TP de Complexité

V.Berry & J. Fortin — Polytech Montpellier, dépt 1.G.
16 décembre 2014

Résumé

Objectifs d’apprentissage :

— savoir modéliser un probléme sous la forme d’un CSP (Constraint Satisfaction
Problem)

— Comprendre comment on peut détecter des inconsistances dans la modélisa-
tion CSP d’un probleme (arc-consistance)

— Comprendre le processus de résolution d’un CSP (algorithme de backtrack).

— Savoir utiliser la librairie java Choco (si possible dans un IDE)

1 Modélisation : un probleme de déplacement familial

Pour mobiliser les connaissances vues en cours, rien de tel qu’un premier exemple de
modélisation. Imaginons le scénario suivant :

1.

une famille américaine de quatre personnes (mere, pere, fille, fils) doit organiser ses
déplacements pour se rendre le matin au travail et a I’école.

2. Chaque membre de la famille peut circuler en vélo ou monter dans la voiture

La famille ne possede que deux vélos

Le fils a aussi un baton sauteur (pogo stick ') qu’il peut emprunter pour se rendre a
I’école.

. La voiture n’a que 3 places
6.
7.

Si le fils ou la fille prenne la voiture il faut un parent pour les conduire
Le fils et la fille doivent prendre le méme mode de transport.

Nous allons d’abord proposer une modélisation de ce probleme :

Question 1
— Quelles variables pensez-vous utiliser pour modéliser ce probleme en CSP ?
— Quel domaine pour chaque variable ?

Ecrivez vos réponses avant de passer a la suite du TP.

Question 2 Quelles phrases numérotées dans I’ énoncé correspondent a des contraintes ?

Question 3 Ecrivez de deux ces contraintes en extension sur la base des variables que
vous avez définies précédemment.

1. cherchez une image sur internet si vous ne voyez pas ce que peut étre ce truc typiquement américain

2 Un outil graphique de résolution de CSP

Pour vous familiariser avec la résolution de CSP, nous avons recours a une petite
application graphique qui peut étre lancée en ligne a partir du site Al space (menu Main
Tool puis Consistency Based CSP Solver puis lancez 1’application ("click here" en haut de
page)) °.

Cette petite application Java va permettre de comprendre la détection d’instances fa-
ciles et la résolution progressive de CSP. Lorsque 1’application est lancée, un fenétre gra-
phique s’ouvre, permettant de commencer la description d’un probleme. Cette application
permet de créer et résoudre des problemes a variables enticres, booléennes ou sous forme
de chaines de caracteres.

2.1 Modélisation d’un probléme simple

Pour commencer a utiliser cette application explorez 1’onglet Create pour modéliser
le probléme suivant : on a trois variables entieres x1,x2 et x3, qui prennent leurs valeurs
dans [1, 2, 3] sous les contraintes que x1 # z2 et z1 + 22 = z3.

Question 4 Avec linterface, codez ces deux variables, et les deux contraintes correspon-
dantes. Puis sauvegardez le CSP obtenu sous le nom x1x2x3.

2.2 Résolution du CSP

Passons ensuite a I’onglet Solve. Celui-ci va permettre d’enchainer deux opérations
essentielles pour résoudre le CSP :
— arc-consistancy : laréduction justifiée des valeurs possibles pour certaines variables,
étant donné les contraintes.
— domain split : la réduction arbitraire mais temporaire des valeurs d’une variable afin
d’avancer dans la recherche d’une solution.

2.2.1 Consistance d’arc

La consistance d’arc consiste a passer en revue chaque contrainte tour a tour, et pour
chacune a regarder si elle ne permet pas d’exclure certaines valeurs que peuvent prendre
les variables. Si au bout de ce processus une variable n’a plus de valeur possible, alors
c’est que le CSP n’admet pas de solution (impossible de donner des valeurs aux variables
en respectant les contraintes indiquées). Ce processus d’arc-consistance se fait par un al-
gorithme simple (demandez a votre enseignant) en temps polynomial. En quelque sorte
c’est I’équivalent pour le pbm du chemin hamiltonien de la vérification en temps polyno-
mial que I’instance donnée possede (ou pas) une propriété qui fait qu’on peut répondre
tres vite "non" au probleme (c-a-d cette propriété implique que I’instance ne possede pas
de chemin hamiltonien).

Dans I’onglet Solve de I’application, nous avons 4 zones, de bas en haut : une zone de
texte indiquant en cours de résolution I’instanciation progressive ou finale des variables,
le dessin du CSP, une zone de commentaires / actions proposées, un ensemble de boutons
pour conduire la résolution.

2. Sile java web start n’est pas activé sur votre navigateur/systeme, vous pouvez obtenir une copie de
la librairie constraint. jar sur cette page web (enregistrez le fichier et lancez-le avec la commande
java —jar constraint. jar)

http://www.aispace.org/
http://www.lirmm.fr/~vberry/COURS/POLYTECH/COMPX/

Positionnez arc-consistency speed au plus lent (dans le menu CSP options). Choisissez
auto-solve et regardez le processus de résolution se produire en arrétant le processus
(bouton stop) des qu’une valeur a été supprimée pour une variable.

Question 5 Quelle valeur a été supprimée, pour quelle variable, et pour quelle raison ?
Si vous n’avez pas réussi a arréter le processus a temps, recommencez (bouton reset)
ou bien faite un pas en arriere (step back) et doucement en avant (fine step ou step).
Cliquer sur une contrainte dans le graphique permet de vérifier juste la consistance de
cette contrainte.

2.2.2 Instanciation progressive des variables et backtrack

Une fois I’arc consistance passée, il reste peut-étre encore trop de valeurs possibles
aux variables pour que le solveur trouve immédiatement une solution au probleme. Pour
avancer dans la résolution, il procede alors au salit du domaine d’une variable : il consi-
dere temporairement qu’un sous-ensemble des valeurs restantes pour cette variable et va
continuer la résolution. Si cela aboutit a trouver une solution, alors tout va bien. En re-
vanche, si aucune solution n’est possible avec ce sous-ensemble, alors il viendra examiner
le sous-ensemble restant.

Lancez la résolution par le bouton auto-solve, et regardez ce qui s’inscrit dans la zone
de texte du bas. Chaque ligne signifie que I’on a fait un choix (ou atteint une solution).
A chaque choix dépendant des précédents, une tabulation est ajoutée, a chaque sous-
ensemble alternatif a un choix initial, on revient au méme niveau de tabulation (back-
track).

Vérifiez qu’une solution est bien atteinte.

Question 6 Si la résolution ne va pas trop vite, vous devez remarquer qu’apres avoir
fait une étape de split d’une variable, I’algorithme de résolution recommence une étape
d’arc-consistance de contraintes.

— Pourquoi est-ce justifié ?
— Est-ce justifié pour toutes les contraintes ?

Dans ce petit probléme trop simple, il est probable qu’aucun retour arriere n’est néces-
saire. Mais c’est loin d’étre le cas général. Pour observer de tels retours arriere, demandez
a I’application de chargez depuis I’URL suivante le probleme auquel vous avez réfléchis
en début de TP : http ://www.aispace.org/exercises/FamCommuteCSP.xml.

Question 7 Regardez bien la modélisation qui est proposée
— En quels points ne correspond-elle pas a votre modélisation initiale ?
— Est-ce justifié ?

Question 8 Etant donné ce que vous connaissez de ce probléeme, vous attendez-vous a ce
que ’arc-consistance élimine des valeurs (lesquelles) ?

Lancez maintenant la résolution automatique et détectez un point de retour arriere
(backtrack).

Question 9 Quelle restriction de domaine a fait que I’on n’a pu trouver de solution au
probleme ? Expliquer pourquoi cette restriction conduit a ne pas avoir de solution au
probleme.

Malgré les étapes de retour-arriere, vous devez voir la résolution aboutir et pouvoir
vérifier que la solution proposée est bien correcte (elle respecte chaque contrainte donnée).

http://www.aispace.org/exercises/FamCommuteCSP.xml

3 CHOCO

Cette partie de TP est consacrée a I'utilisation de CHOCO (Chic, un Outil Contraintes
avec des Objets), une librairie Java permettant la modélisation et la résolution de pro-
blemes de satisfaction de contraintes de facon bien plus avancé que le petit outil que nous
venons de voir. Nous utiliserons la version 2.1.0 de la librairie CHOCO, que vous pouvez
télécharger sur cette page web. Une version plus récente de CHOCO, sa documentation
ainsi qu’un grand nombre de tutoriels peuvent étre trouver sur le site officiel. Mais restons
sur la version 2 pour I’instant.

3.1 Un exemple arithmétique

Nous allons modéliser et résoudre ensemble pas a pas le probleme suivant : Trouver
une affectation des variables 1, 2 et x5 telles que xq, x9, 23 € [0..5] et xy > x3, T2 # T3
etr; = x9 + I3.

Téléchargez et tester cet exemple toujours a partir de la méme page web : ClasseTest-
Chocol.java

Vous pourrez dans un premier temps compiler a la main ce fichier dans le terminal
de commandes en utilisant la bibliotheque Choco (option —jar) et demander son exécu-
tion aussi depuis le terminal. Attention dans les deux cas a bien positionner la variable
CLASSPATH dans le shell. Une autre solution est de créer un projet Java dans un IDE
(Eclipse est disponible dans vos salles de TP), en ajoutant la librairie CHOCO comme
une libraire jar externe.

3.1.1 Modele

Lorsque I’on utilise CHOCO, la premiere chose a faire est de définir le modele du
probleme que I’on compte résoudre. L’instruction crée un nouveau modele m.
Model m = new CPModel () ;

3.1.2 Variables

Il faut ensuite déclarer les différentes variables utiles a la définition du probleme,
ainsi que leurs domaines de définition. Attention, chaque variable du probleme d’opti-
misation a un type propre a CHOCO, c’est a dire par exemple qu’une variable qui peut
étre instanci€e par valeurs entiere ne doit pas €tre déclarée de type int, mais de type
IntegerVariable. Les trois types de variables possibles sont les variables entieres
(IntegerVariable), réelles (RealVariable) et ensemblistes (SetVariable).
Nous allons nous contenter d’utiliser les variables entieres dans ce TP.

Les lignes de code suivantes déclarent nos 3 variables x1, x5 et 23 a valeur dans [0..5]
auxquelles on donne les noms varl, var2 et var3:

IntegerVariable x1 = makeIntVar("varl", 0, 5);
IntegerVariable x2 makeIntVar ("var2", 0, 5);
IntegerVariable x3 makeIntVar ("var3", 0, 5);

Pour définir des domaines de valeur entieres non contigués, se rapporter a la JavaDoc
de CHOCO.

http://www.lirmm.fr/~vberry/COURS/POLYTECH/COMPX/
http://choco-solver.org
http://www.lirmm.fr/~vberry/COURS/POLYTECH/COMPX/
http://www.lirmm.fr/~vberry/COURS/POLYTECH/COMPX/

3.1.3 Contraintes

Une fois les variables du problemes définies, on peut modéliser les contraintes du
probléme. Les principales contraintes sur les entiers sont eq, geq, gt, leq, et neq, leur
signification est donnée dans le tableau suivant :

| Contrainte | enanglais | en mathématique |
eq(x1l,x2) equal T1 = To
geq(x1l,x2) | greater or equal T1 > To
gt (x1,x2) greater than Ty > To
leg(x1,x2) less or equal 1 < T9
neq(x1l,x2) not equal T # To

Pour notre probleme on peut donc déclarer les contraintes suivantes :
Constraint Cl = gt (x2, x3);
Constraint C2 = neq(x2, x3);

Pour la derniere contrainte (x1 = x2 + x3), nous avons besoin de créer une expression
qui modélise la somme des variables x5 et x3 le signe + n’étant pas utilisable sur les don-
nées de type IntegerVariable. Cela se fait de la manicre suivante :
IntegerExpressionVariable sumx2x3 = plus (x2,x3);

On peut ensuite déclarer la contrainte suivante :
Constraint C3 = eqg(xl, sumx2x3) ;

Pour d’autre opérations, se rapporter a la JavaDoc de CHOCO. La derniere opération
a faire avant de passer a la résolution du probleme est d’ajouter les contraintes nouvelle-
ment crées dans notre modele :
m.addConstraint (Cl) ;
m.addConstraint (C2) ;
m.addConstraint (C3) ;

3.1.4 Résolution

Afin de résoudre notre probleme il faut maintenant créer un solveur, lui indiquer quel
est le modele du probleme a résoudre, éventuellement fixer les stratégies de choix des
variables a instancier, et lancer la résolution. Ceci peut se faire par les instructions sui-
vantes :

Solver s = new CPSolver();
s.read (m);
s.solve () ;

On peut alors vérifier la présence d’une solution et si elle existe lire les valeurs des
variables dans la solution atteinte :

if(s.isFeasible ()) {
System.out.println ("varl =" + s.getVar(xl) .getVal()) ;
System.out.println ("var2 =" + s.getVar(x2) .getVal()) ;
System.out.println ("var3 =" + s.getVar(x3) .getval()) ;

}

else System.out.println("No solution");

On peut aussi demander toutes les solutions d’un probleme, demander a minimiser
une quantité données etc...

3.2 Camping — inspiré d’un probleme de Projet Industriel 1G4 2009-
2010

Un petit camping a la ferme dispose de 3 emplacements pour loger des campeurs sur
une semaine de vacances (on considere juste une période de 7 jours). Les demandes des
campeurs consistent chacune en un jour d’arrivée et un jour de départ (chacun compris
entre 1 et 7 et avec départ > arrivée).

Etant donné une liste de demandes, le camping doit essayer d’affecter un emplacement
(et un seul) a chaque demande (il n’est pas envisageable de demander a des campeurs de
changer d’emplacement au milieu de leur séjour).

3.2.1 Un algorithme glouton est insuffisant pour ce probleme

Supposons I’algorithme glouton suivant : on ordonne les emplacements suivant un nu-
méro ; on prend les demandes dans I’ordre de leur arrivée et affecter ; quand une demande
est considérée on essaye de la positionner dans le premier emplacement, si elle ne tient
pas on essaye dans le second, etc. Cet algorithme ne remet jamais en question les choix
qu’il effectue.

Question 10 Pour le cas de 2 emplacements seulement, trouvez une combinaison de de-
mandes arrivant dans un certain ordre tel que l’algorithme glouton ne trouve pas de
solution au probleme, alors qu’une solution existe pourtant.

3.2.2 Utilisation des CSP et de CHOCO pour résoudre le probleme

Proposez une modélisation de ce probleme ou on considere que 1’on dispose de 3
emplacements et de 8 demandes (qui peuvent étre générées aléatoirement ou qui sont
choisies pour la phase de test)

Question 11
— Quelles variables ?
— Quel domaine pour chacune ?
— Quelles contraintes ?

Vérifiez ensuite la cohérence de votre solution avec votre enseignant.

Implémentez cette solution dans CHOCO en essayant un certain nombre de combinai-
sons de demandes : une combinaison qui peut étre casée et une combinaison qui ne peut
pas étre casée dans les 3 emplacements.

3.3 Carré magique

Un carré magique est un carré de nombre entiers (tous distincts) dont la somme des
nombre de chaque ligne, de chaque colonne et de chaque diagonal est identique. Ecrire
a I’aide de Choco un programme qui permet de trouver un carré magique de taille quel-
conque.

[
—

FIGURE 1 — Une grille de Sudoku

3.4 Sudoku
Grace a CHOCO trouvez la solution du Sudoku de la Figure 1.

4 Conclusion

La programmation par contraintes est un formidable paradigme déclaratif permettant
la modélisation et la résolution de nombreux problemes de complexités diverses. Atten-
tion, un probleme peut se modéliser en général de plusieurs fagcons, et le choix d’une
modélisation plutdt qu’une autre peut avoir un impact important en temps de résolution
par le solveur.

Gardez donc a I’esprit que ces outils existent, que vous pouvez les utilisez pour ré-
soudre bon nombre de problemes d’optimisation que vous rencontrerez, y compris des
problemes NP-difficiles. Si toutefois le solveur ne réussit pas a résoudre une instance que
vous considérez (c-a-d ne peut répondre ni oui ni non au bout d’un long temps calcul),
cela peut venir d’une modélisation non pertinente ou de 1’utilisation de contraintes non-
adaptées au probleme. Dans ce cas il est raisonnable de faire appel a I’aide de spécialistes
de la discipline afin de vérifier si votre modélisation est pertinente ou bien si vous avez la
malchance d’étre tombé sur une instance réellement difficile du probléme a résoudre.

	Modélisation : un problème de déplacement familial
	Un outil graphique de résolution de CSP
	Modélisation d'un problème simple
	Résolution du CSP
	Consistance d'arc
	Instanciation progressive des variables et backtrack

	CHOCO
	Un exemple arithmétique
	Modèle
	Variables
	Contraintes
	Résolution

	Camping – inspiré d'un problème de Projet Industriel IG4 2009-2010
	Un algorithme glouton est insuffisant pour ce problème
	Utilisation des CSP et de CHOCO pour résoudre le problème

	Carré magique
	Sudoku

	Conclusion

