system, thereby violating point 2
of Definition 3. We can also ask whether this infinite set of
rules can be reduced to a finite set that directly depends on k.
Unfortunately, the answer is negative. Furthermore, it is un-
practical for real systems to consider a specific module data
DM and bound byO(|DM |) the number of self-unfolding of
a recursive rule during extraction, as this can output an un-
manageable set of rules, that are (still) not robust to updates.
Therefore, understanding when algorithm MRE is complete
is key for module extraction.

This kind of unfolding issues have also been recognized
and studied by earlier works on the optimization of recursive
Datalog (Hillebrand et al. 1995).

Finally, note that Theorem 6 is actually stronger than what
required by Definition 3, because (i) it is based on semantic
conditions and therefore it holds for any rule r entailed by
R (unfoldings are just a particular case) and (ii) it is inde-
pendent from the module data, and thus suitable for other
module semantics.

A characterization of the whole module extraction task
follows as a corollary of Theorems 4 and 6.

Experiments
We implemented bounded-level module extraction on top of
Jena 2.11.2 TDB, and compared it against two related ap-
proaches to show its benefits in terms of flexibility and suc-
cinctness of the extracted modules.
We considered the following three Semantic Web datasets.

MyCF 0.5M triples 11 domain-specific rules
GO 1M triples 15 domain-specific rules

Yago2∗ 14M triples 6 RDFS rules

Yago2∗ is the union of Yago2Taxonomy, Yago2Types and
Yago2Facts datasets. We sampled classes and properties
from these ontologies, and combined them to obtain a set
of signatures used to run module extraction. We consid-
ered 2500 MyCF ontology classes combined with 20 sub-
sets of its properties, of size 1-4. For the GO ontology
(www.geneontology.org), we sampled 350 classes
and 12 property sets (size 1-4). Since Yago knowledge
is more diverse than a domain-specific ontology, to avoid
empty modules we first selected three groups of properties
that are frequently used together, and then subset them (size
2, 4, 6). We tested 100 Yago resources for each group. Fi-
nally, we made k ranging over {1, 2, 3, 5, 10}.



Figure 4: Size of Extracted Modules

Closest competitor approaches Relevant methods to our
work are Traversal Views (Noy and Musen 2004) and
Locality-based modules (Grau et al. 2008). Traversal Views
(TV) compute a bounded-level view of an RDF database, in
the same spirit as our approach. This method does not sup-
port inference rules, and it does not give any guarantee about
extracted modules. In practice, in the presence of rules,
a traversal view may miss relevant triples. Locality-Based
(LB) module extraction computes a conservative extension
of an ontology by checking logical conditions on its schema.
In contrast with our method, it cannot modularize untyped
RDF data and, because it enforces strong logical guarantees
on a module, it cannot control a priori its size.

Results of module data extraction Figure 4(a-b) reports on
the size of bounded-level modules, compared with those of
TV and LB. The graphs show the average number of triples,
for modules grouped by the same number of properties and k
value, in logarithmic scale. In Figure 4(c) we report the test
on Yago2∗ with our approach, since LB does not support this
RDF dataset.

As expected, the succinctness of bounded-level modules
depends on k. The transitivity of the properties declared in
the signature also has an impact. This is evident with Yago2∗
in Figure 4(c). Group 2 has properties inherently transitive
(isLocatedIn, isConnectedWith) dominating for example
(created, owns) in group 1 and (hasGender, isAffiliatedTo)
in group 3. Hence, bounded-level modules can be very help-
ful to control the data succinctness with transitive properties.

Being TV unaware of rules, it may miss relevant data
when implicit triples are not considered. We tested this
claim, over the non-saturated MyCF ontology. Indeed, 42%
(15072/35740) of the (non-empty) modules extracted by TV
were missing relevant triples wrt our approach, as some sub-
property rules were not evaluated. To overcome this lim-
itation, we tested TV over the saturated MyCF. For conci-
sion, in Figure 4(a) we report only the minimal level of detail
(k = 1). This already outlines a lower bound for the module
size. As we can see, k = 1 already produces fairly larger
modules than our approach. This is because of the MyCF
rules for transitivity and property-chains. Increasing k gives
modules of size in the order of the saturated triplestore. The
same discussion holds for GO in Figure 4(b). Hence, by
having modules made of both data and rules our approach
allows to retain succinctness wrt TV.

LB extraction for top-locality modules has been tested
thanks to the available prototype www.cs.ox.ac.uk/
isg/tools/ModuleExtractor/. For MyCF and GO,

it outputs almost the whole ontology (Figures 4(a-b)). This
is due to ontology axioms that cannot be ignored for the log-
ical completeness of the method.

To conclude, the experiments outline the advantages of
bounded-level modules as i) flexibility, to accomodate di-
verse Semantic Web datasets, and ii) succinctness, when
dealing with transitive properties and rules.

Related Work and Conclusion
Module extraction has been extensively studied for DL. Re-
lated works employ basically two approaches that consist in
inferring a conservative extension of an ontology (Grau et
al. 2008; Konev et al. 2008), and forgetting non-interesting
relations of ontology schemas (Grau and Motik 2012). Ap-
proximations and heuristics have also been devised to miti-
gate the complexity costs (Nortje, Britz, and Meyer 2013),
and have been validated by statistical analysis (Vescovo et
al. 2013). Differently from our approach, all of these tech-
niques focus exclusively on the ontology schema, and do not
permit to modularize Semantic Web datasets starting also
from ontology instances or RDF facts. The closest work to
our, at least in spirit, is (Noy and Musen 2004). However, it
does not consider inference, which makes module extraction
challenging. Answering Datalog queries over RDF has been
investigated in (Libkin, Reutter, and Vrgoc 2013) and (Bry
et al. 2008).

We presented a novel approach for the extraction of
bounded-level modules from deductive RDF triplestores,
which provides new means to reuse of Linked-Data datasets,
and favorizes the development of Semantic Web applica-
tions. The key contribution of the work is a novel module
semantics allowing to bound their size, and compliant mod-
ule extraction algorithms. As shown by our experiments, the
resulting framework allows to efficiently extract expressive
modules from Semantic Web ontologies and databases with
formal guarantees, whilst effectively controlling their suc-
cinctness. Future works include the study of module robust-
ness to updates (Goasdoue and Rousset 2013), the extension
towards Datalog± rules (Arenas, Gottlob, and Pieris 2014),
and the connections between module extraction and recur-
sive Datalog optimisation (Hillebrand et al. 1995).
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