
DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Fast Computation of Supertrees for Compatible Phylogenies with

Nested Taxa

Vincent Berry1 and Charles Semple2,3

3 October 2005

1Département Informatique, L.I.R.M.M. - C.N.R.S., 161 rue Ada, 34392 Montpellier Cedex 5,
France
vberry@lirmm.fr

2Biomathematics Research Centre, Department of Mathematics and Statistics, University of Can-
terbury, Christchurch, New Zealand
c.semple@math.canterbury.ac.nz

3Corresponding author.

Keywords. Phylogenetics, supertree methods, nested taxa, compatibility, strepsirrhine phylogeny.

Abstract

Typically, supertree methods combine a collection of source trees in which just the leaves
are labelled by taxa. In such methods the resulting supertree is also leaf-labelled. An under-
lying assumption in these methods is that, across all trees in the collection, no two of the taxa
are nested; for example, “buttercups” and “plants” are nested taxa. Motivated by Page, the
first supertree algorithm for allowing the source trees to collectively have nested taxa is called
AncestralBuild. Here, in addition to taxa labelling the leaves, the source trees may have
taxa labelling some of their interior nodes. Taxa labelling interior nodes are at a higher tax-
onomic level than that of their descendants (for example, genera versus species). Analogous
to the supertree method Build for deciding the compatibility of a collection of source trees
in which just the leaves are labelled, AncestralBuild is a polynomial-time algorithm for
deciding the compatibility of a collection of source trees in which some of the interior nodes
are also labelled by taxa. Although a more general method, in this paper we show that the
original description of AncestralBuild can be modified so that the running time is as fast
as the current fastest running time for Build. Fast computation for deciding compatibility
is essential if one is to make use of phylogenetic databases that contain thousands of trees
on tens of thousands of taxa. This is particularly so as AncestralBuild is incorporated
as a basic tool inside more general supertree methods. We apply the method to propose a
comprehensive phylogeny of the strepsirrhines, a major group of the primates.

1

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

1 Introduction

Supertree methods are a fundamental and practical way of inferring phylogenies. Generally
speaking, these methods amalgamate a collection of “source” trees on overlapping subsets of
taxa into a single parent tree that contains the taxa of all of the source trees. This parent tree
is called a supertree. This approach to constructing evolutionary trees is particularly appealing
because it allows the inference of an evolutionary scenario from a combination of analyses differing
in the set of taxa they encompass as well as in the primary data from which they were conducted
(for example, molecular or morphological studies). The increasing popularity of these methods
and the diversity of ways in which they can be used is highlighted in a recently published book
(Bininda-Emonds, 2004).

Historically, supertree methods amalgamate collections of source trees in which just the leaves
are labelled by taxa, with the resulting supertree also having the property that taxa are only
attached at leaves. On this basis, supertree methods can deal with taxa at different taxonomic
levels only in the case where the leaves of the source trees represent non-nested taxa (e.g., “ele-
phant” and “mammal” should not be represented as two distinct leaves amongst the source trees
as the former taxa is nested inside the latter taxa). However, in supertree studies this situation
does occur, especially concerning outgroups. For example, a source tree containing strepsirrhine
species would include Haplorrhini, a sub-order, as an outgroup leaf, and another source tree on
primates would include several haplorrhine species as leaves, while the latter are nested inside the
former taxon. Because of the assumption that taxa of the source trees are non-nested, traditional
supertree methods produce in that case an incorrect supertree. Thus, traditional supertree meth-
ods have limited use in the case of nested taxa, as arises when one is to amalgamate trees from
phylogenetic databases such as TreeBASE (Sanderson et al., 1993) as was recently highlighted by
Page (2004). Indeed, TreeBASE incorporates trees from many different published phylogenetic
studies that focus on a variety of different biological problems, and hence consider evolutionary
relationships at different taxonomic levels.

As a consequence of this limitation, Page (2004) motivated the task of designing supertree
methods that allow the interior nodes as well as all of the leaves to represent taxa in the source
trees. In these nested-taxa source trees, an interior label corresponds to a taxon at a higher
taxonomic level than any of its descendants. Note that interior labels can be either available
initially in the source trees, or added to some source trees based on taxa present in other source
trees at the time the collection of studied source trees is formed. The first computational problem
that arises is to find a polynomial-time algorithm for deciding whether or not a collection of
nested-taxa source trees is compatible and, if so, constructing an appropriate supertree.

In answer to this problem, Daniel and Semple (2004) provided an algorithm called Ances-
tralBuild. This algorithm generalizes Build, one of the first supertree methods (Aho et al.,
1981). The polynomial-time algorithm Build takes a collection P of rooted leaf-labelled trees
as input and decides whether or not P is compatible, in which case it returns a leaf-labelled
supertree that displays P. That is, the supertree preserves all of the relative groupings of taxa
present in the source trees. For a collection of nested-taxa trees, if a supertree preserves all
ancestral relationships as well as all groupings of taxa, then the supertree is said to ancestrally
display this collection and the collection is said to be ancestrally compatible. These concepts
are formally defined in the next section. The algorithm AncestralBuild takes a collection

2

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

P of nested-taxa trees as input and outputs a supertree that ancestrally displays P if such a
supertree exists, otherwise it states that the collection is not ancestrally compatible. Though
designed to handle trees containing taxa at both internal nodes and leaves, AncestralBuild
also accepts collections of source trees that have taxa only at the leaves, because leaf-labelled
trees are a special case of nested-taxa trees. In that particular case, AncestralBuild decides
the compatibility of the source trees in the usual sense. Consequently, it does indeed generalize
Build.

AncestralBuild has the desirable property to give an exact answer in polynomial-time
(Daniel and Semple, 2004). However, there can be three objections to its use. First, for in-
compatible phylogenies to be combined, an all-or-nothing algorithm, that is just stating the
incompatibility when it arises, is not sufficient. Second, even for the easiest case of source trees
that are all fully-resolved and have taxa only at the leaves, the running time of the version of
AncestralBuild stated in Daniel and Semple (2004) is O(t2n3), where t is the number of
source trees and n is the number of taxa. Despite being polynomial, this running time makes
AncestralBuild a reasonably slow algorithm in practice, particularly if it is to handle the
thousands of trees stored in databases such as TreeBASE. Third, in the absence of internal labels
in the source trees, the method will build a nonsensical supertree, not knowing for instance that
the “mammal” taxon met in one tree is an ancestor of “elephant”, present in another tree. We
answer these three objections below.

Inferring a supertree for incompatible source trees. Primary data sequences are getting
longer and phylogenetic methods more accurate, so that a reasonable number of published phy-
logenies are compatible. For example, Llabrés et al. (2005) found a very low rate of incompatible
trees in TreeBASE. However, it is still relatively frequent that one has to deal with incompatible
source trees. For example, it is well-known that gene trees may conflict with species trees (due to
e.g., lateral gene transfer or hybridization), and that some trees may contain erroneous branches
inferred due to noisy information for some internal edges in the primary data. In the former
case, one may want to construct a supertree to identify the disagreements between the gene trees
and the species trees. In such cases, an all-or-nothing algorithm may not be enough and one
can understandably prefer a more general supertree method that outputs a supertree that either
conflicts with or omits some information present in the source trees. However, for any general
supertree method, a basic property that one would always like is that of consistency; that is, if the
source trees carry no conflicting information, then the supertree returned by the method displays
each of the source trees. Because the property of consistency is such a compelling property, many
general supertree methods dealing with leaf-labelled trees (respectively, nested-taxa trees) are
likely either to have Build (respectively, AncestralBuild) as a subroutine or to be a variant
of Build (respectively, AncestralBuild). Indeed, this is already the case for some general
methods: both MinCutSupertree (Semple and Steel, 2000) method and its modified version
(Page, 2002) are variants of Build and, more recently, Daniel and Semple (2005) describe a class
of general supertree methods for nested-taxa source trees that is a variant of AncestralBuild.
(This class and more particularly the underlying general supertree method NestedSupertree
is described further in Section 7.1.) Moreover, these all-or-nothing algorithms can be repeatedly
used in simple schemes to extract compatible parts out of a collection of incompatible source
trees. We highlight two examples of such schemes in the discussion part of this paper.

3

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Reasonable running time. Given the amount of information in current tree databases, it is
not unreasonable to try to amalgamate hundreds of trees that collectively contains thousands of
taxa and, consequently, fast algorithms are essential. To deal with fully-resolved (i.e., binary)
leaf-labelled trees, Henzinger et al. (1999) proposed a fast implementation of Build that runs

in O(mn
1

2) time, where m is the total sum of the number of nodes in each of the source trees
and n is the total number of taxa1. For comparison between this running time and the O(t2n3)
running time of AncestralBuild, note that m can range from O(n) to O(tn). Thus, the
running time of AncestralBuild as stated in Daniel and Semple (2004) is still relatively slow
compared to the implementation provided by Henzinger et al. (1999) for Build in the special
case of fully-resolved leaf-labelled trees. However, comparing the gap between these running
times provides hope for improving AncestralBuild on this aspect, despite the latter being a
much more general algorithm for it allows nested-taxa trees and trees that are partially resolved.
In this paper we describe several modifications to AncestralBuild that greatly reduce its
computational complexity. Some of these modifications have a similar flavour to techniques
used in Henzinger et al. (1999). The running time of AncestralBuild resulting from these
modifications is as fast as the current fastest algorithm for source trees in which only the leaves
are labelled (Henzinger et al., 1999). More particularly, the achieved running time is almost
linear in the size of the source trees, when these trees are fully-resolved. Furthermore, extending
the implementation of Henzinger et al. (1999) for Build in the most canonical and efficient way
to allow partially-resolved leaf-labelled trees in its input, we also show that the running time of
our modification of AncestralBuild is the same as that for this extension of Build.

Having a sensible supertree as output. In the case where nested taxa are present in dif-
ferent source trees but these trees contain no internal label, then there is no chance that Ances-
tralBuild (or any supertree method) produces a sensible supertree without extra information.
For example, if one tree contains “elephant” and another “mammal” without any tree indicating
that the latter is an ancestor of the former, then the supertree output by the methods will have
both taxa as tips. This situation arises because of lack of information in the source trees. Un-
fortunatly, this will be a frequent situation in practice because already inferred trees are usually
stored without internal labels, though this is allowed by the Newick format. In such a case, all
that is required for the method to produce a sensible supertree is a (partial) reference taxonomy
indicating the nestings between taxa of interest. This taxonomy can be included as one extra
source tree or be divided into several extra very simple trees of two vertices, where an ancestor
taxon is above one of its descendant taxon. This reference taxonomy can be either built by hand,
or generated automatically by a program searching taxon names in web accessible taxonomies,
like NCBI’s Taxonomy Browser (http://www.ncbi.nlm.nih.gov/entrez) or the Tree of Life
web site (http://tolweb.org/tree). See Page and Valiente (2005) and Hibbett et al. (2005) for
programs filling aims close to that one.

To describe an application of AncestralBuild, we studied the evolutionary relationships
of the Strepsirrhini, one of the two major primate groups. Monophyly of this group is widely
accepted but some intrasubordinal relationships were still recently under debate. Recent studies
investigating strepsirrhine phylogeny involve quite different kinds of data, including mtDNA

1They also proposed a variant of Build running in O(m + n
2 log n) time but, in the case of compatibility, it

typically resulted in a supertree with edges not supported by any part of the data, an undesirable feature for a
supertree algorithm.

4

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

sequences (Yoder et al., 2000), craniodental morphological data (Masters and Brothers, 2002)
and retroposon analysis (Roos et al., 2004). We applied AncestralBuild to four phylogenies
published in these papers, covering many different taxonomic levels from order to individuals.
The method shows that these phylogenies are ancestrally compatible and provides as result a
comprehensive supertree of the Strepsirrhini. This highlights, once again, the interest in the
supertree approach, that allows to combine phylogenies inferred from different kinds of primary
data.

The rest of the paper is organized as follows. The next section contains some preliminaries that
are used throughout the paper. Section 3 contains a description of AncestralBuild as stated
in Daniel and Semple (2004), while Section 4 describes our modification of AncestralBuild.
The running time of this modification is shown in Section 5. Section 6 describes the application
of AncestralBuild to obtain a strepsirrhine supertree. In addition to deciding compatibility,
AncestralBuild can be used in a variety of ways for constructing supertrees from incompatible
source trees. We highlight some of these ways in the last section (Section 7). Finally, the
appendix contains the proof which establishes that our modification of AncestralBuild does
indeed decide ancestral compatibility for a collection of nested-taxa trees as well as a pseudo-code
description of this algorithm.

We end the introduction by noting that a novel approach for testing the ancestral compatibility
of two rooted semi-labelled trees has been recently proposed by Llabrés et al. (2005).

2 Preliminaries

In this section, we describe some concepts that are frequently used in the paper. For further de-
tails, we refer the interested reader to Semple and Steel (2003). We also note here that throughout
the paper, we are only interested in rooted trees.

Phylogenies. The degree of a node v in a graph (or, in particular, a tree) is the number of edges
incident with v. We denote the degree of v by d(v). Essentially, a rooted phylogenetic X-tree is
a rooted tree whose leaves are labelled with the elements of a set X of taxa. We formally define
it as follows. A rooted phylogenetic tree (on X) is an ordered pair (T ;φ) consisting of a rooted
tree T in which all interior nodes have degree at least three except the root which has degree at
least two, and a map φ from X to the leaf set of T that assigns each element in X to a leaf in T
so that no two elements are assigned the same leaf in T and each leaf of T is assigned an element
of X. A rooted phylogenetic tree is fully-resolved or binary if the root of T has degree two and
all other interior nodes of T have degree three.

The concept of rooted phylogenetic trees naturally extends to trees in which some of the
interior nodes are also labelled by taxa. Such trees, called nested-taxa trees or rooted semi-
labelled trees, are used to display in the same tree taxa at different taxonomic levels. More
precisely, a rooted semi-labelled tree T on a taxa set X is an ordered pair (T ;φ) consisting of a
rooted tree T with root node ρ, and a map φ from X into the node set V of T such that, for all
non-root nodes v of degree at most two, φ assigns v an element of X, and if ρ has degree zero or
one, then φ also assigns ρ an element of X. If every node of T is assigned at most one taxa of X
under φ, then T is said to be singularly labelled. Furthermore, if T is singularly labelled and the

5

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

y e c d fa bdc f e

T1 T2

x

z x

z

T3

y

Figure 1: A compatible collection P of rooted semi-labelled trees.

degree of any node in T is at most three except for the root which has degree at most two, then
we say that T is binary. In Figure 1, each of T1, T2, and T3 is a rooted semi-labelled tree, but T3

is the only rooted semi-labelled tree that is binary.

Remarks.

1. We will often write a rooted semi-labelled X-tree for a rooted semi-labelled tree on X.

2. Observe that rooted phylogenetic trees are special types of rooted semi-labelled trees.

3. To simplify matters and because we see no practical reason for nodes in the source trees to be
assigned more than one taxa of X, we will assume throughout the paper that all rooted semi-
labelled trees that are source trees are singularly labelled. However, we note that the upgrade
of the results in this paper to non-singular rooted semi-labelled trees is straightforward.

Let T = (T ;φ) be a rooted semi-labelled tree on X. The set X is called the label set of
T and we call the elements of X labels. We also use L(T) to denote the label set of T . For
example, in Figure 1, L(T1) = {c, d, e, f, x, y}. For a node v of T , we denote the set of elements
of X that are assigned to v by φ−1(v) and say that the elements in φ−1(v) label v. Furthermore,
T is fully labelled if every node of T is labelled by an element of X. For a collection P of
rooted semi-labelled trees, we denote the union of the label sets of the trees in P by L(P).
Thus, for example, for the collection P of rooted semi-labelled trees shown in Figure 1, we have
L(P) = {a, b, c, d, e, f, x, y, z}.

Let T = (T ;φ) be a rooted semi-labelled tree, and let a, b ∈ L(T). We say that a is a
descendant (label) of b (or, alternatively, b is an ancestor (label) of a) if the path from the root of
T to φ(a) includes φ(b). Furthermore, a and b are not comparable if neither a is a descendant of
b nor b is a descendant of a. Now suppose that a and b are not comparable in T . Then the node
of T that is the last common node on the paths from the root of T to φ(a) and from the root of
T to φ(b) is called the most recent common ancestor of a and b, and is denoted mrcaT (a, b).

Lastly, throughout the paper, for a rooted semi-labelled tree T , we will use |T | to denote the
number of nodes in T . Furthermore, for a collection P of rooted semi-labelled trees, we will use
m to denote

∑

T ∈P
|T |.

Compatibility. We will describe the notion of compatibility for rooted phylogenetic trees first,
before extending this notion to rooted semi-labelled trees.

6

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

c d

y

f e a b

x

z

Figure 2: A rooted semi-labelled tree that ancestrally displays the collection P of trees shown
in Figure 1. Indeed, as we shall soon see, this is the tree outputted by AncestralBuild when
applied to P.

Let T be a rooted phylogenetic tree on X and let T ′ be a rooted phylogenetic tree on X ′,
where X is a subset of X ′. We say that T ′ displays T if, up to suppressing all non-root nodes of
degree-two, the minimal rooted subtree of T ′ that connects the elements in X is a refinement of
T , that is T can be obtained from it by contracting edges. Suppressing a degree-two node v means
replacing v and its two incident edges with a single edge. Observe that the use of “refinement”
means that we allow for the resolution of soft polytomies in the definition of displays, where
we recall that a soft polytomy represents an uncertainty as to the exact order of speciation as
oppose to a certainty of a multiple speciation event. A collection P of rooted phylogenetic trees
are compatible if there is a rooted phylogenetic tree T that simultaneously displays each of the
trees in P, in which case we say that T displays P.

The notion of displays for rooted semi-labelled trees extends the notion of displays for rooted
phylogenetic trees. In particular, let T be a rooted semi-labelled X-tree and let T ′ be a rooted
semi-labelled X ′-tree, where X is a subset of X ′. Then T ′ ancestrally displays T if, up to
suppressing non-root nodes of degree-two, the minimal rooted subtree of T ′ that connects the
elements in X is a refinement of T and, for all a, b ∈ X, whenever a is a descendant label of b in
T , we have that a is a descendant label of b in this rooted subtree. A collection P of rooted semi-
labelled trees is ancestrally compatible if there is a rooted semi-labelled tree T that ancestrally
displays each of the trees in P, in which case we say that T ancestrally displays P. To illustrate
this notion, the collection of trees in Figure 1 is ancestrally compatible, as each of its trees is
ancestrally displayed by the rooted semi-labelled tree shown in Figure 2.

It is important to note that a collection of rooted semi-labelled trees may be ancestrally
incompatible because of their interior labels and not their leaf labels. This could be as simple as
a contradiction on an ancestor-descendant relationship, but there are numerous other and more
complex reasons why this may occur.

Graphs and Digraphs. Let G be a graph with node set V . We frequently use the notation
{u, v} to denote the edge joining the nodes u and v. Furthermore, the connected components of G
are the subgraphs of G such that, for all u, v ∈ V , u and v are in the same connected component
if and only if there is a path from u to v.

A directed graph, also called a digraph, is simply a graph in which, instead of having edges
joining two nodes, we have directed edges; that is, edges directed from one node to another.
Directed edges are also called arcs. We use the notation (u, v) to denote the arc directed from
u to v. For a directed graph D, the indegree of a node v is the number of arcs directed into

7

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

v and the outdegree of v is the number of arcs directed out of v. Analogous to the connected
components of an ordinary graph, the (connected) arc components of D are the sub-digraphs of
D such that, for all u, v ∈ V , u and v are in the same arc component if and only if, ignoring the
direction of the arcs, there is a path between u and v.

For the purposes of this paper, we say that a graph is mixed if it contains both arcs and edges.
An arc component of a mixed graph is an arc component of the digraph obtained when masking
the edges of this graph.

Let D be a (mixed) graph, let v be a node of D, and let U be a subset of the set of nodes of
D. The (mixed) graph obtained from D by deleting v and each of its incident arcs and edges is
denoted by D\v. In general, we use D\U to denote the graph obtained from D by deleting each
of the nodes in U . Furthermore, if V is the node set of D, then the restriction of D to U (also
called the subgraph of D induced by U) is the subgraph of D that is obtained by deleting each of
the nodes in V − U . This subgraph is denoted by D|U .

Finally, one typically views a rooted tree as an undirected graph. However, it will often be
convenient in this paper to view a rooted tree as a directed graph where each edge is replaced
with an arc directed away from the root.

3 AncestralBuild

For completeness and to make a comparison of the modifications we describe in this paper, in
this section we give a full description of AncestralBuild as it is stated in Daniel and Semple
(2004).

We begin by describing a construction on a collection of rooted semi-labelled trees, and a
particular mixed graph on a collection of rooted fully-labelled trees. Both the construction and
mixed graph are central to AncestralBuild.

Let T = (T ;φ) be a rooted semi-labelled tree on X, where T has node set V . We say that a
rooted fully-labelled tree T ′ has been obtained from T by adding distinct new labels if, for each
node of T that is not assigned a label under φ, we assign it an arbitrary label not in X so that
no two new labels are the same. In general, if P is a collection of rooted semi-labelled trees, we
say that P ′ has been obtained from P by adding distinct new labels if it has been obtained by
adding distinct new labels to each tree in P so that across all trees in P ′ no two new labels are
the same.

Example 3.1 To illustrate the above construction, let P be the collection of rooted semi-labelled
trees shown in Figure 1. The collection P ′ shown in Figure 3 has been obtained from P by adding
distinct new labels. Note that the added labels only need to be unique, and not as involved as
the ones shown in Figure 3. The reason for choosing these particular labels will be made clear in
Section 4. 2

Let P ′ be a collection of rooted fully-labelled trees. The descendancy graph of P ′, denoted

8

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

y e c d fa bc f e

T ′1 T ′2

x

z mrcaT3
(c, d)

y
x

d

mrcaT1
(x, y)

mrcaT1
(e, y)

z

T ′3

mrcaT2
(e, z)

Figure 3: A collection P ′ of rooted fully-labelled trees.

mrcaT2
(e, z) mrcaT3

(c, d)

mrcaT1
(x, y)

d

x

y

e

a b z

f

mrcaT1
(e, y)

c

Figure 4: The descendancy graph of P ′. Arcs are shown as dashed lines with an arrow showing
the direction of the arc, while edges are shown as solid lines.

D(P ′), is the mixed graph whose node set is L(P ′), and whose arc and edge sets are

{

(c, a) : a is a descendant label of c in some T in P ′
}

and
{

{a, b} : a is not comparable to b in some T in P ′
}

,

respectively. Figure 4 shows the descendancy graph corresponding to the collection P ′ of rooted
fully-labelled trees shown in Figure 3.

We now describe AncestralBuild. All of the work in the algorithm is performed by a sub-
routine called Descendant which decides the ancestral compatibility of a collection P ′ of rooted
fully-labelled trees that has been obtained from the original collection P of rooted semi-labelled
trees by adding distinct new labels. Loosely speaking, Descendant attempts to construct a
rooted fully-labelled tree that ancestrally displays P ′ beginning with the cluster L(P ′) and suc-
cessively breaking it down into disjoint subclusters. The way in which the clusters are broken up
is decided by the descendancy graph which itself is successively broken into node induced sub-
graphs. The algorithm either completes the construction of such a tree or returns not ancestrally
compatible if at some iteration the associated node induced subgraph of the descendancy graph
has no nodes which have indegree zero and no incident edges.

9

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Algorithm: AncestralBuild(P)
Input: A collection P of rooted semi-labelled trees on X .

Output: A rooted semi-labelled tree T that ancestrally displays P or the statement P is not ancestrally

compatible.

1. Construct a collection P ′ of rooted fully-labelled trees from P by adding distinct new labels to the
unlabelled nodes in the trees of the collection.

2. Construct the descendancy graph D(P ′) of P ′.

3. Call the subroutine Descendant(D(P ′)).

4. If Descendant returns no possible labelling, then return P is not ancestrally compatible. Otherwise,
return the semi-labelled tree T ′ returned by Descendant with the added labels removed.

Algorithm: Descendant(D(P ′))
Input: The descendancy graph of a collection P ′ of rooted fully-labelled trees.

Output: A rooted fully-labelled tree T ′ with root node v′ that ancestrally displays P ′ or the statement no

possible labelling.

1. Let S0 denote the set of nodes of D(P ′) that have indegree zero and no incident edges. If S0 is empty,
then halt and return no possible labelling.

2. If S0 comprises of exactly one node labelled ` with outdegree zero, then return the tree composed of
just one leaf labelled `.

3. Otherwise,

(a) Delete the elements of S0 (and their incident arcs) from D(P ′) and denote the resulting graph by
D(P ′)\S0.

(b) Find the node sets S1,S2, . . . ,Sk of the arc components of D(P ′)\S0.

(c) Delete all edges of D(P ′)\S0 whose end nodes are in distinct arc components of this graph.

4. For each element i ∈ {1, 2, . . . , k}, call Descendant(D(P ′)|Si). If any of these calls return no possible
labelling, then return this message. Otherwise, return the tree whose root node is labelled by S0 and
which has T ′

1
, . . . , T ′

k
(the trees returned by the recursive calls) as child subtrees.

Remark.

1. With respect to descendancy, the added labels act as necessary “place holders” for unlabelled
nodes.

2. The recursive calls performed at Step 4 in Descendant consider disjoint node induced sub-
graphs so that the processes applied to these subgraphs in subsequent iterations are indepen-
dent from one subgraph to another.

Example 3.2 As an example of AncestralBuild applied to a collection of rooted semi-labelled
trees, consider the collection P of trees shown in Figure 1. Suppose that Step 1 constructs the
collection P ′ of rooted fully-labelled trees shown in Figure 3. Now Step 2 builds the descen-
dancy graph D(P ′) as shown in Figure 4 . On the first iteration of Descendant, Step 1 finds

10

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

d

y, mrcaT3
(c, d)

f e a bc

mrcaT1
(x, y), mrcaT2

(e, z)

z

x

mrcaT1
(e, y)

Figure 5: The rooted semi-labelled tree returned by Descendant as described in Example 3.2.

mrcaT1
(x, y) and mrcaT2

(e, z) as the only nodes of D(P ′) that have indegree zero and no incident
edges. Deleting these elements in Step 3 results in the creation of two arc components, one
containing nodes a, b, and x and the other containing the nine remaining nodes. Recursive calls
to Descendant investigate these two components separately. At Step 4 of the initial call to
Descendant, the subtrees returned by the two recursive calls are used as child subtrees of the
root of the tree returned there. The root of this tree, which is shown in Figure 5, is labelled by
S0 = {mrcaT1

(x, y),mrcaT2
(e, z)}. All added labels are eventually removed in Step 4 of Ances-

tralBuild. The final tree returned by AncestralBuild applied to P is shown in Figure 2.
2

The running time of AncestralBuild as it is stated above (and thus in Daniel and Semple
(2004)) is given in Proposition 3.3.

Proposition 3.3 Let P be a collection of rooted semi-labelled trees with |P| = t and |L(P)| = n.
Then AncestralBuild(P) runs in time O(t2n3).

Proof. Recall that m =
∑

T ∈P
|T |. First note that the descendancy graph D(P) contains O(m)

nodes and O(tn2) arcs and edges. In the worst case, every execution of Descendant removes
only one node in D(P), in which case the subroutine is executed O(m) times. The computation
time is dominated by the cost of Steps 3(b) and 3(c) in the subroutine. Finding the connected
arc components of a digraph is linear in the number of its nodes and arcs. Thus, assuming that
in the worst case only a constant number of edges are removed with each node, an execution
of Step 3(b) can require up to O(tn2) time to process the restriction of D(P) it is considering.
Because of the m executions of the subroutine, this leads to an overall running time of O(mtn2)
for Step 3(b). Finding edges across different arc components in Step 3(c) can necessitate at worst
to examine the O(tn2) edges of the graph. This leads to an overall running time of O(mtn2) for
Step 3(c). Noting that m = O(tn) gives the final result. 2

Remark. It is worth noting that the running time of AncestralBuild does not improve when
each of the trees in P are fully-resolved and phylogenetic. Indeed, the descendancy graph still
has O(tn2) arcs and edges in such cases.

Daniel and Semple (2004) were only interested in making sure that AncestralBuild runs in
time polynomial in the size of the input. Indeed, other than providing a brief check to note that
it is polynomial, no consideration to the actual running time is given. Consequently, some simple

11

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

and not-so simple improvements to the algorithm were overlooked. In the next section we show
how this running time can be reduced to almost linear running time. This improvement results
from three changes in the algorithm: (i) drastically reducing the number of arcs and edges in the
descendancy graph; (ii) using an ad-hoc graph of smaller size to compute the arc components of
the various restrictions of the descendancy graph and identify edges between them; (iii) working
these graph restrictions as actual subgraphs of the initial graph (and not as copies of bits of
it), while maintaining node-connectivity through an efficient dynamic data structure. This data
structure facilitates the discovery of new arc components resulting from edge deletions.

4 Improving the Running Time of AncestralBuild

In this section we describe our modification of AncestralBuild.

4.1 Reducing the size of the descendancy graph

We first show that a large amount of information included in the descendancy graph is redundant
in the sense that the correctness of the algorithm is maintained when using a restricted version
of this graph. For a collection P ′ of rooted fully-labelled trees, let D∗(P ′) be the graph having
the same node set as D(P ′), but whose arc and edge sets are

{

(c, a) : a is a descendant label of c in some T in P ′ such that there is no

b ∈ L(T)− {a, c} with b a descendant of c and b an ancestor of a
}

and

{

{a, b} : a is not comparable to b in some T in P ′ such that there is a

c ∈ L(T) with c the immediate ancestor label of both a and b
}

,

respectively. Clearly, the arc and edge sets of D∗(P ′) are subsets of the arc and edge sets of
D(P ′), respectively, and so we call D∗(P ′) the restricted descendancy graph of P ′. The restricted
descendancy graph of the collection P ′ shown in Figure 3 is shown in Figure 6.

Proposition 4.1 Let P be a collection of rooted semi-labelled trees, and suppose that we apply
AncestralBuild to P but with the restricted descendancy graph replacing the descendancy
graph. Then the resulting algorithm applied to P returns either

(i) a rooted semi-labelled tree that ancestrally displays P if P is ancestrally compatible, or

(ii) the statement P is not ancestrally compatible otherwise.

The statement of Proposition 4.1 is the same statement as Theorem 4.1 (Daniel and Semple,
2004), but without the proviso on using the restricted descendancy graph. Thus, not surprisingly,

12

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

mrcaT2
(e, z) mrcaT3

(c, d)

mrcaT1
(x, y)

d

x

y

e

a b z

f

mrcaT1
(e, y)

c

Figure 6: The restricted descendancy graph of P ′. Arcs are shown as dashed lines with an arrow
showing the direction of the arc, while edges are shown as solid lines.

the proof of Proposition 4.1 is very similar to their proof. Consequently, to avoid repetition, we
refer to parts of the latter proof where appropriate.

Proof of Proposition 4.1. We first note that, as in the proof of Theorem 4.1 (Daniel and Semple,
2004), it suffices to show that the result holds when P is a collection of rooted fully-labelled trees.
The proof of (i) is the same as the proof of Theorem 4.1 (Daniel and Semple, 2004).

For the proof of (ii), suppose that AncestralBuild (using the restricted descendancy graph)
outputs a rooted semi-labelled tree T ′. We show that T ′ ancestrally displays P. Let T1 be an
element of P. By Lemma 2.1 (Bordewich et al., 2005), it suffices to show, for all a, b ∈ L(T1)
that (I) if a is a descendant label of b in T1, then a is a descendant label of b in T ′, and (II) if a
and b are non-comparable in T1, then a and b are non-comparable in T ′.

The argument for (I) is very similar to the corresponding argument in the proof of Theo-
rem 4.1(ii) (Daniel and Semple, 2004), and so we omit it. To show (II), suppose that a and b are
not comparable in T1. Assume that T1 = (T1;φ1). Let v be the node in T1 that is the most recent
common ancestor of φ1(a) and φ1(b). By the construction of D∗(P), there is a pair of children,
c and d say, of the label labelling v in T1 such that c and d are joined by an edge, and c is an
ancestor label of a, and d is an ancestor label of b. Since we eventually output a tree, this edge
is eventually deleted, but not until c and d, and hence a and b, are in separate arc components
of some restriction of D∗(P). It now follows that a and b are not comparable in T ′. 2

Remark. Let P be a collection of rooted semi-labelled trees with |P| = t and |L(P)| = n, and
let P ′ be a collection of fully-labelled trees that is obtained from P by adding distinct new labels.
Let m =

∑

T ∈P
|T |. Then the mixed graph D∗(P ′) contains O(m) nodes and arcs. However,

the number e of edges in D∗(P ′) is a function of the degree of the nodes in the source trees. In
particular, D∗(P ′) contains

O
(

∑

Ti∈P

∑

u∈I(Ti)

d(u)2
)

13

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

edges, where I(Ti) denotes the set of interior nodes of tree Ti for all i. Note that, depending on
the degree of overlap of the source trees and the degree of each of their nodes, e can range from
O(m) to O(tn2). In particular, if the source trees are all fully-resolved, then D∗(P ′) contains
O(m) nodes, arcs, and edges.

4.2 Computing the arc components via a smaller graph

Despite the obvious improvements given by Proposition 4.1, it is Step 3(b) (finding the arc
components) and to a lesser extent Step 3(c) (finding the edges joining distinct arc components)
that have the biggest influence on the running time of AncestralBuild because these steps
are performed a high number of times on relatively large graphs. To speed-up these parts of the
algorithm, we introduce an additional graph (which we call the “component graph”). The reason
for this graph is that identifying the arc components of the restricted descendancy graph can be
reduced to identifying the connected components in the component graph. The component graph
is typically smaller than the restricted descendancy graph, and it is this smallness that provides
the improvement in the running time of the algorithm. To describe the component graph, we
first need to some additional concepts.

Let T = (T ;φ) be a rooted semi-labelled tree on X, where T has node set V . We say that T ′

is obtained from T by adding most recent common ancestor labels if, for each node z of degree
at least three in which φ−1(z) is empty, we assign the label mrcaT ′(a, b) to z, where a, b ∈ L(T)
and z is the most recent common ancestor of φ(a) and φ(b). By choosing leaf labels if necessary,
we can always find appropriate choices for a and b. Since each of the newly added labels are
distinct, this construction is a special case of adding distinct new labels. In the paper, we often
view the label mrcaT ′(a, b) as the set {a, b} and freely move between the two viewpoints. Note
that the choice of a and b need not be unique, however, which choice is made is irrelevant. In
general, if P is a collection of rooted semi-labelled trees, we say that P ′ has been obtained from
P by adding most recent common ancestor labels if it has been obtained by adding most recent
common ancestor labels to each tree in P. Note that the newly added labels across P ′ are distinct
as every most recent common ancestor label refers to a particular tree in P.

Example 4.2 To illustrate the last construction, the collection P ′ of rooted semi-labelled trees
shown in Figure 3 has been obtained from the collection P of rooted semi-labelled trees shown
in Figure 1 by adding most recent common ancestors labels. For instance, the label mrcaT1

(x, y)
is assigned to the node of T1 that is the most recent common ancestor of nodes labelled x and y.
2

Let P be a collection of rooted semi-labelled trees on X, and let P ′ be a collection of rooted
fully-labelled trees obtained from P by adding most recent common ancestor labels. To describe
the component graph of P ′, we simultaneously consider the restricted descendancy graph of P ′.
For a tree T and a node z in T , we say that u and v are siblings if both u and v are distinct
children of z. Let T = (T ;φ) be an element of P ′, and let u and v be siblings of a node z in T ,
and consider φ−1(u) and φ−1(v). By the definition of the restricted descendancy graph of P ′, we
have that φ−1(u) and φ−1(v) are joined by an edge e in D∗(P ′). (Note that all edges of D∗(P ′)

14

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

e

a

f

c

y

z

b

d

x

Figure 7: The component graph of P ′.

are derived from a tree in P ′ in this way.) Furthermore, in D∗(P ′), there is an arc from φ−1(z)
to φ−1(u) and an arc from φ−1(z) to φ−1(v). Relative to T , we call the set

{

{a, b} : a ∈ φ−1(u) and b ∈ φ−1(v)
}

the sibling edge set of e or, if we are referring to φ−1(z), we call it a sibling edge set of φ−1(z).
Moreover, φ−1(z) is the parent node of this edge set.

The component graph of P ′, denoted C(P ′), has node set X and two types of edges. In
particular, for two nodes a and b, there is

(i) an unlabelled edge joining a and b precisely if there is a tree T ∈ P with b an ancestor of
a and no element x in L(T)− {a, b} such that b is an ancestor of x and x is an ancestor of
a; and

(ii) an edge joining a and b labelled (`, e) precisely if, relative to a tree T ∈ P ′ with label `, we
have that {a, b} is in a sibling edge set of ` and an edge e in D∗(P ′).

Edges in C(P ′) arising because of (i) are called type (i) edges and edges arising because of (ii)
are called type (ii) edges. Note that type (i) edges are decided by the composition of P, while
type (ii) edges are decided by that of P ′. Also, two nodes in C(P ′) can be joined by more than
one edge. However, these edges are not treated equally as there is at most one unlabelled edge
and each of the labelled edges are labelled with different ordered pairs.

Example 4.3 Figure 7 shows the component graph C(P ′) for the collection P ′ of rooted fully-
labelled trees shown in Figure 3, where type (i) edges are represented as dashed edges and type
(ii) edges are represented as solid edges. For clarity, type (ii) edges are not labelled. To illustrate,
{z, y} is a type (i) edge resulting from the fact that z is an ancestor of y in the tree T ′

2 of P ′; the
fact that {z, e, x} are siblings in this tree results in the three type (ii) edges {z, e}, {z, x}, and
{e, x} in C(P ′). Viewing mrcaT1

(e, y) as {e, y}, the second edge {e, x} joining e and x results
from the fact that mrcaT1

(e, y) and x are siblings in T ′1 , which generates the sibling edge set
{

{e, x}, {y, x}
}

in C(P ′). Thus one of the edges joining e and x is labelled (mrcaT2
(e, z), {e, x}),

while the other edge joining e and x is labelled (mrcaT1
(x, y), {mrcaT1

(e, y), x}). 2

15

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Remark. Asymptotically, the component graph C(P ′) contains the same number of edges as
D∗(P ′). However, C(P ′) contains only n nodes, whereas D∗(P ′) contains O(m) nodes. Poten-
tially, this means that the latter gains a factor as the size of m is O(tn). Thus, computing
connected components in C(P ′) is likely to be faster than computing them in D∗(P ′). Indeed, in
the next section we show how the computation of arc components in Step 3(b) and determining
which edges are to be deleted in Step 3(c) can be made faster by resorting to C(P ′).

At last we describe our full modification of AncestralBuild called AncestralBuild∗.
Analogous to Descendant in AncestralBuild, the algorithm AncestralBuild∗ includes a
subroutine which we call Descendant∗. Intuitively, apart from using the restricted descendancy
graph instead of the descendancy graph, the main difference is that all of the work in finding
the arc components and deciding which edges join two different arc components at each iteration
of the subroutine is now done by the component graph and its various node induced subgraphs.
In the modification, all of the edges of the component graph are initially coloured blue. In
association with the component graph (or any of its node induced subgraphs), a blue component
is a connected component of the graph obtained when masking non-blue edges. To describe
AncestralBuild∗, we highlight the changes to AncestralBuild:

(i) In Step 1, P ′ is now obtained from P by adding most recent common ancestor labels.

(ii) Step 2 is replaced with the constructions of the restricted descendancy graph D∗(P ′) and
the component graph C(P ′) of P ′.

(iii) The input to the subroutine Descendant is initially D∗(P) and C(P ′). For recursive calls
to Descendant (Step 4), the input is D∗(P ′)|Si and C(P ′)|(Si ∩X).

(iv) Step 3 of Descendant is replaced with Step 3′ (see boxed insert).

3′. Otherwise,

(a) (i) Delete the elements of S0 (and their incident arcs) from D∗(P ′) and denote the resulting
graph by D∗(P ′)\S0.

(ii) Delete the elements of S0∩X (and their incident edges) from C(P ′) and denote the resulting
graph by C(P ′)\(S0 ∩X).

(iii) For every element of S0, colour all edges in each of its sibling edge sets in C(P ′)\(S0 ∩X)
red.

(b) Find the node sets U1,U2, . . . ,Uk of the blue components of C(P ′)\(S0∩X). The arc components
of D∗(P ′)\S0 are S1,S2, . . . ,Sk , where Si ∩X = Ui for all i.

(c) Delete all red edges joining two different blue components of C(P ′)\(S0). For each sibling edge
set that is deleted, delete the corresponding edge in D∗(P ′)\S0.

The modified subroutine is called Descendant∗.

Remarks. In the following remarks and in Section 5, we will assume for reasons of convenience
that the input to Descendant∗ is always D∗(P ′) and C(P ′). This is in name only. (Strictly
speaking, the input of recursive calls are node induced subgraphs of these graphs.)

16

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

1. At the beginning and at the end of each iteration of Descendant∗, the node sets of the blue
components of C(P ′) correspond to the node sets of the arc components of D∗(P ′).

2. Although deleting the elements in S0 and their incident edges in D∗(P ′) has the potential to
create arc components A1, A2, . . . , Ak, deleting the elements in S0∩X in C(P ′) will not create
any blue components. This is because the sibling edges corresponding to the elements in S0 are
still coloured blue in the resulting subgraph of C(P ′). However, Step 3′(a)(iii) colours these
sibling edges red and it is this recolouring which reestablishes the correspondence described
in Step 3′(b).

3. The fact that the arc components of D∗(P) correspond to the blue components of C(P ′)\(S0∩
X) as stated in Step 3′(b) is established in Lemma A.2.

4. Referring to Step 3′(c) of Descendant∗, the set of red edges that are deleted is a union of
sibling edge sets. Again this is established in Lemma A.2.

Example 4.4 Consider the execution of AncestralBuild∗ on the collection of rooted semi-
labelled trees shown in Figure 1 which in Step 1 constructs the collection P ′ of rooted fully-
labelled trees shown in Figure 3 by adding most recent common ancestors. Refer to Figures 4
and 7, respectively, for D∗(P ′) and C(P ′) which are constructed in Step 2.

At the first call of Descendant∗, Step 3′(a)(i) deletes the nodes in

S0 = {mrcaT1
(x, y),mrcaT2

(e, z)}

from D∗(P ′). These nodes are not in the original taxa set X, thus Step 3′(a)(ii) has nothing
to delete from C(P ′). Step 3′(a)(iii) colours the edges in the sibling edge sets of mrcaT1

(x, y)
and mrcaT2

(e, z) red in C(P ′); that is, the edges in
{

{e, x}, {y, x}
}

and
{

{z, e}, {z, x}, {e, x}
}

,
respectively, where we recall that the edge {e, x} in each of these sets is treated differently; one is
labelled (mrcaT1

(x, y), {mrcaT1
(e, y), x}) and the other is labelled (mrcaT2

(e, z), {e, x}) in C(P ′).
As a result, Step 3′(b) identifies two blue components, U1 and U2 say, with a, b, and x in U1 and
the remaining nodes in U2. The corresponding arc components of D∗(P ′)\S0 are the same as the
ones found in Example 3.2 during the first call to Descendant. Step 3′(c) removes from C(P ′)
the red edges between U1 and U2; that is, the edges in

{

{e, x}, {y, x}, {z, x}, {e, x}
}

, leaving {z, e}
as the only red edge of the graph at this point. The rooted semi-labelled tree that is eventually
returned at the end of recursive calls is the tree shown in Figure 2. The fact that this is the same
tree as the one outputted by AncestralBuild applied to P is no coincidence (see Theorem 4.5).
2

Together with Proposition 4.1, the correctness of AncestralBuild∗ is established in Ap-
pendix A. In particular, we have the following theorem.

Theorem 4.5 Let P be a collection of rooted semi-labelled trees. Then, applying the algorithm
AncestralBuild∗ to P returns either

(i) a rooted semi-labelled tree that ancestrally displays P if P is ancestrally compatible, or

17

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

(ii) the statement P is not ancestrally compatible otherwise.

Moreover, if AncestralBuild∗ returns a tree, then (up to isomorphism) the tree returned by
AncestralBuild∗ is the same as that returned by AncestralBuild when applied to P.

4.3 Using a dynamic data structure to reduce the computation time of con-

nected components

Different calls to the subroutine Descendant∗ consider different restrictions of the initial compo-
nent graph C(P ′). Moreover, the recursive calls issued during an on-going call of the subroutine
consider node disjoint restrictions of C(P ′). This shows that C(P ′) can be shared by all calls of
the subroutine without the need to keep copies of parts of it. Edges are progressively removed
from C(P ′) as the different calls to Descendant∗ are executed. Each call has to determine the
resulting blue connected components of the part of C(P ′) it is considering.

As shown in Henzinger et al. (1999) for a similar problem, this problem greatly simplifies if
connected components of the graph are maintained in a separate data structure handled by a
dynamic connectivity algorithm. This ad-hoc data structure ensures that connectivity queries on
the graph (i.e., asking whether two given nodes are in the same component) and updates of the
graph (here, removing an edge) are performed efficiently. For example, the dynamic algorithm of
Holm et al. (1998) supports each connectivity query in O(log n/ log log n) and each edge deletion
update in O(log2 n), where n is the number of nodes of the graph. Many implementations
of dynamic connectivity algorithms have been proposed, and we refer the reader to Zaroliagis
(2002) for a recent survey and experimental comparison of their running times. Next section
details how the dynamic data structure comes into play in the execution of Steps 3 ′(b) and 3′(c)
of Descendant∗.

5 Complexity of AncestralBuild∗

In this section, we establish the running time of AncestralBuild∗. In addition to the imple-
mentation details given here, more concrete details can be found in Appendix B.

For a collection P of rooted semi-labelled trees, the burden of the computation in AncestralBuild∗(P)
lies in the subroutine Descendant∗ and, more particularly, in Steps 3′(b) and 3′(c) when dealing
with the computations in the graph C(P ′). For the exposition that follows, let n be the number
of nodes and e′ be the number of edges of C(P ′).

Step 3′(b) identifies the blue components of C(P ′)\(S0 ∩ X). At the beginning of a call to
Descendant∗, there is only one blue component, and then new ones result from the deletion
of nodes and the change of colour of edges performed in Step 3′(a) of the on-going call. As
already remarked, these new blue components arise more precisely at Step 3 ′(a)(iii). To determine
resulting new blue components, Step 3′(b) sends one by one deletion updates to the dynamic
algorithm for each of the edges {a, b} turned red in Step 3′(a)(iii). After each such deletion
update, a connectivity query is issued to the dynamic connectivity algorithm to check whether

18

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

a and b are still in the same component. If the answer is negative, then turning red this edge
resulted in the division of a blue component C in C(P ′) into two blue components, Ca and Cb say,
where a is in the node set of Ca and b is in the node set of Cb. Starting with a and b, the other
nodes of these components are then discovered by examining (via blue edges) neighbors of nodes
that are in Ca and Cb, respectively. This examination processes each new node alternatively for
Ca and Cb, and halts as soon as all nodes of the smallest of the two components have been found.
This small component is considered new and the other is considered to be the original component
C having lost some nodes. This technique, due to Even and Shiloach (1981), guarantees that each
of the e′ edges in the graph belongs to a new component at most log n times over all executions
of Step 3′(b). This bounds the number of times an edge is examined whilst it is blue. Moreover,
the overall number of deletion updates and connectivity queries issued to the dynamic algorithm
is proportional to the number of edges initially in the graph, i.e., O(e′).

Step 3′(c) identifies and deletes all red edges joining two distinct blue components of C(P ′)\(S0∩
X). This is done by examining red edges separating new (hence small) blue components from
other blue components. To identify these edges, all red edges incident to a node in a new blue
component are examined. Those edges that are not separating two blue components are ignored
(they will be removed at a later stage); those separating two blue components are removed from
C(P ′)\(S0 ∩X). Note that it is possible to distinguish between these two situations in constant
time without issuing a connectivity query to the dynamic algorithm. It suffices to associate a
number to each blue component and to maintain in Step 3′(b) a table indicating for each node
of C(P ′) the number of the blue component to which it currently belongs. Since new blue com-
ponents are small (i.e., contain at most half of the nodes of the component from which they
originate), each red edge is examined at most log n times before being deleted from the graph.
Due to Henzinger et al. (1999), this technique leads to an overall running time of O(e ′ log n) to
delete red edges between blue components over all executions of Step 3′(c).

Lemma 5.1 Let P be a collection of rooted semi-labelled trees with |L(P)| = n. Performing
Steps 3′(b) and 3′(c) over all executions of Descendant∗(D∗(P ′), C(P ′)) during algorithm
AncestralBuild∗(P) costs O(e log2 n) running time, where e is the initial number of edges in
D∗(P ′).

Proof. Let e′ be the initial number of edges in C(P ′). As stated above, computing the blue com-
ponents of C(P ′) over all executions of Step 3′(b) necessitates O(e′ log n) operations on the graph
C(P ′) plus O(e′) deletion updates and connectivity queries to a dynamic algorithm maintain-
ing connectivity between nodes in C(P ′) through an ad-hoc data structure. Using the dynamic
algorithm of Holm et al. (1998) leads to an O(e′ log2 n) running time for all executions of this
step.

As also stated above, each of the e′ edges of C(P ′) is investigated at most log n times during all
executions of Step 3(c) with each such investigation being done in constant time. Thus, removing
red edges between blue components globally requires O(e′ log n) time. Now edges of D∗(P ′) that
correspond to these red edges of C(P ′) are known immediately because of pointers which are
maintained between each edge of D∗(P ′) and its associated sibling edge set in C(P ′). Thus,
when all edges in a sibling edge set have been removed from C(P ′), removing the corresponding
edge in D∗(P ′) is done in constant time. As there are O(e) edges in D∗(P ′), this requires O(e)
time over the whole execution of AncestralBuild∗.

19

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Hence, Step 3′(b) is the most time consuming, and noting that e′ = O(e) gives the stated
result. 2

Since Steps 3′(b) and 3′(c) of the subroutine Descendant∗ are the most time consuming
steps during an execution of AncestralBuild∗, Theorem 5.2 is an immediate consequence of
Lemma 5.1.

Theorem 5.2 Let P be a collection of rooted semi-labelled trees with |L(P)| = n. Then AncestralBuild∗(P)
runs in time

O
(

log2 n ·
(

∑

Ti∈P

∑

u∈I(Ti)

d(u)2
))

,

where I(Ti) denotes the set of interior nodes of Ti for all i.

Remark. In general, AncestralBuild∗ allows for the source trees to be rooted semi-labelled
trees of unbounded degree. However, in the special case where the source trees are all rooted
binary semi-labelled trees, the running time of AncestralBuild∗ is O(m log2 n). This running
time is the same as the running time of the algorithm in Henzinger et al. (1999) whose source
trees are all rooted binary phylogenetic trees2. This running time is almost linear in the size of
the input which guarantees short execution times even on large data sets.

5.1 A comparison of running times for partially-resolved trees

Let P be a collection of rooted semi-labelled trees. Ideally, one would like the running time of an
algorithm that determines the compatibility of P to not depend on whether or not P contains
partially-resolved trees. The method AncestralBuild∗ has this dependency; the running time
in Theorem 5.2 includes the factor

∑

Ti∈P

∑

u∈I(Ti)
d(u)2. The reason for this factor is that if

P ′ is a collection of rooted fully-labelled trees obtained from P by adding most recent common
ancestor labels, then, for each tree T ′ in P ′ and each label ` in L(T ′), the number of edges in
the descendancy graph of P ′ joining pairs of siblings of ` is quadratic in the number of siblings.
Unfortunately, given our current approach, there appears to be no way to remedy this. To see
this, suppose that one can always choose a linear number of such edges. We will assume that
this choice is independent amongst the trees in P ′. In the consideration of running times, this
assumption is reasonable, for otherwise, one has to make O(t2) comparisons amongst the trees
in P ′, where |L(P)| = t. We next describe a collection of rooted semi-labelled trees such that
using only a linear number of edges in D∗(P ′) leads AncestralBuild∗ to incorrectly return a
tree when applied to this collection.

A rooted triple is a rooted phylogenetic tree that has two interior nodes and whose label set
has size three. We denote the rooted triple T with label set {a, b, c} by ab|c if the path from a
to b does not intersect the path from the root to c.

Let P = {T1, T2}, where T1 is the rooted phylogenetic tree shown in Figure 8 and T2 is a
rooted triple that will be described shortly. Suppose that AncestralBuild∗ is applied to P

2The running time of this algorithm can be improved from O(mn
1

2) (as stated in Henzinger et al. (1999)) to
O(m log2

n) by changing the dynamic connectivity algorithm it resorts to.

20

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

a31a11 a12 a21 a22 a32 an2an1

T1

Figure 8: The rooted phylogenetic tree T1.

a11 a21a12 a22 a31 a32 an1 an2

Figure 9: The tree outputted by AncestralBuild∗ when applied to {T1, T2} with a particular
linearity condition.

with the linearity condition described above. Let P ′ be the collection of rooted fully-labelled
trees obtained in Step 1 of AncestralBuild∗. Because of our assumption, the number of pairs
of elements of

{

{a11, a12}, {a21, a22}, . . . , {an1, an2}
}

which are joined by edges in the descendancy graph D(P ′) of P ′ is linear in n. This implies that
there is a pair, {a11, a12} and {a21, a22} say, not joined by an edge. Now set T2 to be the rooted
triple a12a21|a22. Clearly, T1 and T2 are not compatible, yet the rooted semi-labelled tree shown
in Figure 9 is returned by this application of AncestralBuild∗.

The running-time dependency on partially-resolved trees may possibly be inherent in any
supertree method for determining compatibility of the input collection, even in the case this
collection consists of just leaf-labelled trees. To make a comparison with the running time in
Theorem 5.2, we examine what appears to be the most canonical and natural extension of the al-
gorithm in Henzinger et al. (1999) for deciding the compatibility of a collection P of rooted binary
phylogenetic trees to deciding the compatibility of a collection of arbitrary rooted phylogenetic
trees.

To aid the running time of the algorithm in Henzinger et al. (1999), the source trees in P
are encoded as a collection of rooted triples. The resulting collection is displayed by a rooted
phylogenetic tree T if and only if P is displayed by T . Extending this to a collection of source trees
that contain arbitrary rooted phylogenetic trees, the minimum number of rooted triples required
for the encoding is O(

∑

Ti∈P

∑

u∈I(Ti)
d(u)2) (Grünewald et al., 2005). The complexity of the

resulting algorithm would be the same as the one stated in Theorem 5.2 for AncestralBuild∗.

21

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

6 An Example on Primates

As an application of AncestralBuild∗, we now consider the phylogeny of Strepsirrhini, one
of the two major groups of primates. To infer this phylogeny, we use the ability of supertree
methods to indirectly combine data of different kinds. The supertree is obtained from four source
trees deriving from (i) retroposon data (Roos et al., 2004), (ii) morphological data (Masters and
Brothers, 2002), and (iii) molecular data (Yoder et al., 2000) (see Figure 10).

The first source tree (a) has been obtained from retroposon analyses (Roos et al., 2004, Fig. 2)
namely from 61 loci containing short interspersed elements (SINEs), translated into a presence-
absence pattern at orthologous loci on 21 strepsirrhine species. This data contains no homoplasy
and indicates unambiguously a unique tree. However, this tree does not resolve all phylogenetic
relationships of the strepsirrhines: it exhibits a trifurcation involving Galagoides, Otolemur, and
Galago, as well as a second trifurcation involving the three groups of the Lemuroidea (Lepilemur,
Cheirogaleidae, and the group composed of Lemuridae and Indridae).

The second source tree (b) contains 13 species of the Galagonidae family and has been inferred
from craniodental morphological data (Masters and Brothers, 2002, Fig. 6.a). This tree resolves
the first trifurcation mentioned above. As it is the strict consensus of the two most parsimonious
trees, this tree also contains multifurcations. More precisely, the two observed trifurcations
respectively concern the placement of two Galagoides species and of two Galago species.

The third and fourth source trees (c) and (d) have been inferred from mtDNA sequences
combined from the control region homologous with the hypervariable region 1 in humans, COII
and cytochrome b (Yoder et al., 2000, Fig. 2 and Fig. 3). The third tree (c) contains 18 species
and subspecies of Microcebus and Eulemur. The fourth tree (d) contains 40 individuals of the
Microcebus genus arranged in 9 identified species.

The four detailed source trees are ancestrally compatible and Figure 11 shows the supertree
resulting from the application of AncestralBuild∗ to this collection. The obtained phylogeny is
one of the largest produced for the strepsirrhines, spanning approximately 100 taxa on a number
of taxonomic levels, from order to individuals. The source trees used in this example as well as
the final supertree are accessible from the Systematic Biology web site.

7 Discussion

AncestralBuild∗ does not take primary data as input, but rather source trees inferred from
this data with some level of confidence and through an adequate method. Thus, it is likely that
the source trees considered for building a supertree will be more often compatible than, say, a
set of primary character data. Nonetheless, it is likely that in many cases the source trees turn
out to be incompatible. Providing a faster way than other current supertree methods to detect
this incompatibility is a first goal of the algorithm presented in this paper. However, this does
not mark the end of its use in the process of building a supertree. Indeed,

(i) AncestralBuild∗ can be integrated in a general supertree method that builds a supertree

22

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Ankarafantsika66
Ankarafantsika67
Ankarafantsika78
Ankarafantsika68

M.ravelobensis

Ankarana69
Ankarana110

M.tavaratra

Bemaraha76
Bemaraha62
Bemaraha83
Aboalimena179
Aboalimena185

M.myoxinus

Kirindy148
Kirindy145
Kirindy149
Kirindy159

M.berthae

Ranomafana138
Ranomafana139
Ranomafana137
Ranomafana174
Ranomafana163
Ranomafana171
Ranomafana136
Ranomafana162M.rufus1

Tampolo190
Tampolo191

E.mongoz

M.rufus2

E.f.collaris

E.f.albifrons

Manongarivo72

E.f.rufus

Manongarivo79
Manongarivo80

M.sambiranensis

E.rubriventer

Arctocebus

Andranomena73

E.m.macaco

Gs.demidoff

E.m.flavifrons

Andranomena74

Gs.thomasi

Andranomena77

Gs.granti

Eulemur

M.ravelobensis

Gs.zanzibaricus

Manamby75

M.sambiranensis

Gs.alleni

Go.matschiei

M.rufus1

Go.moholi

M.myoxinus

Kirindy153

Go.gallarum

M.berthae

Go.senegalensis

Kirindy147

Go.elegantulus

Go.pallidus

M.tavaratra

Kirindy141

O.crassicaudatus

M.rufus2

O.garnettii

Vohimena122

Otolemur

Mandena202
Mandena199

Andranomena74

Mandena199

M.murinus

M.murinus

BezaMahafaly101
BezaMahafaly116

M.griseorufus

M.griseorufus

Galagonidae

Microcebus

Microcebus

Varecia

Lemur

Hapalemur

Propithecus

Avahi

Phaner

Cheirogaleus

Allocebus

Mirza

Microcebus

Lemuroidea

LorisiformesPrimates

a

Strepsirrhine

Cheirogaleine
Cheirogaleidae

Indridae

b

Lemuridae
Lemuriformes

Loridae

c

Haplorrhini

Gs.demidoff

Go.moholi

Otolemur

Perodicticus

Arctocebus

Loris

Nycticebus

Daubentonia

Eulemur

d

Lepilemur

Figure 10: Four source trees of Strepsirrhini, one of the two major groups of primates. These
source trees are derived from retroposon, morphological, and molecular data.

23

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Go.moholi
Go.gallarum
Go.senegalensis
O.crassicaudatus
O.garnettii
Go.pallidus
Go.elegantulus
Daubentonia
Lepilemur
Propithecus
Avahi
Varecia
Lemur
Hapalemur
E.m.flavifrons
E.m.macaco
E.rubriventer
E.mongoz
E.f.collaris
E.f.rufus
E.f.albifrons
Phaner
Cheirogaleus
Allocebus
Mirza
BezaMahafaly101
BezaMahafaly116
Mandena202
Mandena199
Vohimena122
Kirindy141
Kirindy147
Kirindy153
Manamby75
Andranomena73
Andranomena74
Andranomena77
Ankarafantsika66
Ankarafantsika68
Ankarafantsika67
Ankarafantsika78
Manongarivo72
Manongarivo80
Manongarivo79
Tampolo191
Tampolo190
Ankarana69
Ankarana110
Ranomafana162
Ranomafana136
Ranomafana171
Ranomafana138
Ranomafana139
Ranomafana163
Ranomafana174
Ranomafana137
Kirindy149
Kirindy159
Kirindy145
Kirindy148
Aboalimena185
Aboalimena179
Bemaraha76
Bemaraha83
Bemaraha62

Go.matschiei

Primates

Strepsirrhini

Lorisiformes

Galagonidae

Indridae

Lemuridae

Eulemur

M.griseorufus

Lemuriformes

Lemuroidea

Cheirogaleidae

Cheirogaleine

M.murinus

Microcebus

M.ravelobensis

M.tavaratra

M.rufus2

M.sambiranensis

M.rufus1

M.berthae

M.myoxinus

Loridae

Otolemur

Haplorrhini
Loris
Nycticebus
Arctocebus
Perodicticus
Gs.demidoff
Gs.thomasi
Gs.granti
Gs.zanzibaricus
Gs.alleni

Figure 11: Supertree of the strepsirrhines resulting from four compatible source trees, inferred
from retroposon, morphological, and molecular data. This phylogeny demonstrates the ability of
AncestralBuild∗ to deal with rooted semi-labelled trees spanning many different taxonomic
levels, from individuals (e.g., 66-Ankarafantsika) to order (i.e., Primates).

24

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

by resolving incompatibilities in the source trees.

(ii) Moreover, AncestralBuild∗ as a whole can be used repeatedly to identify compatible sub-
sets of the set of source trees or parts of the source trees that are compatible. The resulting
compatible subsets or parts are then combined into a supertree using AncestralBuild∗.

We indicate below some hints in both these directions.

7.1 Integration of AncestralBuild∗ in a general supertree method

As stated in the introduction, consistency is an attractive property for any supertree method.
Thus, in constructing a general supertree method (that is, one that always outputs a tree regard-
less of the compatiblility of the source trees), deciding compatibility is an integral part of the
method. Currently, it seems that the only general supertree methods for rooted semi-labelled
trees is given in Daniel and Semple (2005). In this paper, the authors describe a general supertree
method that allows for the possibility of variants. This method, called NestedSupertree, ex-
tends AncestralBuild, and thus AncestralBuild∗. If the source trees are compatible, then
it outputs a supertree that ancestrally displays each of these trees. On the other hand, if the
source trees are not compatible, then at some iteration there are no nodes that have indegree zero
and no incident edges. By making an appropriate choice of nodes to delete, NestedSupertree,
or more particularly one of its variants, resolves this and continues on, eventually returning a
supertree with several desirable features including the following:

(i) ancestrally displaying every rooted binary semi-labelled trees that is ancestrally displayed
by each of the source trees;

(ii) independent of the order in which the source trees are listed.

We also remark that NestedSupertree runs in polynomial time and allows for the source
trees to be weighted. Such weights, irrelevant for deciding compatiblity (and thus ignored by
AncestralBuild), can really help to arbitrate the conflicts between incompatible source trees.

The progress made in this paper on the running time of AncestralBuild improves the
practicality of general supertree methods for nested taxa such as NestedSupertree.

7.2 Repeated use of AncestralBuild∗ in the production of a supertree

Despite the exactness AncestralBuild∗, it can still be used to build a supertree from incom-
patible source trees. Two ways are highlighted below.

• Finding a subset of the source trees that are compatible. Given an incompat-
ible collection P of source trees, finding a maximum-sized subset of trees in P that are
compatible is an NP-hard task (Bryant, 1997). However, heuristic methods can be easily

25

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

implemented: (i) rank all trees in P according to their size, or to some confidence value on
the trees (e.g., bayesian posterior probabilities) or in the primary data set from which they
were obtained; (ii) build a compatible collection P ′ ⊆ P in the following way: starting from
the best ranked tree, consider each source tree of P successively and add it to P ′ if it forms a
compatible collection with the trees already in P ′, which is checked by AncestralBuild∗.
At the end of the process, P ′ is a subset of compatible source trees, a supertree of which is
provided by the final call to AncestralBuild∗.

• Finding parts of the source trees that are compatible. Usually, source trees result
from an extensive analysis of primary data and their clades are provided with associated
confidence values, such as bootstrap values or bayesian posterior probabilities. As a first
approximation, we may assume that these confidence values are representative in some
sense of the correctness of the corresponding clades (see e.g. Berry and Gascuel (1996)
for a discussion). Thus, when source trees are incompatible, a reasonable option is to first
put into question the clades of the source trees that display the least support from the
data. This suggests an intuitive and simple scheme to remove conflicts from the source
trees by collapsing some of the clades from consideration: Let O be the list of support
values for clades of the source trees, sorted by increasing order of confidence. Note that a
clade appearing in different trees with different confidence values can be accounted for by
resorting to suitable weighting schemes. Collapse clades of the source trees whose support
value is equal to the first value of O and remove that value from the list. Then iterate until
the modified source trees are compatible. Compatibility is checked every time by using
AncestralBuild∗, the final call providing a supertree from the collection of modified
trees.

Acknowledgments

The authors are grateful to E. Douzery and P.-H. Fabre for indicating studies on the strepsirrhine
evolution used in this paper and for verifying our findings.

We thank Olaf Bininda-Emonds, Rod Page, Gabriel Valiente, and an anonymous referee for
their valuable comments.

The first author was supported by the Act. Incit. Inf.-Math.-Phys. en Biol. Mol. [ACI
IMP-Bio] and the Act. Inter. Incit. Région. [BIOSTIC-LR]. The second author was supported
by the New Zealand Marsden Fund and a University of Canterbury Erskine Grant. This work
was done while the second author was a Visiting Professor at the Université of Montpellier II.

References

Aho, A. V., Y. Sagiv, T. G. Szymanski, and J. D. Ullman. 1981. Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions. SIAM J.
Comput. 10:405–421.

Berry, V. and O. Gascuel. 1996. On the interpretation of bootstrap trees: appropriate threshold
of clade selection and induced gain. Mol. Biol. Evol. 13:999–1011.

26

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Bininda-Emonds, O. R. P., ed. 2004. Phylogenetic supertrees: combining information to reveal
the Tree of Life. Kluwer, Dordrecht.

Bordewich, M., G. Evans, and C. Semple. 2005. Extending the limits of supertree methods. Ann.
of Comb. (in press) .

Bryant, D. 1997. Building trees, hunting for trees, and comparing trees: theory and methods in
phylogenetic analysis. Ph.D. thesis University of Canterbury.

Daniel, P. and C. Semple. 2004. Supertree algorithms for nested taxa. Pages 151–171 in Phyloge-
netic supertrees: combining information to reveal the Tree of Life (O. R. P. Bininda-Emonds,
ed.). Kluwer, Dordrecht.

Daniel, P. and C. Semple. 2005. A class of general supertree methods for nested taxa. SIAM J.
Discrete Math. (in press) .

Even, S. and Y. Shiloach. 1981. An on-line edge deletion problem. Journal of the Association of
Computing Machinery 28:1–4.

Grünewald, S., M. Steel, and M. Swenson. 2005. Closure operations in phylogenetics. Tech. rep.
University of Canterbury.

Henzinger, M. R., V. King, and T. Warnow. 1999. Constructing a tree from homeomorphic
subtrees, with applications to computational evolutionary biology. Algorithmica 24:1–13.

Hibbett, D., R. H. Nilsson, M. Snyder, M. F. andJ Costanzo, and M. Shonfeld. 2005. Automated
phylogenetic taxonomy: an example in the homobasidiomycetes (mushroom-forming fungi).
Syst.Biol. 54:660–668.

Holm, J., K. de Lichtenberg, and M. Thorup. 1998. Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Pages 78–89
in Proceedings of the 30th Annual ACM Symp. on Theory of Computing.

Llabrés, M., J. Rocha, F. Rosselló, and G. Valiente. 2005. On the ancestral compatibility of two
phylogenetic trees with nested taxa. Submitted .

Masters, J. C. and D. J. Brothers. 2002. Lack of congruence between morphological and molec-
ular data in reconstructing the phylogeny of the galagonoidae. American Journal of Physical
Anthropology 117:79–93.

Page, R. D. M. 2002. Modified mincut supertrees. Pages 537–552 in Second International Work-
shop on Algorithms in Bioinformatics (R. Guig and D. Gusfield, eds.) Springer.

Page, R. D. M. 2004. Taxonomy, supertrees, and the tree of life. Pages 247–265 in Phylogenetic
supertrees: combining information to reveal the Tree of Life (O. R. P. Bininda-Emonds, ed.).
Kluwer, Dordrecht.

Page, R. D. M. and G. Valiente. 2005. An edit script for taxonomy classifications. BMC Bioin-
formatics 6.

Roos, C., J. Schmitz, and H. Zischler. 2004. Primate jumping genes elucidates strepsirrhine
phylogeny. Proceedings of the National Academy of Sciences 29:10650–10654.

27

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Sanderson, M. J., B. G. Baldwin, G. Bharathan, C. S. Campbell, D. Ferguson, J. M. Porter,
C. V. Dohlen, M. F. Wojciechowski, and M. J. Donoghue. 1993. The growth of phylogenetic
information and the need for a phylogenetic database. Syst. Biol. 42:562–568.

Semple, C. and M. Steel. 2000. A supertree method for rooted trees. Discrete Appl. Math.
105:147–158.

Semple, C. and M. Steel. 2003. Phylogenetics. Oxford University Press, Oxford.

Yoder, A. D., R. M. Rasoloarison, S. M. Goodman, J. A. Irwin, S. Atsalis, M. J. Ravosa, and
J. U. Ganzhorn. 2000. Remarkable species diversity in malagasy mouse lemurs (primates, mi-
crocebus). Proceedings of the National Academy of Sciences 97:11325–11330.

Zaroliagis, C. D. 2002. Implementations and experimental studies of dynamic graph algorithms.
Pages 229–278 in Experimental algorithms: from algorithm design to robust and efficient
software vol. 2547 of Lect. Notes in Comput. Sci. Springer.

A Correctness of AncestralBuild∗

To ease reading in the following proofs, we view a node ` of a restricted descendancy graph that
is not a most recent common ancestor label as a single-element set. Theorem 4.5 follows from
Proposition 4.1 and Lemma A.2.

Lemma A.1 Let P be a collection of rooted semi-labelled trees on X, and let P ′ be a collection of
rooted fully-labelled trees that is obtained from P by adding most recent common ancestor labels.
Let T1 ∈ P

′, and suppose that a, b ∈ L(T1) ∩X such that a and b are not comparable in T1. If
` ∈ L(T1) is an ancestor label of both a and b in T1, then there is a path in C(P ′) from a to b in
which all nodes on this path are descendant labels of ` in T1.

Proof. Without loss of generality, we may assume that ` labels the root of T1. Furthermore,
since for any element z ∈ L(T1) ∩X, there is a path in C(P ′) from z to any of its descendant
labels in L(T1) ∩X, we may also assume that L(T1) ∩X bijectively labels the leaves of T1. This
implies that T1 has no degree-two nodes.

We prove the lemma by showing that, for any pair of elements x and y in L(T1)∩X, there is
a path joining this pair in C(P ′) with the property that all nodes on this path are in L(T1) ∩X.
The proof is by induction on the distance d from mrcaT1

(x, y) to the root of T1. Suppose that
the height of T1 is h. If d = h− 1, then, by the definition of C(P ′), x and y are joined by an edge
in C(P ′) and so the result holds. Now assume that d = h− k, where 2 ≤ k ≤ h, and that, for all
pairs of elements, w and z say, in L(T1)∩X for which the distance from mrcaT1

(w, z) to the root
is greater than h− k, there is a path in C(P ′) from w to z that only uses elements in L(T1)∩X.

Let ` and `′ be the ancestor labels of x and y in L(T1) that label the sibling nodes of the node
of T1 corresponding to the most recent common ancestor of x and y. Then, by the induction
assumption, there is a path in C(P ′) from x to an element in ` using just elements in L(T1)∩X and

28

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

there is a path in C(P ′) from an element in `′ to y using just elements in L(T1)∩X. Furthermore,
by the definition of the edge set of C(P ′), there is an edge joining each element in ` with each
element in `′ in C(P ′). Hence there is a path from x to y in C(P ′) of the desired type. This
completes the proof of the lemma. 2

Lemma A.2 Let P be a collection of rooted semi-labelled trees on X, and let P ′ be a collection of
rooted fully-labelled trees that is obtained from P by adding most recent common ancestor labels.
Suppose that Descendant∗ is applied to D∗(P ′) and C(P ′), and that at some iteration, i say, Di

and Ci are the inputted restrictions of D∗(P ′) and C(P ′), respectively, with V (Di) ∩X = V (Ci)
and the following properties holding:

(i) For all a, c ∈ X, there is a directed path of arcs in Di from c to a with no element x ∈ X
as a non-terminal node in this path if and only if there is a type (i) edge joining c and a in
Ci.

(ii) The set of type (ii) edges of Ci is the disjoint union of sibling edge sets. Furthermore, if e
is an edge of D∗(P ′) as a result of T1 ∈ P

′, then e is an edge in Di if and only if each of
the edges in the sibling edge set of e relative to T1 are in Ci.

Let S0 denote the set of nodes of Di with indegree zero and no incident edges. Then, in reference
to Descendant∗,

(I) After Step 3′(a) is completed, if S1,S2, . . . ,Sk are the node sets of the arc components
of Di\S0, then S1 ∩ X,S2 ∩ X, . . . ,Sk ∩ X are the node sets of the blue components of
Ci\(S0 ∩X).

(II) Before Step 3′(c) is performed, an edge e = {`, `′} of Di\S0 joins two arc components if
and only if, for each sibling edge set of e, each edge in this set is coloured red and joins two
blue components in Ci\(S0 ∩X) with the labels in ` in one blue component and the labels
in `′ in the other blue component.

(III) After Step 3′(c) is completed, for each arc component of Di\S0 and the corresponding blue
component of Ci\(S0 ∩X), (i) and (ii) still hold.

Proof. We first prove (I). As every directed path in Di\S0 must end with an element of X, it
follows that, for all i, we have that Si ∩X is non-empty.

Let U be the node set of a blue component of Ci\(S0 ∩X). Let a and b be nodes in U , and
suppose that a and b are joined by a blue edge. Then either

(a) b is an ancestor of a or a is an ancestor of b in some tree in P, or

(b) {a, b} is an element of a sibling edge set of an edge, e say, in D(P ′).

29

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Since Di and Ci satisfy (i), it follows that in case (a), there is either a directed path from b to a
or a directed path from a to b in Di\S0. In both cases, a and b are in the same arc component of
Di\S0. If (b) holds, then, by (ii), e appears in Di\S0. Furthermore, as {a, b} is blue, the parent
node of {a, b} in Di is not an element of S0. It follows that, in Di\S0, there is an arc from this
parent node to one end of e and an arc from this parent node to the other end of e. In particular,
this means that a and b are in the same arc component of Di\S0. It now follows that U is a
subset of the node set of some component, Sj say, of Di.

To complete the proof, we next show that Sj∩X is not the (disjoint) union of the node sets of
two or more blue components of Ci\(S0∩X). To see this, assume that this happens. Then, in the
arc component of Di\S0 whose node set is Sj , there is a path of arcs (not necessarily a directed
path) from a node c that is in the node set of one blue component of Ci\(S0 ∩ X) to a node d
that is in the node set of another blue component of Ci\(S0 ∩X). Without loss of generality, we
may assume that amongst all such pairs of blue components in Ci\(S0∩X) and pairs of elements
of X this path is of minimum length. By minimality, apart from c and d, there are no other
elements of X on this path. But then each of the non-terminal nodes on this path are elements
in L(P ′) −X. Since each of these labels across all trees in P ′ are distinct, we deduce that each
of these labels come from the same tree, T1 say, in P ′. If d is an ancestor of c or c is an ancestor
of d in T1, it follows by the minimality condition that {c, d} is a blue edge in Ci\(S0 ∩ X); a
contradiction. So assume that c and d are non-comparable in T1. By considering the directions
of the arcs in the path of directed edges between c and d, it is easily seen that one node on this
path, ` say, is an ancestor label of both c and d in T1. Since the node ` appears in Di\S0, it
follows by the fact that V (Di)∩X = V (Ci) that each of its descendant labels in L(T1)∩X are in
Ci\(S0 ∩X). From Lemma A.1, we now deduce that there is a path of blue edges in Ci\(S0 ∩X)
from c to d, and so c and d are in the same blue component of Ci\(S0 ∩X). This contradiction
completes the proof of (I).

To prove (II), first suppose that before Step 3′(c) is performed e = {`, `′} is an edge of Di\S0

joining two arc components. Then no parent node of any sibling edge set of e is in the node
set of Di\S0 and so, if it exists, every edge in each of these sets is coloured red in Ci\(S0 ∩X).
Since {`, `′} is an edge of Di\S0, every element in `∪ `′ is in the node set of Ci\(S0 ∩X) and so,
by (ii), we deduce that all such edges exist. Now consider the elements in `. If ` is a singleton,
then, trivially, the labels in ` are in a single arc component. Therefore, assume that ` contains
two labels x and y. Then ` corresponds to the most recent common ancestor of x and y in some
tree in P ′. It follows that x and y are in the same arc component of Di\S0. Applying the same
arguments to `′ and using (I), we deduce one direction of (II).

For the converse of (II), suppose that, for each sibling edge set of e, each of the edges in this
set are coloured red and join two blue components in Ci\(S0∩X) with the labels in ` in one blue
component and the labels in `′ in the other blue component. Then it is immediate from (I) that
{`, `′} joins two arc components in Di\S0. This completes the proof of (II).

For (III), consider a component D of Di\S0 and the corresponding component, C say, of
Ci\(S0 ∩X). First assume that there is a directed path of arcs in D from c to a with no element
x ∈ X as a non-terminal node. Then, as c 6∈ S0, we have that c and a are elements of C. Since
(i) holds for Di and Ci, it immediately follows there is an arc joining c and a in C. A similar
argument shows that the converse also holds. Thus D and C satisfy (i).

30

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Now consider (ii) in the statement of the lemma. First observe that, as the type (ii) edges of
Ci is the disjoint union of sibling edge sets, it follows by (II) and the way in which type (ii) edges
of Ci and edges of Di are deleted that the type (ii) edges of C is the disjoint union of sibling
edge sets. Now assume that e is an edge in D with ends ` and `′. Then, by the construction of
D∗(P ′), it follows that ` ∪ `′ is a subset of the node set of D. As all of the elements in ` ∪ `′ are
in X, we deduce by (I) that `∪ `′ is a subset of the node set of C. Since (ii) holds for Di and Ci,
it follows that each of the edges in the sibling edge sets of e are in C. A similar argument shows
that the converse also holds. 2

B Implementation Details

We give here a description of AncestralBuild∗ that is more tuned towards implementation.
Data structures maintained throughout the algorithmic process are first detailed, then a pseudo-
code details their precise interactions in the Descendant∗ subroutine.

B.1 Data structures

C(P ′) is a graph with node set X and whose edges can be one of two colours (blue or red). The
nodes of C(P ′) are stored in an adjacency list. For each node v, we store its blue neighbours
(i.e., the nodes connected to v by a blue edge) in a doubly-linked list B(v) and its red neighbors
in a doubly-linked list R(v). These neighbour relations code for the edges of C(P ′). Note that an
edge {u, v} of a given color, say blue, is represented twice, because both u ∈ B(v) and v ∈ B(u).

D∗(P ′) is a mixed graph with node set L(P ′). For each node of D∗(P ′), we store its indegree,
its list of out-going arcs, and the list of nodes to which it is connected by an edge. For each node,
we also maintain a list of pointers to the sibling edges of which it is parent. For each sibling edge
of D∗(P ′), we also maintain a list of pointers to the corresponding (one to four) edges in C(P ′).
This pointer is doubled so that these edges in C(P ′) know in constant time their corresponding
sibling edge in D∗(P ′). Thus, changing in C(P ′) the colour of sibling edges {u, v} of a node
x ∈ D∗(P ′) is done in constant time for each edge (recall that B(v), and similarily B(u), is a
doubly-linked list, so that removing a pointed element out of it and putting it in R(v) is done in
constant time).

numC is a table indicating for each node s in C(P ′) the number of its current blue component
in C(P ′). Initially, all elements belong to the same component (without loss of generality, we
may assume that C(P ′) is initially connected).

Comp is a table storing the blue components of C(P ′). Each component is coded as a doubly-
linked lists of nodes of X and is stored in the entry of corresponding to its number.

S is a table, whose ith entry, Si, is the doubly-linked list of nodes of the ith arc component
that have indegree 0 and no incident edge. If such a node of D∗(P ′) has a label in X, then
there is a link between this node in Si and the corresponding node of C(P ′) stored in the list
Compi which stores the nodes of the ith blue component. Thus, when a node of C(P ′) is moved

31

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

from the ith blue component to the jth one (just created because of the deletion of an edge), the
corresponding node of D∗(P ′) moves from Si to Sj in constant time.

Lnext
C is the list of new blue components in C(P ′) (corresponding to the new arc components

in D∗(P ′)) created during the on-going execution of Descendant∗.

A is the dynamic connectivity algorithm supporting deletion updates and connectivity queries.

B.2 Pseudo-code for the Descendant∗ subroutine

The heading of the subroutine is the following:

Algorithm 1: Descendant∗ (D∗(P ′), C(P ′), n0)

Input: The descendancy graph D∗(P ′), the component graph C(P ′), and an arc compo-
nent of D∗(P ′) to process indicated by its number n0.

Result: A tree with root labelled by Sn0
∩X displaying a part of P ′, or the statement no

possible labelling

1 if Sn0
is empty then return no possible labelling

2 if Cn0
contains only one node v then

return the tree composed of one leaf with the label of v

First note that the whole graphs D∗(P ′) and C(P ′) are indicated as formal parameters, and
not part of them. Indeed, to avoid unnecessary copies of parts of these graphs, it is simpler that
all calls to the subroutine access the same shared data structure. Each call to the subroutine has
to work on a single arc component of D∗(P ′) whose number n0 is inputted to the subroutine.

32

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

3′(a)(i) Lnext
C ← ∅ ; S∗n0

← ∅ ;
foreach s ∈ Sn0

do
delete s and every incident arc (s, x) in D∗(P ′);
if as a result, node x has indegree 0 (and no incident edge) then
S∗n0
← S∗n0

∪ {x} /* for next call on this component */

3′(a)(ii) foreach s ∈ Sn0
∩X do

remove s from CompnumC(s);
foreach edge {s, x} ∈ C(P ′) do

delete {s, x} from C(P ′) and send to A the corresponding edge deletion update

3′(a)(iii) Lred ← ∅ /* list of edges coloured red in C(P ′) */;
foreach s ∈ Sn0

do
let Sib(s) be the set of sibling edges whose parent is s;
foreach e ∈ Sib(s) do

let L(ii)(e) be the sibling edge set of C(P ′) corresponding to e;
colour red all edges of L(ii)(e) in C(P ′);
Lred ← Lred ∪ L(ii)(e)

Sn0
← S∗n0

;

Deleting nodes of Sn0
from D∗(P ′) can lead to other nodes of the nth

0 arc component to
have indegree 0 (and no incident edge). However, these nodes are put aside (until the end of
Step 3′(a)(iii)) in a list S∗n0

and not directly in S0 to avoid confusion between the elements in
that set at the beginning of the on-going call, and elements to be processed in the next recursive
call for the same arc component.

Also recall that removing nodes from C(P ′) at Step 3′(a)(ii) (namely, nodes in Sn0
∩X) does

not change the set of blue components of the graph.

3′(b) foreach edge {a, b} ∈ Lred do
perform a deletion update in A for the edge {a, b};
if A answers that a and b are in different components then

Ca ← {a} and Cb ← {b};
by examining blue edges in C(P ′) connected to nodes of Ca and Cb alternatively,
determine other nodes in these blue components, halting the process when the
smallest component, Ca say, is fully discovered;
Let nc be the number of the new component;
foreach x ∈ Ca do

remove x from CompnumC(x) and add it to Compnc
;

numC(x)← nc

Lnext
C ← Lnext

C ∪ {Ca}

Step 3′(b) identifies new blue components of C(P ′) resulting from the red colouring given to

33

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

some of its edges. When a former blue component is broken into two blue components, nodes of
the smallest one are identified efficiently according to Even and Shiloach (1981). This smallest
component receives a new number nc and its nodes are transferred from the old component to
the list in Comp corresponding to this new component.

3′(c) foreach C ∈ Lnext
C do

foreach node v of C do
foreach red edge {v, v′} in C(P ′) do

if numC(v) 6= numC(v′) then
remove {v, v′} from C(P ′) and from the list of its associated sibling edge e
in D∗(P ′);
if {v, v′} was the last edge in the sibling edge set of e then

remove e from D∗(P ′);
if a node x in D∗(P ′) that e connected has now no more edges incident
to it and indegree 0 then
SnumC(x) ← SnumC(x) ∪ {x}

Because of Lemma A.2(II), edges between arc components of D∗(P ′) correspond exactly to
red edges between the corresponding blue components of C(P ′). At the beginning of the current
call of Descendant∗, there is no red edge between two blue components in C(P ′). Thus, such
red edges only exist between new blue components created at this step, more precisely, between
those stored in Lnext

C , and the other new (larger) blue components. This guides the code of
Step 3′(c), see above.

4 foreach component Ci in Lnext
C ∪ {Cn0

} do
resi ← Descendant∗ (C(P ′), D∗(P ′), i);
if resi returns no possible labelling then return no possible labelling

return the tree obtained by grafting all resi as child subtrees of a root node labelled by
nodes in Sn0

∩X.

Note that, in the case where P ′ is compatible, Step 4 issues a recursive call for each new
component created by the on-going execution of Descendant∗, as well as for the component
Cn0

. Indeed, this latter component still contains nodes. Note that some of these nodes that were
not in Sn0

at the beginning of the on-going call, can now be in this set because initial nodes of
this set and some edges have been removed from this arc component.

34

