
TP de Complexité

V.Berry & J. Fortin – Polytech Montpellier, dépt I.G.

16 décembre 2014

Résumé

Objectifs d’apprentissage :
– savoir modéliser un problème sous la forme d’un CSP (Constraint Satisfaction

Problem)
– Comprendre comment on peut détecter des inconsistances dans la modélisa-

tion CSP d’un problème (arc-consistance)
– Comprendre le processus de résolution d’un CSP (algorithme de backtrack).
– Savoir utiliser la librairie java Choco (si possible dans un IDE)

1 Modélisation : un problème de déplacement familial
Pour mobiliser les connaissances vues en cours, rien de tel qu’un premier exemple de

modélisation. Imaginons le scénario suivant :
1. une famille américaine de quatre personnes (mère, père, fille, fils) doit organiser ses

déplacements pour se rendre le matin au travail et à l’école.
2. Chaque membre de la famille peut circuler en vélo ou monter dans la voiture
3. La famille ne possède que deux vélos
4. Le fils a aussi un bâton sauteur (pogo stick 1) qu’il peut emprunter pour se rendre à

l’école.
5. La voiture n’a que 3 places
6. Si le fils ou la fille prenne la voiture il faut un parent pour les conduire
7. Le fils et la fille doivent prendre le même mode de transport.
Nous allons d’abord proposer une modélisation de ce problème :

Question 1
– Quelles variables pensez-vous utiliser pour modéliser ce problème en CSP ?
– Quel domaine pour chaque variable ?

Ecrivez vos réponses avant de passer à la suite du TP.

Question 2 Quelles phrases numérotées dans l’énoncé correspondent à des contraintes ?

Question 3 Ecrivez de deux ces contraintes en extension sur la base des variables que
vous avez définies précédemment.

1. cherchez une image sur internet si vous ne voyez pas ce que peut être ce truc typiquement américain

1



2 Un outil graphique de résolution de CSP
Pour vous familiariser avec la résolution de CSP, nous avons recours à une petite

application graphique qui peut être lancée en ligne à partir du site AI space (menu Main
Tool puis Consistency Based CSP Solver puis lancez l’application ("click here" en haut de
page)) 2.

Cette petite application Java va permettre de comprendre la détection d’instances fa-
ciles et la résolution progressive de CSP. Lorsque l’application est lancée, un fenêtre gra-
phique s’ouvre, permettant de commencer la description d’un problème. Cette application
permet de créer et résoudre des problèmes à variables entières, booléennes ou sous forme
de chaînes de caractères.

2.1 Modélisation d’un problème simple
Pour commencer à utiliser cette application explorez l’onglet Create pour modéliser

le problème suivant : on a trois variables entières x1,x2 et x3, qui prennent leurs valeurs
dans [1, 2, 3] sous les contraintes que x1 6= x2 et x1 + x2 = x3.

Question 4 Avec l’interface, codez ces deux variables, et les deux contraintes correspon-
dantes. Puis sauvegardez le CSP obtenu sous le nom x1x2x3.

2.2 Résolution du CSP
Passons ensuite à l’onglet Solve. Celui-ci va permettre d’enchaîner deux opérations

essentielles pour résoudre le CSP :
– arc-consistancy : la réduction justifiée des valeurs possibles pour certaines variables,

étant donné les contraintes.
– domain split : la réduction arbitraire mais temporaire des valeurs d’une variable afin

d’avancer dans la recherche d’une solution.

2.2.1 Consistance d’arc

La consistance d’arc consiste à passer en revue chaque contrainte tour à tour, et pour
chacune à regarder si elle ne permet pas d’exclure certaines valeurs que peuvent prendre
les variables. Si au bout de ce processus une variable n’a plus de valeur possible, alors
c’est que le CSP n’admet pas de solution (impossible de donner des valeurs aux variables
en respectant les contraintes indiquées). Ce processus d’arc-consistance se fait par un al-
gorithme simple (demandez à votre enseignant) en temps polynomial. En quelque sorte
c’est l’équivalent pour le pbm du chemin hamiltonien de la vérification en temps polyno-
mial que l’instance donnée possède (ou pas) une propriété qui fait qu’on peut répondre
très vite "non" au problème (c-a-d cette propriété implique que l’instance ne possède pas
de chemin hamiltonien).

Dans l’onglet Solve de l’application, nous avons 4 zones, de bas en haut : une zone de
texte indiquant en cours de résolution l’instanciation progressive ou finale des variables,
le dessin du CSP, une zone de commentaires / actions proposées, un ensemble de boutons
pour conduire la résolution.

2. Si le java web start n’est pas activé sur votre navigateur/système, vous pouvez obtenir une copie de
la librairie constraint.jar sur cette page web (enregistrez le fichier et lancez-le avec la commande
java -jar constraint.jar)

2

http://www.aispace.org/
http://www.lirmm.fr/~vberry/COURS/POLYTECH/COMPX/


Positionnez arc-consistency speed au plus lent (dans le menu CSP options). Choisissez
auto-solve et regardez le processus de résolution se produire en arrêtant le processus
(bouton stop) dès qu’une valeur a été supprimée pour une variable.

Question 5 Quelle valeur a été supprimée, pour quelle variable, et pour quelle raison ?
Si vous n’avez pas réussi à arrêter le processus à temps, recommencez (bouton reset)
ou bien faite un pas en arrière (step back) et doucement en avant (fine step ou step).
Cliquer sur une contrainte dans le graphique permet de vérifier juste la consistance de
cette contrainte.

2.2.2 Instanciation progressive des variables et backtrack

Une fois l’arc consistance passée, il reste peut-être encore trop de valeurs possibles
aux variables pour que le solveur trouve immédiatement une solution au problème. Pour
avancer dans la résolution, il procède alors au salit du domaine d’une variable : il consi-
dère temporairement qu’un sous-ensemble des valeurs restantes pour cette variable et va
continuer la résolution. Si cela aboutit à trouver une solution, alors tout va bien. En re-
vanche, si aucune solution n’est possible avec ce sous-ensemble, alors il viendra examiner
le sous-ensemble restant.

Lancez la résolution par le bouton auto-solve, et regardez ce qui s’inscrit dans la zone
de texte du bas. Chaque ligne signifie que l’on a fait un choix (ou atteint une solution).
A chaque choix dépendant des précédents, une tabulation est ajoutée, à chaque sous-
ensemble alternatif à un choix initial, on revient au même niveau de tabulation (back-
track).

Vérifiez qu’une solution est bien atteinte.

Question 6 Si la résolution ne va pas trop vite, vous devez remarquer qu’après avoir
fait une étape de split d’une variable, l’algorithme de résolution recommence une étape
d’arc-consistance de contraintes.

– Pourquoi est-ce justifié ?
– Est-ce justifié pour toutes les contraintes ?

Dans ce petit problème trop simple, il est probable qu’aucun retour arrière n’est néces-
saire. Mais c’est loin d’être le cas général. Pour observer de tels retours arrière, demandez
à l’application de chargez depuis l’URL suivante le problème auquel vous avez réfléchis
en début de TP : http ://www.aispace.org/exercises/FamCommuteCSP.xml.

Question 7 Regardez bien la modélisation qui est proposée

– En quels points ne correspond-elle pas à votre modélisation initiale ?
– Est-ce justifié ?

Question 8 Etant donné ce que vous connaissez de ce problème, vous attendez-vous à ce
que l’arc-consistance élimine des valeurs (lesquelles) ?

Lancez maintenant la résolution automatique et détectez un point de retour arrière
(backtrack).

Question 9 Quelle restriction de domaine a fait que l’on n’a pu trouver de solution au
problème ? Expliquer pourquoi cette restriction conduit à ne pas avoir de solution au
problème.

Malgré les étapes de retour-arrière, vous devez voir la résolution aboutir et pouvoir
vérifier que la solution proposée est bien correcte (elle respecte chaque contrainte donnée).

3

http://www.aispace.org/exercises/FamCommuteCSP.xml


3 CHOCO
Cette partie de TP est consacrée à l’utilisation de CHOCO (Chic, un Outil Contraintes

avec des Objets), une librairie Java permettant la modélisation et la résolution de pro-
blèmes de satisfaction de contraintes de façon bien plus avancé que le petit outil que nous
venons de voir. Nous utiliserons la version 2.1.0 de la librairie CHOCO, que vous pouvez
télécharger sur cette page web. Une version plus récente de CHOCO, sa documentation
ainsi qu’un grand nombre de tutoriels peuvent être trouver sur le site officiel. Mais restons
sur la version 2 pour l’instant.

3.1 Un exemple arithmétique
Nous allons modéliser et résoudre ensemble pas à pas le problème suivant : Trouver

une affectation des variables x1, x2 et x3 telles que x1, x2, x3 ∈ [0..5] et x2 > x3, x2 6= x3

et x1 = x2 + x3.
Téléchargez et tester cet exemple toujours à partir de la même page web : ClasseTest-

Choco1.java
Vous pourrez dans un premier temps compiler à la main ce fichier dans le terminal

de commandes en utilisant la bibliothèque Choco (option -jar) et demander son exécu-
tion aussi depuis le terminal. Attention dans les deux cas à bien positionner la variable
CLASSPATH dans le shell. Une autre solution est de créer un projet Java dans un IDE
(Eclipse est disponible dans vos salles de TP), en ajoutant la librairie CHOCO comme
une libraire jar externe.

3.1.1 Modèle

Lorsque l’on utilise CHOCO, la première chose à faire est de définir le modèle du
problème que l’on compte résoudre. L’instruction crée un nouveau modèle m.
Model m = new CPModel();

3.1.2 Variables

Il faut ensuite déclarer les différentes variables utiles à la définition du problème,
ainsi que leurs domaines de définition. Attention, chaque variable du problème d’opti-
misation à un type propre à CHOCO, c’est à dire par exemple qu’une variable qui peut
être instanciée par valeurs entière ne doit pas être déclarée de type int, mais de type
IntegerVariable. Les trois types de variables possibles sont les variables entières
(IntegerVariable), réelles (RealVariable) et ensemblistes (SetVariable).
Nous allons nous contenter d’utiliser les variables entières dans ce TP.

Les lignes de code suivantes déclarent nos 3 variables x1, x2 et x3 à valeur dans [0..5]
auxquelles on donne les noms var1, var2 et var3 :
IntegerVariable x1 = makeIntVar("var1", 0, 5);
IntegerVariable x2 = makeIntVar("var2", 0, 5);
IntegerVariable x3 = makeIntVar("var3", 0, 5);

Pour définir des domaines de valeur entières non contiguës, se rapporter à la JavaDoc
de CHOCO.

4

http://www.lirmm.fr/~vberry/COURS/POLYTECH/COMPX/
http://choco-solver.org
http://www.lirmm.fr/~vberry/COURS/POLYTECH/COMPX/
http://www.lirmm.fr/~vberry/COURS/POLYTECH/COMPX/


3.1.3 Contraintes

Une fois les variables du problèmes définies, on peut modéliser les contraintes du
problème. Les principales contraintes sur les entiers sont eq, geq, gt, leq, et neq, leur
signification est donnée dans le tableau suivant :

Contrainte en anglais en mathématique
eq(x1,x2) equal x1 = x2

geq(x1,x2) greater or equal x1 ≥ x2

gt(x1,x2) greater than x1 > x2

leq(x1,x2) less or equal x1 ≤ x2

neq(x1,x2) not equal x1 6= x2

Pour notre problème on peut donc déclarer les contraintes suivantes :
Constraint C1 = gt(x2, x3);
Constraint C2 = neq(x2, x3);

Pour la dernière contrainte (x1 = x2 + x3), nous avons besoin de créer une expression
qui modélise la somme des variables x2 et x3 le signe + n’étant pas utilisable sur les don-
nées de type IntegerVariable. Cela se fait de la manière suivante :
IntegerExpressionVariable sumx2x3 = plus(x2,x3);

On peut ensuite déclarer la contrainte suivante :
Constraint C3 = eq(x1, sumx2x3);

Pour d’autre opérations, se rapporter à la JavaDoc de CHOCO. La dernière opération
à faire avant de passer à la résolution du problème est d’ajouter les contraintes nouvelle-
ment crées dans notre modèle :
m.addConstraint(C1);
m.addConstraint(C2);
m.addConstraint(C3);

3.1.4 Résolution

Afin de résoudre notre problème il faut maintenant créer un solveur, lui indiquer quel
est le modèle du problème à résoudre, éventuellement fixer les stratégies de choix des
variables à instancier, et lancer la résolution. Ceci peut se faire par les instructions sui-
vantes :
Solver s = new CPSolver();
s.read(m);
s.solve();

On peut alors vérifier la présence d’une solution et si elle existe lire les valeurs des
variables dans la solution atteinte :
if(s.isFeasible()){

System.out.println("var1 =" + s.getVar(x1) .getVal());
System.out.println("var2 =" + s.getVar(x2) .getVal());
System.out.println("var3 =" + s.getVar(x3) .getVal());

}
else System.out.println("No solution");

5



On peut aussi demander toutes les solutions d’un problème, demander à minimiser
une quantité données etc...

3.2 Camping – inspiré d’un problème de Projet Industriel IG4 2009-
2010

Un petit camping à la ferme dispose de 3 emplacements pour loger des campeurs sur
une semaine de vacances (on considère juste une période de 7 jours). Les demandes des
campeurs consistent chacune en un jour d’arrivée et un jour de départ (chacun compris
entre 1 et 7 et avec départ ≥ arrivée).

Etant donné une liste de demandes, le camping doit essayer d’affecter un emplacement
(et un seul) à chaque demande (il n’est pas envisageable de demander à des campeurs de
changer d’emplacement au milieu de leur séjour).

3.2.1 Un algorithme glouton est insuffisant pour ce problème

Supposons l’algorithme glouton suivant : on ordonne les emplacements suivant un nu-
méro ; on prend les demandes dans l’ordre de leur arrivée et affecter ; quand une demande
est considérée on essaye de la positionner dans le premier emplacement, si elle ne tient
pas on essaye dans le second, etc. Cet algorithme ne remet jamais en question les choix
qu’il effectue.

Question 10 Pour le cas de 2 emplacements seulement, trouvez une combinaison de de-
mandes arrivant dans un certain ordre tel que l’algorithme glouton ne trouve pas de
solution au problème, alors qu’une solution existe pourtant.

3.2.2 Utilisation des CSP et de CHOCO pour résoudre le problème

Proposez une modélisation de ce problème où on considère que l’on dispose de 3
emplacements et de 8 demandes (qui peuvent être générées aléatoirement ou qui sont
choisies pour la phase de test)

Question 11
– Quelles variables ?
– Quel domaine pour chacune ?
– Quelles contraintes ?

Vérifiez ensuite la cohérence de votre solution avec votre enseignant.

Implémentez cette solution dans CHOCO en essayant un certain nombre de combinai-
sons de demandes : une combinaison qui peut être casée et une combinaison qui ne peut
pas être casée dans les 3 emplacements.

3.3 Carré magique
Un carré magique est un carré de nombre entiers (tous distincts) dont la somme des

nombre de chaque ligne, de chaque colonne et de chaque diagonal est identique. Écrire
à l’aide de Choco un programme qui permet de trouver un carré magique de taille quel-
conque.

6



FIGURE 1 – Une grille de Sudoku

3.4 Sudoku
Grâce à CHOCO trouvez la solution du Sudoku de la Figure 1.

4 Conclusion
La programmation par contraintes est un formidable paradigme déclaratif permettant

la modélisation et la résolution de nombreux problèmes de complexités diverses. Atten-
tion, un problème peut se modéliser en général de plusieurs façons, et le choix d’une
modélisation plutôt qu’une autre peut avoir un impact important en temps de résolution
par le solveur.

Gardez donc à l’esprit que ces outils existent, que vous pouvez les utilisez pour ré-
soudre bon nombre de problèmes d’optimisation que vous rencontrerez, y compris des
problèmes NP-difficiles. Si toutefois le solveur ne réussit pas à résoudre une instance que
vous considérez (c-a-d ne peut répondre ni oui ni non au bout d’un long temps calcul),
cela peut venir d’une modélisation non pertinente ou de l’utilisation de contraintes non-
adaptées au problème. Dans ce cas il est raisonnable de faire appel à l’aide de spécialistes
de la discipline afin de vérifier si votre modélisation est pertinente ou bien si vous avez la
malchance d’être tombé sur une instance réellement difficile du problème à résoudre.

7


	Modélisation : un problème de déplacement familial
	Un outil graphique de résolution de CSP
	Modélisation d'un problème simple
	Résolution du CSP
	Consistance d'arc
	Instanciation progressive des variables et backtrack


	CHOCO
	Un exemple arithmétique
	Modèle
	Variables
	Contraintes
	Résolution

	Camping – inspiré d'un problème de Projet Industriel IG4 2009-2010
	Un algorithme glouton est insuffisant pour ce problème
	Utilisation des CSP et de CHOCO pour résoudre le problème

	Carré magique
	Sudoku

	Conclusion

