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Abstract

This paper focuses on veto supertree methods, i.e., methods that aim at producing a
conservative synthesis of the relationships agreed upon by all source trees. We propose
desirable properties that a supertree should satisfy in this framework, namely the non-
contradiction property (PC) and the induction property (PI). The former requires that
the supertree does not contain relationships that contradict one or a combination of the
source topologies, while the latter requires that all topological information contained in the
supertree is present in a source tree or collectively induced by several source trees. We
provide simple examples to illustrate their relevance and that allow a comparison with
previously advocated properties. We show that these properties can be checked in poly-
nomial time for any given rooted supertree. Moreover, we introduce the PhySIC method
(PHYlogenetic signal with mduction and non-Contradiction). For k input trees spanning a
set of n taxa, this method produces a supertree that satisfies the above-mentioned properties
in O(kn3 4+ n*) polynomial computing time. The polytomies of the produced supertree are
also tagged by labels indicating areas of conflict as well as those with insufficient overlap.
As a whole, PhySIC enables the user to quickly summarize consensual information of a set
of trees and localize groups of taxa for which the data requires consolidation. Lastly, we
illustrate the behaviour of PhySIC on primate datasets of various sizes, and propose a su-
pertree covering 95% of all primate extant genera. The PhySIC algorithm is available at

http://atgc.lirmm.fr/cgi-bin/PhySIC/physic.cgi.



Introduction

Building supertrees

Phylogenies are invaluable tools in various areas of biology to understand the evolution of
genes and taxa. Trees that incorporate an exhaustive sampling of taxonomic biodiversity pro-
vide crucial information about systematics, genomics, and diversification patterns of species (e.g.,
Davies et al., 2004). Large trees can be built using various approaches, including supermatrices
and supertrees. The former approach consists of combining the different source datasets into a su-
permatriz of characters, and then analyzing it under standard phylogenetic reconstruction criteria
(e.g., Delsuc et al., 2005). The supertree approach is an alternative methodology using trees rather
than character data as a primary source of information. It first involves inferring smaller, partially
overlapping, source phylogenetic trees from initial character data, and then assembling them into
a larger, more comprehensive supertree (Bininda-Emonds, 2004a). This approach is particularly
convenient when dealing with heterogeneous character sources, e.g., those scored from morphologi-
cal, transposable elements, DNA, or protein studies. Supertrees have become increasingly popular
(e.g., Bininda-Emonds, 2004b), notably since the seminal work involving the reconstruction of the
primate supertree (Purvis, 1995a). The widespread use of supertrees is explained by three useful
applications (Wilkinson et al., 2004): (i) they provide large phylogenetic frameworks for broad
comparative studies; (ii) they evaluate the congruence of sets of input trees, and reveal conflicts
due to outlier/unstable taxa; and (iii) they identify insufficient overlap among leaf sets of input

trees, and assign priorities for choosing the taxa to be subsequently sampled.



Different kinds of supertree methods

Supertree methods fall into three categories depending on their way of handling topological
conflicts, i.e., different arrangements of the same leaves among labeled source trees.

The first suite of methods do not handle incompatible source trees. The pioneering methods
that belong to this category are Build (Aho et al., 1981) and the strict consensus supertree (Gordon,
1986). Although they are important milestones, these methods appear “of limited use. As most
systematics know, phylogenies usually conflict with one another” (Bininda-Emonds, 2004b, p4).

The second suite of methods handle conflicts among input trees in a liberal way: they apply
a voting procedure. In order to extract their main phylogenetic signal, source trees are asked to
vote on various parts of the phylogeny to be inferred, with the most supported candidates being
elected and composing the output supertree. Voting methods are said to resolve conflicts (Thorley
and Wilkinson, 2003): for each conflict, they use some optimization criterion to make a decision
in favor of one of the topological alternatives. Most conflicts among input trees are expected to
be resolved because relationships displayed by the supertree are guided by source topologies on
the basis of weight of evidence. The most widespread voting method is Matrix Representation
with Parsimony (MRP) whereby nodes of each source tree are encoded as binary characters of
a matrix that is then analyzed with the maximum parsimony criterion to obtain the composite
tree (Baum, 1992; Ragan, 1992). Analyzing this binary encoding of source topological information
with other tree-building criteria leads to variants of MRP such as Matrix Representation with
Flipping (MRF; Chen et al., 2003) and Matrix Representation with Compatibility (MRC; Ross and
Rodrigo, 2004). Other methods of the voting kind, such as MinCut (MC; Semple and Steel, 2000)
and ModifiedMinCut (MMC; Page, 2002) extend Build. They encode source trees in a graph that

is progressively decomposed to get supertree clades. When conflicts hinder the decomposition,



the graph is cut by removing the least supported relationships. The Average Consensus (Lapointe
and Cucumel, 1997) and Super Distance Matrix (Criscuolo et al., 2006) methods implement the
voting approach in an alternative way. They average the initial distance matrices, converted from
source characters or valued topologies, into a superdistance matrix; a tree-building distance-based
approach is then used to infer a supertree from the matrix. Interestingly, voting methods like MRP
may generate novel clades, i.e., clades not present in any input tree alone (Purvis, 1995b; Bininda-
Emonds and Bryant, 1998; Sanderson et al., 1998). Unfortunately, when source trees conflict, novel
clades that are contradicted by each of the source trees can be present in the supertree inferred
by MRP (Goloboff and Pol, 2002; Goloboff, 2005; Cotton et al., 2006) and by MRF (Goloboff,
2005). The importance of this phenomenon is still debated, Bininda-Emonds (2003) reporting, on
the basis of simulations, that this situation is not very frequent for MRP, while Goloboff (2005)
shows selected case studies where “this situation is, clearly, not very unlikely”.

The third suite of methods handle conflicts among input trees in a conservative way. They
adopt a veto philosophy: the phylogenetic information of every source topology is to be respected,
and the supertree is not allowed to contain any group that a source tree would vote against. These
methods remove conflicts (Thorley and Wilkinson, 2003) because they either propose multifurca-
tions in the supertree (Goloboff and Pol, 2002), or prune rogue taxa (Berry and Nicolas, 2004).
In this framework, the supertree should not retain a single branching pattern within a given clade
when several valid topological alternatives are present in the source trees. The full agreement
required by veto methods provides an unambiguous phylogenetic framework that is, for instance,
well suited for taxonomic revisions. More specifically, such a conservative approach may be ap-
plied to automatically build or update parts of the Tree of Life (http://tolweb.org). Several
supertree methods akin to the veto philosophy have been proposed, all of which are inspired by

consensus approaches that operate on trees with identical leaf sets. For example, extensions of



the strict consensus (Gordon, 1986; Huson et al., 1999), semi-strict consensus (Goloboff and Pol,
2002), and maximum agreement subtree consensus (Berry and Nicolas, 2004) have been proposed

to infer veto supertrees.

Properties of supertree methods

To assess the relevance of supertree methods, it is most useful to have properties char-
acterizing the extent to which the supertrees they infer are reliable syntheses of source trees
(Bininda-Emonds and Bryant, 1998; Steel et al., 2000; Wilkinson et al., 2004; Goloboff, 2005). For
instance, Steel et al. (2000) suggest that the output supertree should (i) encompass every source
tree when possible, (ii) always contain every leaf (taxon) that occurs in at least one source tree,
and (iii) be computed under a running time that grows polynomially with respect to the total
number of leaves. These authors also showed that rooted input trees are more appealing than un-
rooted ones for supertree methods that aim to satisfy several desirable properties simultaneously.
Yet, even if supertree methods satisfy some desirable properties, the inferred supertrees often con-
tain polytomies which actually intermix two distinct phenomena: either a lack of overlap in the
topological information among source trees, or the occurrence of topological conflicts among them,
or a combination of these. We thus decided to develop a method that proposes supertrees with
unambiguous resolutions, and provides biologists with explanations about causes of polytomies.
For this purpose, we rely on two new formal properties.

On the one hand, we think that supertree methods should avoid arbitrary resolutions, i.e.,
resolutions that are not entailed by the source topologies. Indeed, novel relationships displayed by
a supertree “are worrying if they are not implied by combinations of the input trees” (Wilkinson

et al., 2005), and “should be identified as such, to highlight their lack of any known justification”



(Pisani and Wilkinson, 2002). Thus, we first request that every piece of phylogenetic information
displayed in the supertree be present in one or several source topologies, or be induced by their
interaction; we call this the induction property.

On the other hand, we focus on unanimous clades, thus adopting a veto point of view.
This means that the supertree is not allowed to contain a clade that conflicts either directly with a
source tree or indirectly with a combination of them. We call this the non-contradiction property.
Such a supertree, that incorporates only uncontradicted input relationships, provides a reliable
baseline for subsequent analyses (Goloboff and Pol, 2002; Goloboff, 2005).

Goloboff and Pol (2002) mentioned similar properties in a formal characterization involv-
ing triplets. They provide examples showing that supertree methods of the voting kind, such as
MRP, MC, understandably do not respect these properties. Although being appealing, the char-
acterization proposed by Goloboff and Pol (2002) can at times be too restrictive or permissive
(see following sections). Recently, Grunewald et al. (2006) provided another characterization of a
property related to arbitrary resolutions contained in the supertree with respect to source trees. In
both cases, there does not seem to be any straightforward algorithm that would always allow for
property verification. Note, however, that Goloboff and Pol (2002) proposed a supertree heuristic
algorithm that satisfies the desired properties in most cases.

In this paper, we provide a characterization of non-contradiction and induction properties,
that differ from those of Goloboff and Pol (2002) and Grunewald et al. (2006). We also describe
simple and polynomial-time algorithms that enable users to check whether or not a given supertree
satisfies these properties. Then we propose an algorithm called PhySIC that improves the Build
algorithm (Aho et al., 1981) by always inferring a supertree and which, moreover, satisfies the
non-contradiction and induction properties. As far as we know, this is the first time that a
polynomial-time method is proposed that always satisfies properties related to induction and non-
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contradiction. Moreover, improving the behavior of Build with respect to arbitrary decisions
can benefit the various methods that extend this algorithm for supertree purposes, e.g., MC
(Semple and Steel, 2000), MCC (Page, 2002), AncestralBuild (Daniel and Semple, 2004; Berry and
Semple, 2006) and RankedTree (Bryant et al., 2004). Next, we pinpoint the difference between
the behaviour of PhySIC and that of well-known supertree methods on a biological case study
on Primates. Lastly, we illustrate PhySIC on the reconstruction of the primate supertree at the
genus level from various source trees based on mitochondrial DNA, nuclear DNA and jumping
gene sequences. The supertree reconstructed appears to be useful for displaying phylogenetic
relationships among the major primate taxa (Goodman et al., 2005). Moreover, the produced
supertree displays label(s) on each of its polytomous nodes which identifies the cause(s) of these
polytomies (lack of cross-information and/or presence of contradictions). The PhySIC method has
been implemented in C++ using the Bio++ library (Dutheil et al., 2006) and is freely available as

a web service and for download at http://atgc.lirmm.fr/cgi-bin/PhySIC/physic.cgi.

Non-contradiction and induction properties

We first introduce vocabulary and notations required to formally define the properties of
non-contradiction (PC) and of induction (PI). Simple examples are then used to illustrate the
relevance of PC and PI as well as to relate them with previously proposed properties for supertree
methods (Steel et al., 2000; Goloboff and Pol, 2002). Then we show how to check in polynomial

time whether a supertree satisfies PC and PI for a given collection of source trees.



Topological description of trees

The definitions and notations used for trees and their topological description are mainly
the same as those used by Semple and Steel (2003). We only consider rooted phylogenies, due to
the fact that supertree methods cannot fulfill different desirable properties listed in Steel et al.
(2000) when considering unrooted trees. Hereafter, the terms phylogeny and tree are considered
synonymous. Given a tree T', L(T') denotes the set of taxa associated to its leaves. More generally,
given a collection 7 of trees, L(7) denotes the set of taxa appearing in at least one tree of 7.
Given two phylogenies 7" and 7" on the same leaf set (L(T") = L(1")), we say that T refines T"
whenever T contains all clades of T”. In other words, either 7" and 7" are identical or T can be
transformed into 7" by collapsing some of its internal edges.

A rooted tree on three leaves A, B, C has only three possible binary shapes, called triplets
and denoted by AB|C, resp. AC|B, resp. BC| A, depending on the innermost clade (AB, resp. AC,
resp BC'). Given a triplet ¢, ¢ denotes any of the two other triplets on the same set of leaves.
Alternatively, a tree on three leaves can be a star tree, i.e., a unique internal node connected to
the leaves. Any rooted tree T' can be equivalently described by the set of triplets homeomorphic
to subtrees of T connecting three leaves (e.g., Grunewald et al., 2006), rt(7") denotes this set.
Given a collection 7T of phylogenies, 7¢(7) = Uy, rt(Ti) denotes the set of triplets present in
these phylogenies. Note that it is possible that 7¢(7) contains two triplets ¢ and ¢, namely when
T hosts two incompatible phylogenies. Clearly, two such triplets cannot be combined into a single
supertree of the collection.

Given a set R of triplets, L(R) denotes the set of taxa appearing in at least one tree in R.
A tree T is said to display a set R of triplets when R C rt(T'); moreover, T' strictly displays R if

additionally L(T") = L(R). A set R of triplets is compatible if there is a tree T" that displays R. To



find a tree displaying R, it is useful to take into account that some triplets of the tree are induced
by R: a compatible set R of triplets induces a triplet ¢, denoted by R ¢, if and only it R U {¢}
is not compatible, or equivalently if any tree T" that displays R contains ¢t. For instance, any tree
displaying {AB|C, BC|D} also has to display the triplet AC|D, i.e., {AB|C,BC|D} = AC|D.
Bandelt and Dress (1986) and Dekker (1986) were among the first to investigate such induction
rules. The set of all triplets induced by a compatible set R is called the closure of R and is
denoted by cl(R). Source trees considered for supertree building are sometimes incompatible, and
then the set of triplets considered is incompatible. Nonetheless, we can characterize the set of
triplets induced by these collections by extending the preceding definition: we will say that a set

R of triplets induces a triplet ¢+ when there is a compatible subset R’ of R that induces ¢.

Characterizing non-contradiction and induction by triplets

Here we describe two important properties that veto method supertrees should satisfy.
They concern topological relationships that a supertree should not contain with respect to the
input trees : first, it should not contain relationships contradicting the source trees (PC property);
moreover, it should only contain relationships that are induced by the input trees (PI property).
Below we detail these two properties.

There are several ways for a supertree to contradict a collection of source trees. The
most direct contradiction occurs when only one resolution appears for a group of taxa in one or
several source trees, and the supertree contains a different resolution for the group. When different
resolutions appear in source trees, as soon as the supertree proposes a resolution for the concerned
taxa it contradicts at least one input tree. Contradictions are less direct when the supertree

proposes a resolution that contradicts no single input tree but does contradict a combination of
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them.

A relationship contained in a supertree can present no contradiction with the input trees
and still not be desirable. For instance, Fig. 1 shows a collection of two source trees and four
possible supertrees, T”, T”, T" and T, for this collection. Both B and C' are sister taxa of A in the
source trees, but no information is present in these trees to resolve the clade A, B, C'. Thus, the
fully resolved supertrees T",T”,T" all take arbitrary decisions by proposing one of the possible
resolutions for this clade. Here, 7" is the sole supertree not proposing an arbitrary resolution for
the clade. Arbitrary resolutions are misleading as they display relationships that are not entailed
by the input trees.

The above properties can be formalized in different ways depending on the kind of topolog-
ical relationship considered, e.g. clades, nestings, triplets, etc. Following Goloboff and Pol (2002)
and Grunewald et al. (2006), we chose to focus on triplets. Given a collection 7 of input trees and
a candidate supertree T', R(T', 7T) denotes the set of triplets of 7 for which T" proposes a resolution.
More formally, R(T,T) = {AB|C € rt(T) such that {AB|C, AC|B, BC|A} N rt(T) # 0}. The
set R(T,T) corresponds to all topological information present in collection 7 that is related to the
information present in supertree 7. Using this notation, we can express the induction property

(PI) and the non-contradiction property (PC) as follows:

e T satisfies PI for 7 if and only if for all ¢ € rt(7"), it holds that R(T,7) F t. In other words,

PI requires that each and every triplet of 7" is induced by R(T,7T).

o T satisfies PC for 7 if and only if for all ¢ € 7¢(T') and all ¢, it holds that R(7,7) t/ ¢. This

means that, for each and every triplet of 7', R(7T,7 ) induces no alternative resolution.

For instance, considering collection 7 = {7}, T3} in Fig. 2 and supertree 7" of Fig. 3, the
set R(T",7T) is {AC|E, AC|F,AB|E, AB|F, BC|E, BC|F, EF|A, EF|B, EF|C}. Note that the
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triplet AD|C present in rt(7") due to 15 is not in this set because A, D, C' are multifurcating in 7".
When the source trees are incompatible, it is possible that R(7',7) contains two different triplets
for the same three taxa. For example, consider the supertree 7" in Fig. 3 proposed by the MC
and MMC voting methods (Semple and Steel, 2000; Page, 2002) on the collection 7 = {717, T>}.
R(T,T) contains both AB|C' (resulting from T5) and AC|B (resulting from 77). In this case, the
supertree T' that contains the triplet t = AB|C' does not satisfy PC, since t = AC|B is in R(T,7)
(hence, R(T,7) F t). Indeed, in this example, supertree T includes topological information
contained in T, that contradicts that of T7. This situation indirectly results from a difference in
the sizes of the clades of T} and T which are incompatible: the clade containing more taxa (here
(A, B, D) in T versus (A, C) in T7) is favored in the MC-MMC supertree. Such a size bias effect
has been well-known in the field since Purvis (1995b) demonstrated it for the MRP voting method.
Here it is illustrated for another voting method, and one might wonder whether this size bias is
present in most voting methods. Note however that this size bias does not seem to have a major
impact on MRP’s accuracy (Baum and Ragan, 2004).

When the source trees are compatible, any reasonable method is expected to produce a
supertree satisfying PC. However, some methods usually propose a supertree that does not satisfy
PI. Indeed, compatible source trees can sometimes be displayed by an exponential number of
supertrees, and some methods arbitrarily propose only one of them, thus selecting some triplets
to the exclusion of other possible triplets. For instance, when considering the trivial case of two
source trees AB|E and C'D|E, both MC and MMC propose the supertree ((A,B),(C,D),E), while
numerous supertrees are possible, e.g., ((A,C),(B,D),E). In such a case, it seems preferable to
output a consensus of all possible supertrees, as done by MRP (e.g. Bininda-Emonds and Bryant,
1998). Unfortunately, some topological information of the source trees (e.g. triplets) can be absent
from the obtained consensus as it can contain highly multifurcating nodes.
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However, for some compatible collections of trees, it is possible to find a supertree that
displays all triplets of the collection and is also refined by all other possible supertrees. More
formally, a set R of triplets is said to identify a tree T'if and only if T" strictly displays R and T is
refined by every tree T” that strictly displays R. A set R can identify at most one tree, thus when
the triplet set R = rt(7) of a collection 7 of source trees identifies a tree, this tree is a canonical
representation of all possible supertrees.

Considering practical collections 7 of source trees, rt(7") will almost never identify a tree,
either because this set is incompatible, or because it does not identify a particular tree. Neverthe-
less, it is possible that a subset of the triplets in 7¢(7") identifies a tree 7', and then the topological
information contained in T exactly corresponds to a subset of the topological information con-
tained in 7. Such a subset is most interesting when the triplets ¢ it contains do not have an
alternative resolution ¢ in 7¢(7). This situation occurs for the subset R(7T,7) of rt(7) when the

supertree T satisfies PI and PC.

Proposition 1 A tree T satisfies PI and PC for a collection T of trees if and only if R(T,T)

identifies T

The proof is given in Appendix. It is based on the fact that a set R identifies a tree T' if and only
if 7t(T) = cl(R) (Grunewald et al., 2006, Lem. 2.1). This proposition confirms the relevance of
PI and PC: having a supertree T' that satisfies both of them highlights a part of r¢(7") (namely
R(T,T)) that exactly corresponds to a tree, i.e. does not contain arbitrary topological information,
and moreover does not contradict any input tree. Such a feature is most desirable for supertrees

inferred by veto methods.
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Links with other advocated properties

Properties similar to PI and PC were described in (Goloboff and Pol, 2002, p.519) as “the
property of [the supertree| displaying AB|C' if it is found in some input tree or implied by some
combination of input trees and no input tree or combination of input trees displays or implies
AC|B or BC|A”. These properties were also pointed out as being desirable by Grunewald et al.
(2006). Using our formalism, they can be translated as follows for a supertree T' representing a

collection 7
e PI": for any t € rt(T), it holds that rt(7) -t
e PC": for any t € rt(T) and for all ¢, it holds that rt(7 ) ¢.

The essential difference between PI'-PC’ and PI-PC is whether we evaluate supertrees based
on triplets in the original set of trees, rt(7), or on the triplets commonly resolved the supertree
and at least one of the source trees, R(7,7 ). From the statement of the properties, it is clear that
PC’ implies PC and PI implies PI'. It is thus natural to wonder which version of the properties
is preferable. Below, we show an example where PC’ is too restrictive, and an example where PI’

is too permissive. In contrast, PI and PC behave correctly in these examples.

Example 1 Let 7 = {11, T2} with Ty and Ty as shown in Fig. 4. rt(T) contains AE|B and
AC|E, therefore rt(T) = AC|B. We also have rt(T) & AB|C since AB|C' € rt(Ty). Thus any
tree providing a triplet on {A, B,C} does not satisfy PC’. For analogous reasons PC’ does not
allow us to propose any triplet in the supertree. Thus PC" rejects the tree T of Fig. 4. YetT is a

reasonable and informative supertree for T and satisfies both PI and PC.

We note that T is not a plenary supertree, i.e. it does not contain all input taxa, but this example
shows that removing rogue taxa is a way in which more informative supertrees can be obtained.
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This is in line with the remark of Wilkinson et al. (2004), who stated that “non-plenary supertree
methods might be most useful for identifying unstable leaves”. For instance, such leaves might be
involved in lateral transfers. This example easily generalizes to cases where the supertree actually
contains more leaves than each source tree. Figure 5 depicts this generalization.

The next example shows a supertree satisfying both PI” and PC’, while also displaying

irrelevant triplets.

Example 2 Let T = {T1, Ty} with Ty and Ty as illustrated in Fig. 6. vt(T) = {AB|C, AB|X, BC|A}.
The tree T of Fig. 6 displays {AB|X, BC|X, AC|X}. AB|X is present in (thus induced by) rt(7T)
but the two other triplets can also be induced from rt(T): {AB|X, BC|A} F {BC|X,AC|X}. It
follows that T satisfies PI’. Moreover, it is easily seen that no combination of triplets in rt(7T),
other than {AB|X, BC|A}, induces triplets. Thus T also satisfies PC". However, T is clearly
not an ideal supertree for T as no information in 7T induces group A, B,C to nest inside group
A, B,C, X. The property PI, not satisfied by T, detects this problem: here R(T,T) only contains

the triplet AB|X and thus it does not induce the triplet AC|X present in T.

The PI” property quoted by Goloboff and Pol (2002) is stronger than the Pareto property (Neu-
mann, 1983; Wilkinson et al., 2004) on triplets, which requires that the output tree contain all
triplets that occur in all source trees. The Pareto property is appealing in general and has also
been advocated in the supertree context (property P6 of Steel et al., 2000). However imposing the
Pareto property on triplets may be problematic, even in the case of compatible source trees (Thor-
ley and Wilkinson, 2003). This is due to the possibility of having several candidate supertrees
that are both compatible with source trees and respect the Pareto property. In this case, no single
supertree exists that satisfies the Pareto property while having no arbitrary resolution. The strict

consensus of these supertrees does not necessarily satisfy the Pareto property. A solution is then to
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return several trees, either all candidate supertrees or their reduced consensus (Wilkinson, 1994).

However, this solution may not well be suited when the aim is to summarize a collection of source

trees into a single supertree that is more easily dealt with for further analysis by biologists.
When source trees are incompatible, it may even be impossible to have a supertree satisfying

both the Pareto and non-contradiction properties (PC and PC’) as shown in the following example.

Example 3 Consider the collection T = {11, T>} where Ty = (((A, D), B),((C, F), E)) and T, =
(A, E), (B, F)),(C,D)). Triplets AB|C and EF|D are displayed by both trees of T. Thus any
supertree T' for T must include all leaves in T in order to satisfy the Pareto property. Since rt(7T)
contains AB|D and AD|B, any tree T' displaying a triplet for the three leaves does not satisfy PC
(hence PC’). For similar reasons, no supertree T can display a triplet on the taza A, C and D.
Thus, any supertree satisfying PC (or PC’) and including all taxa of T contains a multifurcating
node on taxa A, B,C, D, hence does not display the triplet AB|C, i.e. does not satisfy the Pareto

property.

In other words, imposing the Pareto property can lead the supertree to explicitly contradict
relationships present in some input trees. This shows that the Pareto property on triplets is
not compatible with the veto approach, where the proposed supertree must not contradict the
source trees. However, the Pareto property can be considered for other topological relationships
(Wilkinson et al., 2004). For example, there is always a supertree satisfying PI and PC as well as
the Pareto property on partial or full splits contained in the source trees.

The Pareto property specifies relations that the supertree must contain. The complemen-
tary co-Pareto property specifies relations that the supertree must not contain. The co-Pareto
property in the consensus context requires that the consensus tree contain no relationships that

are not present in at least one input tree. However, Wilkinson et al. (2004) point out that this
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statement is not reasonable for supertrees, since “they might contain relashionships that are en-
tailed by the input trees in combination, but are not present in any of them singly”. Then they
propose a weaker version that requires that the supertree does not contain relationships that are
contradicted by all the input trees whose leaf set makes a contradiction possible. Note that, any
supertree satisfying PC also satisfies the latter version of co-Pareto.

Steel et al. (2000) list five other properties that might be requested from supertree methods:
changing the order of the trees in the input collection does not change the supertree (P1); renaming
the taxa of the source trees gives the same supertree, but with the taxa renamed accordingly (P2);
the output tree displays the source trees when they are compatible (P3); each leaf (taxon) that
occurs in at least one source tree is in the supertree (P4); the running time of the method grows
polynomially with respect to the total number of taxa (P5). The following example shows that

ensuring P3 can force the supertree to contain arbirtrary clades. Thus P3 can conflict with PI.

Example 4 Let T = {11,152} with Ty = (A, B),W) and T = ((A, B), (X, (Y, Z))). A supertree
with tazon set {A, B,W,X,Y,Z} that satisfies P3 must display Ty, hence must have a clade
including Y, Z but not X. However, it will contain arbitrary clades, no matter where tazon W
1s attached. This is because any supertree satisfying PI must include a polytomy on W, X)Y,Z
since source trees include no information on the relative position of W and the group X,Y, Z. For
instance, the supertree ((A, B),(X,Y), W, Z) excludes the possibility for (A, B) and (X,Y) to be

ntermized.

Note that if polytomies of a supertree are interpreted in terms of an Adams consensus (Adams,
1972), then this example does not put P3 into question. However, this interpretation of polytomies

does not prevail in phylogenetics, as we discuss in further detail in the case study paragraph.
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Checking PC and PI in polynomial time

Existing supertree methods can sometimes output trees that do not satisfy PC or PI. For
instance, the MC supertree obtained for the collection of Fig. 2 does not satisfy PC, while on
that of Example 4, it fails to satisfy PI. In contrast, for the collection {AB|C, BC|D} the MC
supertree satisfies bothPI and PC. The MRP method sometimes outputs supertrees not satisying
these properties (e.g. PC is not satisfied in Fig. 1 of Bininda-Emonds and Bryant, 1998), and
sometimes provides supertrees that satisfy them — e.g. when the source trees are compatible
(Steel, 1992). We now describe an algorithm to decide whether a candidate supertree satisfies
both PI and PC together. In case of a negative answer, it pinpoints those parts of the supertree
contradicting these properties. This algorithm relies on two properties equivalent to PC and PI,

whose formulation is less intuitive but whose checking is easy.

Definition 1 Let 7 be the collection of source trees and T be a proposed supertree for T . Define

PC.y and Pl ., to be the following properties:

o PC.p: rt(T)UR(T, T) is compatible.

o Pl.,: for any t € rt(T) and for all t, the set {t} UR(T,T) is incompatible.

Proposition 2 (PI., and PC,,) < (PI and PC).

Proof.

e PC,, = PC: PC,, =Vt € rt(T), {t} UR(T, T) is compatible. This ensures that there is at
least one tree T" that displays R(T,7) U {t}. It follows that T" displays R(7,7) but not ¢.
As t is not displayed by every tree that displays the compatible set R(T,7), it follows that

R(T, T) W/ 1.
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e PC= PC,: PC= R(T,T) Crt(T) (ct proof of Prop. 1), this ensures that rt(T)UR(T,T)

is compatible (since displayed by 7).

e PI + PC = PI.;: Pl and PC = cl(R(T,7)) = rt(T) by Prop. 1. This ensures PI.,.

e PI., + PC,, = PI: PC,, ensures that R(T, T ) is compatible. PI., is exactly the definition

of the induction for a compatible set, thus ensuring PI.

O
Note that we do not prove a direct equivalence between PI and PI., in this general case. The two
properties are only equivalent for a compatible set. In fact, PI., is relatively uninformative without
PC,,, since PI., holds as soon as R(T,7T) is incompatible. Note also that another formulation of
PC, closer to that of PI., but less concise, is as follows: for any t € rt(T'), the set {t} UR(T,T)
18 compatible.

PI., and PC,, can easily be checked by using the Build algorithm, which indicates in
polynomial time whether a set of rooted trees is compatible or not. A similar procedure was
proposed by Steel (1992), and refined by Daniel (2004), to compute the strict consensus of all
supertrees displaying a collection of compatible source trees. The following lemma provides us

with an even faster way to check PC,,.

Definition 2 (Direct contradiction) A tree T directly contradicts a set of triplets R when
there is a triplet t in rt(T) such that 3t € R. A supertree T is said to directly contradict a

collection T of source trees if T directly contradicts rt(7T).

Direct contradictions are linked with the PC property in the following way:

Lemma 1 If a tree T does not directly contradict a collection T of source trees then the three
following statements hold:
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1. R(T,T) Crt(T);
2. R(T,T) is compatible;
3. T satisfies PCeq for T.

Proof. By definition, R(T,7) only contains triplets on 3-taxon sets for which there is a triplet in
rt(T). Since T does not directly contradict 7, the triplets of R(T,7") are resolved as those in T". It
follows that R(7,7) C rt(T') (proving 1). R(T,T) is therefore compatible (proving 2). Moreover,
R(T,T) C rt(T) ensures that R(T,7) U rt(T) is compatible, which is exactly the formulation of
PC,, (proving 3). O
Thus, to check that a supertree 7' satisfies PC.,, and hence PC, for a collection 7, it suffices
to check that any triplet of r¢(7") is not resolved in a different way in a tree of 7. This can be
done by computing the set rt(T') of O(n?) triplets in 7" and then comparing 7t(T") with the set of
triplets of each source tree T;. If the collection 7 contains k source trees and a total of n taxa,
then this simple implementation requires O(kn?®) computing time. However, it is possible to check
this condition in linear time for each pair T',T; with T; € T first restrict in O(n) time the trees T’
and T; to the taxa they share; then apply the algorithm of Berry et al. (2005) that, given two trees
with the same taxa, finds in O(n) time a triplet resolved differently in the trees, or states that this
situation does not arise. Thus, successively considering k source trees leads to a procedure that

checks PC in O(kn) computing time.

PhySIC : a polynomial-time veto supertree method

We introduced above the PI and PC properties, showed their relevance and described

algorithms to check whether a given supertree T' satisfies them. In this section, we show that it
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is possible to design a method that always produces supertrees that satisfy PI and PC. However,
this aim is not precise enough, as the star tree (the tree whose leaves are all children of a single
internal node) trivially satisfies these properties — simply because it does not resolve any triplet.
Thus, a reasonable aim is to design a method that always infers supertrees that satisfy PI and PC
and that contain as much resolution as possible, e.g., resolve as many triplets as possible. More
precisely, we require a method that, given any collection 7, proposes a supertree T such that
R(T,T) identifies T" and R (T, T) has maximum size over all such subsets of 7¢(7"). Such a subset
of rt(7) is called a maximum identifying subset of triplets (MIST).

The difficulty of this problem cannot be simply deduced from previously known theoretical
results for optimization problems on triplets. Indeed, the MIST problem is a middle term be-
tween the NP-hard problem that consists of finding a maximum-sized compatible subset of triplets
(Bryant, 1997) and the polynomial-time problem that asks for the maximum-sized tree-like subset
of a complete set of triplets (Berry and Gascuel, 2000; Bryant and Berry, 2001). Unfortunately,
the MIST problem is NP-hard (Guillemot and Berry, 2007). This shows that it is highly unlikely
that a polynomial-time algorithm exists that could find the most resolved supertree satisfying PI
and PC. However, we can still rely on heuristic algorithms to find reasonable (but potentially
suboptimal) solutions, as is commonly done for other NP-hard problems such as finding a most
parsimonious tree or a maximum likelihood tree for a character matrix.

We present below a polynomial-time heuristic method that always outputs a supertree that
satisfies PI and PC. The method tries to produce a supertree that contains as many input triplets
as possible under this constraint. The method is a variant of the well-known Build algorithm and
is called PhySIC- Phylogenetic Signal with Induction and non-Contradiction. Supertrees inferred
by the method have a degree of resolution that can be close to that of supertrees inferred by voting
methods (see next section), while only containing clades that are not arbitrary with respect to the
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source trees nor contradicting them as detected by PC.

Inferring a supertree that satisfies PC

This section introduces algorithms, based on the Build algorithm, to produce non-trivial

trees that satisty PC.

The Build algorithm

The Build algorithm is a yes-or-no algorithm that tells whether a collection of triplets or
larger trees is compatible or not. To achieve its goal, the algorithm tries to build a tree displaying
the triplets; if the process is blocked at some step, this means that the input triplets are not
compatible. This tree is built recursively, from the root to the leaves. First, the largest clades
are identified, then clades included in the first ones, and so on. The composition of the clades
is guided by the structure of a graph, that is a set of objects (called vertices) with links (called
edges) between pairs of them.

The graph used by Build, called here the Aho Graph, is defined as follows: let R be
a collection of triplets on a taxon set X, the Aho Graph G for R is the undirected graph with
vertices X and with edges (A, B) between two taxa A and B whenever there is a triplet AB|C' € R.
Thus, an edge between two taxa means that at least one triplet sees these two taxa in the same
clade. The vertices of G are denoted by v(G) (in the present description v(G) = X). For instance,
Fig. 7a shows the Aho graph built from R = rt({1},1»}), where T, T are the source trees of
Fig. 2, and e.g., the edge between taxa B and D is due to the triplet bd|c € rt(T3).

A connected component C; of a graph is a maximal set of taxa linked to one another, i.e.,
such that for any pair A, B of taxa in C}, there is a set of edges that links A to B. For instance,

the graph in Fig. 7a contains two connected components: C; = {F, F'} and Cy = {A, B,C, D}.
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The connected components of graph G are denoted by CC(G). The vertices of a component C;
of G are denoted by v(C;). When the Aho graph contains several connected components, each
of them corresponds to a clade of the tree representing the input collection of triplets (if such a
tree exists). Once these clades are known, the clades contained in each of these primary clades
are found by recursively processing Aho graphs for subsets of triplets that respectively concern
the taxa of these clades: the restriction of R to taxa of a component C; is denoted by R|v(C})
and defined as {AB|C' € R such that {4, B,C} C v(C;)}. For example Fig. 7b shows the Aho
graph obtained from R|v(Cs) where R is the set of triplets due to source trees in Fig. 2, and Cj
is the component of the initial Aho graph shown in Fig. 7a. The recursive calls stop when dealing
with components containing less than 3 taxa, since there is no triplet (hence incompatibility) on
so few taxa. However, if at some point in the recursive process, the Aho graph for a set of at least
three taxa has only one connected component, this means that the input trees are conflicting on
the resolution of these taxa. When this happens, the algorithm states that the collection of source
trees is incompatible. Otherwise, when all recursive calls return, the algorithm concludes that the
source trees are compatible. For instance, when run on the collection of Fig. 2, Build first finds
two connected components, C; = {F, F} and Cy = {A, B,C, D}, but the recursive call on Cy
leads to a graph containing only one connected component (Fig. 7b), which leads the algorithm

to detect the incompatibility of the source trees.

A first simple modification of Buzld

We first describe here a simple modification of Build that infers a supertree from a collection
of source trees 7. This subroutine, called Buildpc (see Fig. 8), takes as input the triplet set
R = rt(T) of a collection 7 of source trees and the list S of taxa contained in these trees.

Buildpc mainly differs from Build when the Aho graph contains one connected component on the
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set S of taxa currently considered (line 1). In this case, Buildpc returns the star tree on S (i.e.,
a single polytomy on S, thus contradicting no input triplet), whereas Build simply concludes that
the sources trees are incompatible. This star tree is then grafted as a subtree of the tree built
by the previous recursive call. Thus, we can now output a supertree even when the source trees
are incompatible. As an example, from the collection of Fig. 2, Buildpc infers the supertree T”

displayed in Fig. 3.

Proposition 3 Given a collection R of triplets on a taxon set S, Buildpc returns a tree T on S

that satisfies the PC' property for R.

The proof of this proposition can be found in appendix.

A more involved algorithm to infer a supertree satisfying PC

Buildpe sometimes produces poorly resolved trees due to multifurcations returned in cases
where G contains a single connected component (i.e., when R contains conflicts covering the
considered subset of taxa). In the most extreme (though unlikely) case, this situation occurs at
the first step of the algorithm, which then outputs a star tree.

The most basic conflicts between triplets of R occurs when two different triplets ¢ and
t appear in R for a same set of three taxa. Such a direct contradiction cannot be present in
a tree that satisfies PC. Given Ry, the set of triplets such that ¢, € R it seems relevant to
consider the subset R’ = R — Rq. R. We define a variant of Buildpc, called PhySICpc, that
resorts to that subset whenever conflicts are detected. This enables the produced supertree 1"
to be generally much more resolved than the tree returned by Buildpc. For instance, Fig. 7b
shows the graph obtained for R|v(C5y), where R are triplets of the collection in Fig. 2 and Cj is

the connected component shown in Fig. 7a. This graph is connected due to the direct conflicts
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between AB|C' (resulting from T7) and BC|A (resulting ftom 73). This situation leads Buildpc
to return a polytomy on A, B, C, D. In contrast, building the graph on the basis of R’ results in
two connected components, C; and C}, allowing PhySICpc to propose a tree with two subtrees
for taxa A, B,C, D.

The correctness of Buildpc ensures that T” satisfies PC with respect to R’ but without any
guarantee that this also holds with respect to R. To ensure the latter, and thus the correctness of
PhySICpc, T must not resolve any triplet of R4.. A way to ensure this is to collapse any branch
of T" that resolves a triplet of R4.. The tree thus obtained is still always at least as resolved as
the one proposed by Buildpc and potentially contains supplementary branches. Indeed, direct
contradictions at the root of a clade no longer prevent the proposition of clades on subsets of its
taxa. For instance, on the collection of Fig. 2, the tree initially computed by PhySICp¢ is the
tree called 7" in Fig. 3. But as the branch leading to the clade (A, D, B) contradicts AC|B € Ry,
the branch above this clade is collapsed, and the final tree output by PhySICpc is then the tree
named 77 in Fig. 3. This tree contains one clade more than the tree output by Buildpc (the tree
named 7" in the figure).

These ideas are included in the PhySICpc algorithm whose pseudo-code is detailed in

Fig.9.

Theorem 1 Given a triplet set R = rt(T) from a collection T of source trees on a tazon set S

of n leaves, PhySICpc returns in O(n*) time a tree T satisfying PC for T .

The proof of this result can be found in appendix.
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Ensuring that the supertree satisfies PI

The supertree Tpe output by PhySICpe does not usually satisfy the PI property. The
PhySICpy algorithm transforms Tpe so that it also satisfies PI. To that aim PhySICp; recursively
searches the tree and checks that for each branch each triplet is induced by R(Tpc, 7). The
theorem 3.1.1 of Daniel (2004) provides a useful characterisation to decide when a branch is
justified, directly or indirectly, thanks to triplets present in R(Tpc, 7). When considering the
branch linking u to a subtree S;, the theorem considers a graph G; for any sibling subtree S; of
Si. Any such graph Gj; is the Aho graph with vertices L(S;), and with edges due to triplets of
R(Tpc,T) whose three leaves are in L(.S;) U L(S;). The theorem states that the branch from u

to the root of S; is justified if and only if G;; is connected, for any sibling subtree 5.

Example 5 Consider for instance the simple ezample where T contains the trees ((A,B),X) and
((E,F),X). The Aho graph for rt(T) = {AB|X, EF|X} is made of three connected components:
Cy ={A, B}, Co ={E,F} and C3 = {X}, therefore applying the PhySICpc algorithm gives the
tree Tpc = ((A, B), (E, F), X). Tpc displays AB|E even though this information is not induced by
T . Indeed, the branch defining the clade (A, B) is detected as not justified since the corresponding
connected component, C, is not connected in the Aho graph when we consider only edges due to

triplets with taxa in Cy U Cy.

This Theorem is the basis of a decision algorithm called Identifies, that states whether a given
set of triplets identifies a given tree (Daniel, 2004). It is possible to design a simple variant of
this algorithm that always returns a tree (not just a yes or no answer): when a branch between
a node p and the root of a subtree .S; is not justified, the idea is to replace S; by a star tree on
the taxa of the corresponding clade. This crude variant removes the unjustified branches, but also

potentially many other branches, i.e., those inside S;, those leading to sibling subtrees S; of S;, and
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those inside S; subtrees. PhySICp; is a more refined variant that only collapses the unjustified
branches. See the pseudo-code in Fig. 10 for details. In this code, PhySICp; is given a tree 1" in
which unjustified branches are to be collapsed, and a collection 7 of source trees or, equivalently,
the corresponding set of triplets (as written in the pseudo-code). PhySICp; repeatedly calls the
Checkpy subroutine to detect unjustified branches that are then removed until none remain (note
that in the pseudo-code of Checkp;, S(T') denotes (complete) subtrees connected to the root of
T, i.e., the subtrees corresponding to the largest clades under the root of 7).

From the collection of Fig. 2, PhySICp¢ infers the supertree T displayed in Fig. 3. and
none of the three internal branches of 7" are collapsed by Checkpr. For instance, consider the
step where Checkp; checks the subtree ((A,D),B,C) of T"”, whose child subtrees are (A,D) plus
the two trivial subtrees on B and C. The sole branch that has to be checked in ((A,D),B,C) is
the one defining the clade (A,D). Here, Checkp; builds two Aho graphs with vertices { A, D}: one
with edges due to triplets on {A, D} U {B} and one with edges due to triplets on {4, D} U {C}.
Both graphs are connected thanks to triplets of the source tree Ty; therefore, Checkp; does not

collapse any branch at this step.

Theorem 2 Given a collection T of trees and a tree satisfying PC for T, PhySICp; returns in

O(n?) time a tree T on L(T) that satisfies both PC and PI for T .

The proof of this Theorem can be found in the appendix.
The PhySIC algorithm (see pseudo-code) builds a supertree for a collection of k source
trees 7 by first computing the set 7¢(7") and then successively calling PhyS1Cpc and PhySICp;.

Since rt(7) is computed in O(kn?), PhySIC runs in O(kn® + n*) time.

Theorem 3 Given a collection T of k source trees on n leaves, PhySIC returns in O(kn® + n*)
time a tree both satisfying PC and PI.
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Lastly, we note that similar procedures can be designed to modify the supertree proposed
by any existing supertree method. If a method proposes a supertree T' that does not satisfy
PC and PI, it is possible in polynomial time to transform 7" into a tree 7" that satisfies these
properties. Indeed, the algorithm indicated previously to check PC indicates the triplets from
which the incompatibility arises. Then the branches of T" inducing these triplets can be collapsed
to obtain a tree 1" satisfying PC. Now, a procedure similar to PhySICp; can be applied to T to

ensure that it also satisfies PI (without invalidating PC).

Biological case studies on Primates

To illustrate the impact of the PC and PI properties on supertree inference, and to com-
pare the behavior of veto methods like PhySIC to that of voting methods like MRP and MMC,
we present two case studies centered on Primates. This mammalian order is one of the first tax-
onomic groups for which a large-scale supertree approach has been conducted (Purvis, 1995a).
The first example is designed to show the desirable properties of PhySIC compared to other su-
pertree methods on a smaller, understandable taxonomic scale. The second example addressing
the question of the primate supertree at the genus level shows how PhySIC performs on a larger
taxonomic scale-approaching what supertree studies tend to be performed on—, and shows that
varying degrees of resolution are achieved in the supertree depending upon the nodes retained

from the input trees.

First example: illustration of supertree desirable properties

Source trees.—We focused on a subsample of Primates IRBP (Interphotoreceptor Retinoid

Binding Protein) and ADRA2B (a2B-Adrenergic Receptor) gene sequences, respectively from
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Poux and Douzery (2004) and Poux et al. (2006), with a rodent (Mus) and lagomorph (Oryctola-
gus) outgroup. For ADRA2B, the hominoid representative was Pan, with the sequence downloaded
from the chimp ENSEMBL project. The ADRA2B and IRBP source trees were inferred by max-
imum likelihood (ML) analysis of the corresponding alignments, using PHYML (Guindon and
Gascuel, 2003), version 2.4.4, under a GTR+T",+INV model of DNA evolution. The node support
was estimated after 1000 bootstrap replicates using the same software, and expressed as boot-
strap percentages (BP). Denser taxonomic and phylogenetic information for Strepsirrhines (i.e.,
Lemurs and Galagos) was sought from a study of presence-absence of short interspersed nuclear
elements (SINE) integrations in primate genomes (Roos et al., 2004, Fig. 2). Sixty-one monolocus
SINE characters detected by these authors were subjected to a maximum parsimony analysis using
PAUP* (Swofford, 2002), version 4b10, with 1000 bootstrap replicates using a heuristic search,
with 10 random additions of taxa, and TBR branch swapping. We only retained the best sup-
ported nodes of source trees, i.e., those showing at least 50% bootstrap (c¢f. also Daubin et al.,
2002).

Comparison of supertrees inferred from PhySIC, MMC and MRP.—Starting from the three
source trees (Fig. 11), supertrees were built using the MMC, MRP, and PhySIC methods. For
MRP, the matrix representation of the three source topologies resulted in 47 characters. Parsi-
mony analysis was conducted under PAUP*, with a heuristic search with 1000 random addition
sequences, and TBR branch swapping, resulting in 864 equally parsimonious trees, a strict consen-
sus of which provided the MRP supertree. The MMC supertree was obtained using the program
distributed by Rod Page. Fig. 12 shows the supertrees respectively reconstructed by MMC, MRP,
and PhySIC with its PhySICpc intermediate step.

The supertrees produced all contain some soft polytomies, each of them representing un-

certainty about the resolution of a node’s child subtrees or lineages. A soft polytomy can have two
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distinct interpretations, differing in the set of admissible fully-resolved phylogenies it encompasses.
Consider the case of the polytomous node P in the MMC tree of Fig. 12. This node has three
child subtrees S; =(Homo, Hylobates), So=(Pan,( Cercopithecus, Macaca)) and Ss, the Platyrrhinii
clade. The most widespread meaning of a soft polytomy accepts any fully-resolved tree on sub-
trees S, Sz, S3 that keeps their monophyly: ((S7,.52),53), ((S1,S3),S2) or ((S2,S3),S1). Strict
consensus, majority-rule consensus, and hence MRP, interpret polytomies in this way (Margush
and McMorris, 1981). Polytomies proposed by PhySICpc are also to be interpreted in this way.
A second interpretation of soft polytomies was introduced by the Adams consensus (Adams, 1972)
and is also intended by MC (Semple and Steel, 2000) and MMC (Page, 2002). This interpretation
accepts as possible phylogeny any fully-resolved tree that maintains the structure of each subtree
respectively, no matter whether or not Sy, Sa, and/or S3 are kept monophyletic (i.e., their leaves
can be interleaved). Thus, the polytomy P of the MMC tree in Fig. 12 can indeed give rise to
fully-resolved trees grouping Pan and Homo without Hylobates, as long as Pan is kept outside the
clades containing Cercopithecus and Macaca (which is the structure imposed by Ss). Under this
interpretation, a soft polytomy represents a much wider range of fully-resolved phylogenies than
with the first interpretation, and is harder to interprete in a phylogenetic context. (In particular,
this means that simulation studies on supertree methods that use the Robinson and Foulds dis-
tance to evaluate the performance of MC or MMC are misleading: on the previous example, the
MMC method would have been considered to propose the incorrect clades Homo + Hylobates, and
Pan + Hylobates).

The contribution of PhySICpe to the supertree inference may be illustrated by the sit-
uation among platyrrhines. Here, ADRA2B indicates that Ateles is the sister-group of Pithecia,
Callithriz, and Cebus, whereas IRBP indicates that Ateles and Cebus are the closest relatives

(Fig. 12: boxed areas). This conflict is detected by PhySICpc. As a result, the PhySICpe and
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PhySIC supertrees display all four platyrrhines within a multifurcation. By contrast, MRP and
MMC give priority to the Callithriz + Cebus grouping present in the ADRA2B source tree, and
thus contradicts the Ateles + Cebus grouping present in the IRBP source tree. Resolution of this
conflict between the source trees reflects the voting approach followed by MRP and MMC. For
instance, consider the case of MRP: the ADRA2B source topology comprises two nodes within
platyrrhines, against one node for the IRBP topology. Therefore, MRP favors the node Callithriz
+ Cebus involved in a topological conflict but belonging to a larger and more resolved clade
(Bininda-Emonds and Bryant, 1998). The behavior of MRP and MMC on platyrrhines is prob-
lematic. Indeed, it favors one source topology while contradicting another, just on the basis of
their respective levels of resolution, and despite the fact that both contain the same number of taxa
for the Platyrrhine subtree. MRP has already been criticized on this point (e.g., Goloboff, 2005).
Note that source trees also conflict on the position of Propithecus with respect to Microcebus and
Lemur. However, in this case, MRP behaves as PhySICpc and PhySIC; i.e., displays a polytomy
on groups containing these three taxa (Fig. 12: letters A-B-C). By contrast, MMC groups to-
gether the Propithecus and Lemur clades, following the SINE information, but contradicting the
IRBP information.

The complementary contribution of PhySICpy to the supertree inference may be illustrated
by the situation among Catarrhines + Platyrrhines. Although not contradicting the source trees,
the PhySICpc supertree contains two topological errors. First, man and chimp do not group
together relative to the gibbon, as would be expected from a plethora of data (Goodman et al.,
2005). Homo is instead associated with Hylobates, whereas Pan branches with the two cercop-
ithecoids, Cercopithecus and Macaca. This situation results from the taxon sampling of the source
topologies. More precisely, man and chimp are not simultaneously present in any source tree, i.e.,

the former clusters with the gibbon (IRBP) and the latter with cercopithecoids (ADRA2B). These
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two source clades are reproduced in PhySICps and MMC supertrees.

In the case of PhySICpe, these two clades are involved in a polytomy with the platyrrhines.
This polytomy means that (Homo, Hylobates) is a sister clade of the clade containing Pan. How-
ever, although these clades are correct when considered separately, they should not be sister groups
in the supertree. PhySICp; detects this situation of arbitrary resolution and collapses the cor-
responding branches, thus the final PhySIC supertree allows for a group (Pan, Homo). MMC
displays the same polytomy as PhySICpc but with a different meaning: the interleaving inter-
pretation of this soft polytomy means that MMC does not reject the expected resolution, namely
grouping (Pan, Homo) as a sister clade of Hylobates. In conclusion, both MMC and PhySIC al-
lows for the expected group (Pan, Homo), but note that the PhySIC supertree is more accurate,
as its polytomy does not allow the catarrhine taxa Homo, Hylobates or Pan to branch within
the platyrrhines. Here, MRP does not introduce arbitrary resolutions, and proposes a polytomy
involving the 5 catarrhine taxa.

Another problem of MMC and PhySICpc supertrees is that Lepilemur is the sister-group
of all Lemuriformes but Daubentonia, whereas this topological information is not present in the
only source tree (SINEs) for which Lepilemur is scored. This result is explained by the fact that
the restriction of IRBP and ADRA2B source topologies to taxa lettered A-B-C-X leads to the
situation described on Fig. 6. Thanks to the PI property, the PhySIC algorithm again corrects
this problem, and displays a polytomy involving the major clades of lemuriformes, together with
Lepilemur (Fig. 12). The same polytomy is also proposed by MRP. Overall, this first case study
illustrates that the two properties introduced in the present work help to identify and manage the
potential arbitrary and conflicting resolutions arising in supertrees when combining independent

source topologies.
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Second example: a PhySIC supertree of primate genera

Primary data and source tree inference.—We used 24 datasets to reconstruct the primate
phylogeny: two mitochondrial DNA (mtDNA), 19 nuclear DNA, and three transposable elements
datasets. All sequences used in this study were retrieved from EMBL-Genbank databases. The
sampling of genes and other molecular markers is detailed in Table 1. The corresponding data
are available under TreeBASE accession numbers XXXXX. This combined dataset encompasses
95% of all primate extant genera (Wilson and Reeder, 2005), i.e., 66 genera. Two subfossil genera
from ancient DNA analyses were also included (Karanth et al., 2005). All genes were aligned with
Clustal X (Thompson et al., 1997) with subsequent manual refinement. We used Mus and Rattus
as outgroups in all analyses for which sequence data was available. Each gene was analyzed with
the ML criterion under the best fitting model (Table 1). Separate ML phylogenetic reconstructions
and bootstrap analyses were performed with PHYML (Guindon and Gascuel, 2003) as described in
previous section. Maximum parsimony phylogenetic reconstruction and bootstrap analysis on the
three transposable element datasets were also conducted using PAUP* as described in previous
section. Clades of the source trees with BP values above a specified threshold were retained.
To evaluate the influence of this parameter, five PhySIC supertrees were inferred by respectively
considering BP > 50%, 60%, 70%, 80%, and 90%. Each run of PhySIC took less than 4 seconds
on an Intel MacBook.

The magor clades of primate genera.—The most resolved supertree reconstructed by PhySIC
is obtained when source trees were restricted to nodes supported by more than 70% bootstrap
(Fig. 13, BP> 70%). This topology conforms to current ideas on primate phylogeny, and is close
to the informal supertree of Primates at the genus level proposed by Goodman et al. (2005). In

addition, we here extend their taxon sampling with the three extant genera Fuoticus, Piliocolobus,
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and Simias, and the two subfossil genera Megaladapis and Paleopropithecus. Our supertree displays
the fundamental dichotomy among Primates between Strepsirrhini and Haplorrhini. Strepsirrhines
then split into Lorisiformes (Lorises and Galagos) and Lemuriformes (lemurs and Daubentonia, the
aye-aye). Haplorrhines also split into Tarsiers and Anthropoids. The latter clade subsequently di-
vides into monophyletic New World primates (Platyrrhini) and Old World primates (Catarrhini).
Platyrrhini display a trifurcation involving the three families Atelidae (the Ateles + Alouatta
clade), Pitheciidae (the Pithecia + Callicebus clade), and Cebidae (the Cebus + Saimiri + Aotus
+ Saguinus clade). Catarrhines split into Hominoidea (gibbons and apes) and Cercopithecoidea
(colobines and cercopithecines).

Identifying and labeling the causes of supertree polytomies.—Since veto methods are used
for evaluating the topological congruence of source trees, and for measuring their degree of leaf
overlap, the PhySIC program outputs labels on each polytomous node. A label “C” (standing for
Contradiction) indicates that the polytomy results from contradictions among the source trees on
phylogenetic relationships of corresponding taxa: proposing a resolution for the polytomy would
contradict at least one source tree, i.e., would not respect the PC property. A label “I” (standing
for Induction) indicates a lack of cross-information in the source trees: any dichotomous resolution
of the clade would be at least partially arbitrary, thus would not respect the PI property. Note
that a given label applies only to the node to which it is assigned but not to other nodes in its
subtrees. For instance, in the primate genera supertree (Fig. 13), the platyrrhine trifurcation
(Atelidae, Pitheciidae, Cebidae) with a C label indicates that there is topological contradiction
among the source trees about the sister-group relationships of these three families. However, the
C label does not put the monophyly of Atelidae, Pitheciidae, and Cebidae into question. Note
also that a same polytomy can be characterized by both C and I labels. This means that the

unability of the supertree to propose a dichotomous resolution is partly due to a lack of taxonomic
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overlap, and partly due to contradictions. For example, Fig. 13 shows that the clade Cercopithecus,
Erythrocebus, Chlorocebus, and Miopithecus is tagged by both C and I, reflecting two problems.
On the one hand, source topologies disagree about the placement of Erythrocebus: this genus is
either related to Cercopithecus (as suggested by IRBP exon 1) or to Chlorocebus (cf. the TSPY
and chromosome Xq13.3 markers, and the Alu of Xing et al. (2005)). On the other hand, the
input trees analyzed here do not provide the information required to know whether Miopithecus
is the sister group of Cercopithecus, or is that of Erythrocebus + Chlorocebus, or is the most basal
genus in the clade.

Impact of the robustness of source trees on veto supertree resolution.—The number of clades
retained from the original source trees depends on the bootstrap threshold imposed to select them
for supertree inference. Choosing a low threshold thus increases the number of retained source
clades, hence lowers the number of polytomies due to a lack of cross-information among source
trees, but increases the number of polytomies due to conflicts among source trees. Increasing the
threshold has the opposite effect. The primate supertree of Fig. 13 was obtained with BP > 70%.
Lowering the threshold to BP > 50% or BP > 60%, PhySIC yields a completely multifurcating
supertree, due to weakly supported clades that conflict among source trees. When the bootstrap
stringency is increased from the BP > 70% to BP > 80% threshold, a similar level of resolution
in the genus level phylogeny is obtained with the exception of two additional polytomies: the first
involves Indriidae (Indri + Avahi + Propithecus + Paleopropithecus) relative to other lemuri-
formes, and the second involves Allenopithecus relative to the Cercopithecus clade (white stars in
Fig. 13 refer to disappearing branches). Interestingly, increasing the threshold removes a topolog-
ical conflict among Lophocebus, Papio and Theropithecus: with the PC property being satisfied,
then the PhySIC supertree groups together the latter two genera. At the BP > 90% threshold, 7

additional polytomies with respect to the BP > 70% topology appear (Fig. 13: black stars refer
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to node collapsing). This reflects the fact that less source nodes (i.e., the nodes of source trees)
are available for supertree inference. The PI property is thus less often satisfied in the PhySICpc
supertree, leading to a greater number of irresolutions in the PhySIC supertree.

Overall, two reasons can lead the PhySIC method to propose a poorly resolved supertree.
First, it is possible that the source trees contain too little cross information for the method to
decide how the taxa of the respective source trees branch relatively to each other. In this case, all
methods, including voting methods, will produce unresolved supertrees. Obtaining more resolved
supertrees can then only be achieved by adding new source trees containing new clades on the
key taxa. The second reason why the PhySIC supertree can lack resolution is the presence of
topological conflicts among source trees. Like other veto methods, PhySIC' is very sensitive to
incongruences in the source trees. Thus, to obtain a well-resolved tree, a preliminary process
whereby unreliable clades are collapsed in the source trees is usually necessary before applying the
method. This collapsing can be done on the basis of the support values provided on the clades
by most phylogenetic inference methods (e.g., bootstrap values, Bayesian posterior probabilities,
Bremer support). We showed that a well-resolved supertree of Primates can be obtained with such
an approach from a non-trivial number of gene trees. Note that on some datasets, contradicting
clades showing high support values can occur, e.g., due to lateral gene transfers. In such cases,
veto methods will still produce unresolved supertrees (as long as they are not allowed to exclude
rogue taxa). This can be seen as a drawback or as a way to pinpoint such events. In such cases,
outlier source trees can be identified (Shimodaira and Hasegawa, 1999; Lerat et al., 2003) and then

curated or removed from the collection of source trees, leading to a more resolved supertree.
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Conclusion

Veto supertree methods are of interest for combining source topologies containing reliable
clades. Their study also brings insight for the characterization of what we expect from voting
methods. Indeed, when source trees are not conflicting, there is no fundamental difference between
the two approaches. In such cases, veto and voting approaches should lead to reasonable supertrees.
What reasonable means can be characterized by several formal properties. In the present work, we
showed pitfalls of some previously proposed supertree properties, and also proposed new properties.
In the general case of conflicting source trees, we believe there is still room for improvement, e.g.,
detecting arbitrary clades of a supertree even when it partially conflicts with some source trees,
as usually happens in the voting context. With the new theoretical material at hand we believe

that this is a reasonable goal.
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