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Abstract

Phylogenomic studies aim to build phylogenies from large sets of homologous

genes. Such �genome-sized� data require fast methods, because of the typically large

numbers of taxa examined. In this framework, distance-based methods are useful

for exploratory studies and building a starting tree to be re�ned by a more powerful

maximum likelihood (ML) approach. However, estimating evolutionary distances

directly from concatenated genes gives poor topological signal as genes evolve at

di�erent rates. We propose a novel method, named Super Distance Matrix (SDM),

which follows the same line as Average Consensus Supertree (ACS, Lapointe and

Cucumel, 1997) and combines the evolutionary distances obtained from each gene

into a single distance supermatrix to be analyzed using a standard distance-based

algorithm. SDM deforms the source matrices, without modifying their topological

message, to bring them as close as possible to each other; these deformed matrices

are then averaged to obtain the distance supermatrix. We show that this problem is

equivalent to the minimization of a least-squares criterion subject to linear constraints.

This problem has a unique solution which is obtained by resolving a linear system.

As this system is sparse, its practical resolution requires O(naka) time, where n is

the number of taxa, k the number of matrices and a < 2, which allows the distance

supermatrix to be quickly obtained. Several uses of SDM are proposed, from fast

exploratory studies to more accurate approaches requiring heavier computing time.

Using simulations, we show that SDM is a relevant alternative to the standardMatrix

Representation with Parsimony (MRP) method, notably when the taxa sets of the

di�erent genes have low overlap. We also show that SDM can be used to build an

excellent starting tree for an ML approach, which both reduces the computing time

and increases the topogical accuracy. We use SDM to analyze the dataset of Gatesy et

al. (2002) that involves 48 genes of 75 placental mammals. The results indicate that

these genes have strong rate heterogeneity and con�rm the simulation conclusions.
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Introduction

Phylogenomics, whereby phylogenies are built from large sets of genes, is currently a popu-

lar trend that bene�ts from the increased quantity of sequenced genes within a huge variety

of organisms (Daubin et al., 2002; Gatesy et al., 2002; Eisen and Fraser, 2003; Driskell

et al., 2004; Philippe et al., 2004; Devulder et al., 2005; Philippe et al., 2005). One of the

main di�culties in phylogenomics is that fast methods are required to process the large

collections of taxa and genes. Missing data is another di�culty with such datasets, as

some genes or species are less represented in databases. Numerous approaches have been

proposed to deal with this problem (Bininda-Emonds, 2004); they can be classi�ed into

three main categories (Schmidt, 2003, ch. 7):

• The low-level (or total evidence) methods concatenate all genes to obtain a single

alignment, also called supermatrix of characters, which is then analyzed using stan-

dard phylogeny reconstruction algorithms. As some genes are missing for some taxa,

supermatrices usually contain numerous missing characters (e.g. > 90% in Driskell

et al., 2004). The various phylogenetic methods used to analyze such supermatrices

are more or less vulnerable to missing characters, but the probabilistic ones seems

to be not much a�ected and still provide accurate trees with sparse data (Philippe

et al., 2004). Genes evolve under di�erent constraints, and heterogeneity of rates

and of evolutionary modes can also be problematic (Yang, 1996; Pupko et al., 2002).

Again, probabilistic methods (e.g. MrBayes, Huelsenbeck and Ronquist, 2001) pro-

vide ways to circumvent this di�culty, by allowing for di�erent substitution models

to be de�ned among genes (or among codon positions). However, computing time is

a main issue, specially with most sophisticated (e.g. Bayesian) approaches.
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• The high-level methods arrange in a single tree topological information contained

in the set of phylogenies inferred from each gene. Those source phylogenies are in-

ferred independently, possibly using di�erent evolutionary models, and may as well

be derived from other (e.g. morphological or transposon-based) data types which

total evidence methods hardly account for. As some genes are missing for some

taxa, the di�erent phylogenies are de�ned on partially overlapping sets of taxa. This

generalization of the consensus tree (Bryant, 2001) is called the supertree problem

(Bininda-Emonds, 2004). Matrix Representation with Parsimony (MRP) (Baum,

1992; Ragan, 1992) is the most popular method to deal with this problem. MRP

involves coding the topological information of every source tree in a single matrix

of partial binary characters, which is then analyzed using parsimony to infer the

supertree. This approach has been re�ned in various ways, such as Weighted MRP

(Ronquist, 1996) and Matrix Representation with Flipping (Eulenstein et al., 2004).

Numerous other combinatorial approaches have been proposed to deal with the su-

pertree problem (Bininda-Emonds, 2004), including the MinCut (Semple and Steel,

2000) and the Modi�ed MinCut (Page, 2002) algorithms.

• The medium-level methods involve an intermediary gene analysis stage, between

simple gene concatenation and complete tree inference. Numerous solutions do exist

to extract information from every single gene, without inferring the complete tree as

in high-level methods. The main idea is to extract in a fast way elementary pieces of

information from each gene independently, then to combine all these elements for all

genes together. The hard combination task is thus performed just once with all genes

being accounted for. As the �rst analysis stage is performed independently for each

gene (or information source), these methods o�er simple ways to accomodate for genes

evolving under di�erent evolutionary constraints or to combine heteregeneous data
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types. A good example is the quartet approach (Strimmer and von Haeseler, 1996;

Schmidt et al., 2002; Piaggio-Talice et al., 2004) whereby every quartet topology is

inferred using maximum likelihood from each gene before combining them in a single

tree. We shall see in this paper a second example where �rst analysis stage involves

computing for each gene the evolutionary distance between every taxon pair.

The outline of such large categories is blurred and some methods can be seen as inter-

mediary. For example, the (medium-level) quartet approach has been proposed by several

authors (Strimmer and von Haeseler, 1996; Schmidt et al., 2002) to deal with the (high-

level) supertree problem, and the divide-and-conquer searching methods (e.g. Huson et

al., 1999) use a (high-level) tree combination approach to solve the low-level problem.

Moreover, the criterion that the method seeks to optimize gives another important point

of view. Most practical methods are based on Maximum Parsimony (MP) and Maximum

Likelihood (ML). However, one aim of phylogenomics is to build large phylogenies from

large gene collections. Therefore, it is essential to be able to process huge datasets by low

time-consuming methods. The distance-based approach is the �rst-choice from this stand-

point. Using fast algorithms such as NJ (Saitou and Nei, 1987; Studier and Keppler, 1988),

BioNJ (Gascuel, 1997) or FastME (Desper and Gascuel, 2002), trees with thousands of

taxa can be inferred in a few minutes on a standard computer. Moreover, these algorithms

are fairly accurate, though not as accurate as likelihood-based approaches. This compu-

tational e�ciency is why distance-based methods are frequently employed in exploratory

studies. They are also used to provide starting trees for procedures aimed at optimizing

more time-consuming criteria. The PhyML program (Guindon and Gascuel, 2003) is a

good example of this approach with respect to the ML criterion.

Paradoxically, few distance-based approaches have been proposed in phylogenomics.

One simple method is to directly estimate pairwise evolutionary distances from the con-
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catenated matrix of characters. For example, Paup*'s (Swo�ord, 2002) option Miss-

Dist=Ignore only takes sites that have no missing value in the two sequences into ac-

count. This procedure is named Distance-based Total Evidence (DTE) in the following

and is obviously limited by large amounts of missing data and severe rate heterogeneity.

A second method, the Average Consensus Supertree (ACS) procedure, was proposed by

Lapointe and Cucumel (1997) to deal with the supertree problem, where there can be large

amounts of missing data. The �rst step is to compute the path-length distance matrices

corresponding to the source trees. Each source matrix is then standardized, and ACS com-

putes the average of the standardized matrices to produce the distance supermatrix that

is analyzed using a least-squares method. ACS has been shown to be the same as MRP

in the consensus setting with unitary branch lengths, but both are di�erent in the more

general supertree context (Lapointe et al., 2003). A similar averaging method was used

by Lapointe et al. (1999) and Levasseur and Lapointe (2001) to compare and combine

various distance matrices being obtained directly (the medium-level way) from sequences

or from DNA hybridization, or corresponding to (high-level) gene trees. The standardiza-

tion step proposed by Lapointe and Cucumel (1997) involves dividing all distances in each

matrix by the maximum distance in that matrix. Other standardization methods have

been explored, but they seem to be inaccurate with more than two trees and Lapointe and

Levasseur (2004) concluded that "other ways of scaling path-length distance matrices need

to be investigated when combining more than two trees of varying size" (p. 100). Recently,

Creevey and McInerney (2005) proposed another distance-based method to the supertree

problem, named Most Similar Supertree (MSS). The unitary (every branch has length 1)

path-length distance matrices corresponding to the source trees are �rst computed; then,

MSS searches for the supertree that best represents these matrices using topological rear-

rangements.
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Here, we propose a novel distance method, which follows the same line as ACS, but

is based on a much more involved standardization procedure that answers the limitations

outlined by Lapointe and Levasseur (2004). This method, named Super Distance Matrix

(SDM), �rst deforms the source matrices without modifying their topological message, so

as to bring them as close as possible to each other; then, just as with ACS, so-deformed

matrices are averaged and analyzed by usual tree building algorithms. Simulations show

that SDM deals e�ciently and accurately with collections containing a large number of

source matrices of varying size. SDM was initially designed as a medium-level method

(source distance matrices are directly computed from the sequences of each gene), but it is

an e�ective alternative within high-level scenarios (source matrices are obtained from the

gene trees, just as with ACS) and within low-level scenarios, where good starting trees are

obtained thanks to its speed.

In the following, we �rst describe the principle and the main features of the SDM

algorithm; we then provide comparisons of SDM to other gene combination techniques

using simulations; we further compare SDM to other approaches using a phylogenomics

dataset of placental mammals (Gatesy et al., 2002). Mathematical proofs and equations

are provided in an appendix.

The SDM Method

Notations and De�nitions

Let C = {(∆1
ij), (∆

2
ij), ..., (∆

p
ij), ..., (∆

k
ij)} be a collection of k distance matrices (with no

missing entries), where ∆p
ij is the evolutionary distance between taxa i and j for the gene

p. Lp is the set of taxa covered by the gene p and de�ning the entries of (∆p
ij); np is the
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size of Lp; n is the size of L =
⋃

p Lp; and kij is the number of occurrences of the taxon

pair ij in the collection C, i.e. kij = |{p : {i, j} ⊂ Lp}|. We set:

L̃p = {i ∈ Lp : ∃j ∈ Lp − {i} , kij ≥ 2} , ñp =
∣∣L̃p

∣∣ ,
L̃ =

⋃
p

L̃p and ñ =
∣∣L̃∣∣.

Our method involves bringing each matrix (∆p
ij) closer (in the least-squares sense) relative

to the others. L̃ is the set of taxa to be used to compare the distances between pairs of

taxa appearing in more than one source matrix.

Method

Assume a high-level context and let T p be the tree corresponding to gene p. (∆p
ij) is then

additive and is obtained from T p by computing the path-length for every i, j pair. (∆p
ij)

is equivalent to T p as T p can be unambigously recovered from (∆p
ij). It is well known

(Barthélemy and Guénoche, 1991) that multiplication by a factor αp > 0 to obtain a new

distance matrix (αp∆
p
ij) does not change the topology of T

p. This operation is equivalent to

multiplying every branch length of T p by αp. Similarly, it is easily shown that the addition

of a constant aip ≥ 0 to each of the 2(np − 1) non-diagonal distances corresponding to

taxon i does not change the topology of T p. This operation is equivalent to elongating, by

length aip, the external branch corresponding to taxon i. This addition can be performed

independently for every taxon, and both multiplication and addition operations can be

combined to obtain the new matrix (αp∆
p
ij + aip + ajp) that contains the same topological

information as (∆p
ij).

In the medium-level context, distance matrices are estimated from sequences (or other

data) and are not additive (i.e. do not exactly correspond to a tree). But the above

property still holds in some sense. Indeed, it is easily shown (Gascuel, 1994) that NJ
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and a number of related algorithms infer the same topology from the original distance

matrix (∆p
ij) and from the deformed one (αp∆

p
ij + aip + ajp). This is still true when using

any of the algorithms implemented in the FastME package (Desper and Gascuel, 2002).

Moreover, simulation experiments show that least-squares algorithms, e.g. Fitch from the

Phylip package (Felsenstein, 1993) and MW (Makarenkov and Leclerc, 1999) from the

Trex program (Makarenkov, 2001), are almost insensitive to multiplication and addition

operations.

The di�erent ACS standardization methods (Lapointe and Levasseur, 2004) all cor-

respond to the use of the multiplication operation to rescale matrices before averaging

them. SDM uses both multiplication and addition, which greatly increases �exibility as

multiplication involves one free parameter per source matrix, while addition involves one

parameter per taxon for each source matrix. The basic principle of SDM is to deform each

of the k distance matrices (∆p
ij) by multiplying them by a positive factor αp and adding

constants aip in order to bring them as close as possible to each other in the least-squares

sense. All distances that are shared by at least two matrices of C (i.e. such that kij ≥ 2) are

taken into account in the computation of deformation parameters. Moreover, weights (wp)

are associated to each of the source matrices to give them a con�dence value (see below for

more). Thus, for every pair ij such that kij ≥ 2, we aim at minimizing the variance term:

Vij =
∑

p:{ij}⊂Lp

wp(αp∆
p
ij + aip + ajp − ∆ij)

2 (1)

where ∆ij is the weighted average of the deformed distances:

∆ij =
1

Wij

∑
p:{ij}⊂Lp

wp(αp∆
p
ij + aip + ajp) with Wij =

∑
p:{ij}⊂Lp

wp. (2)

The (∆ij) matrix is the SDM output, once optimal values of the αp and aip parameters

have been computed. By minimizing criterion (1), we bring closer the ∆p
ij distances, and

we obtain a reliable estimation of their average that de�nes the SDM superdistance.
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As said above, wp weights allow to give a con�dence value to each of the source matrices.

Typically, the variance of any distance estimate is inversely proportional to the length of

the sequences used for estimation (Nei and Jin, 1989). Thus, it is coherent to set wp to

be equal to the sequence length, which is denoted as �p. On the other hand, matrices

involving few taxa might have a poor in�uence in comparison to matrices with many taxa.

To compensate for this e�ect, we can use �p/(ñp (ñp−1)), or the intermediate value �p/ñp as

the matrix weight. A number of other weightings are possible, and SDM is easily extended

to the case where each distance is associated to a con�dence value, just as in weighted

least-squares tree building methods (Fitch and Margoliash, 1967).

With the minimization of Vij being applied for every relevant pair of taxa ij, SDM thus

involves minimizing the sum: ∑
i,j:i�=j
kij≥2

Vij. (3)

Several linear constraints on the variables are associated with minimization of criterion

(3). The αp factors deal with the various evolutionary rates of each gene in a similar way

as the gene-speci�c rate models �rst suggested by Yang (1996). Constraint (4), identical

to that of the proportional model of Pupko et al. (2002), forces the αp factors to be equal

on average to 1.0: ∑
p

αp = k. (4)

This constraint gives interpretable scaling and is required to avoid the trivial solution

αp = 0, ∀p.
External branches of a phylogeny are generally longer than the internal branches. Con-

sequently, most of the variance of each pairwise distance is generally supported by the

two external branches. Moreover, Lapointe and Levasseur (2004) noticed that high hetero-

geneity in the branch lengths of source trees deteriorates ACS topological accuracy. The

aip variables thus try to normalize the external branch lengths in the various matrices.
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Constraint (5) forces, for each taxon i, the sum of aip to be equal to zero and forbids

over-elongation (or shortening) of external branch lengths corresponding to taxon i:

∑
p:i∈L̃p

aip = 0, ∀i ∈ L̃. (5)

Constraint (6) forces, for each matrix (∆p
ij), the sum of aip to be equal to zero:

∑
i∈L̃p

aip = 0, ∀p = 1, 2, ..., k − 1. (6)

This avoids having some of the matrices deformed into star-like distances by global elon-

gation of the external branches and small αp values. The topological signal of the original

matrix would then be sti�ed, as was experimentally observed (in the absence of constraint

(6)) with matrices having few taxa and low (or contradictory) signal. Note that constraint∑
i∈L̃k

aik = 0 is useless as it is induced by the other constraints (5) and (6) on aip values;

adding this constraint to the system induces linear dependency and perturbs the resolution.

Minimization of criterion (3) involves calculating its partial derivatives for each of the

k +
∑

p ñp variables αp and aip, adding Lagrange multipliers (Luenberger, 1984, ch.10) that

are associated with each of the ñ + k linear constraints. We thus obtain a linear system

de�ned by O(ñk) variables and equations which has a unique solution (see appendix).

Resolving this system has O(ñ3k3) time complexity, which is theoretically equivalent to

the running time of the NJ algorithm with a distance matrix of size ñk. However, as this

linear system is very sparse, the practical time required to solve it is much lower (see below)

using an appropriate library (MTJ, available at https://mtj.dev.java.net/, is used in

our implementation).

Let α∗
p and a∗ip be the optimal values of the parameters we obtain this way, then the

SDM distance supermatrix (∆SDM

ij ) is de�ned by:

∆SDM

ij =
1

Wij

∑
p:{ij}⊂Lp

wp(α
∗
p∆

p
ij + a∗ip + a∗jp) where Wij =

∑
p:{ij}⊂Lp

wp.
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Note that this formula applies to all available distances (i.e. kij ≥ 1), not only to those

used to compute the optimal parameter values (i.e. kij ≥ 2). This last step of the SDM

approach is fast and requires O(n2k) running time.

To check the SDM practical running time, we generated 100 collections of distance

matrices with k = 4, 8, 12, 16 and n from 50 to 500, and then measured the running time

t of SDM. Assuming t=b(nk)a, we performed a linear regression on log(t) as a function

of log(nk) and found that the estimated value of a is below 2.0. Thus, in practice, SDM

requires computing time that is at most quadratic in nk. For example, it only takes a few

minutes to deal with a collection of distance matrices with n = 500 and k = 20, using a

1.8 GHz Pentium IV PC with 1 Gb RAM.

Phylogenetic Reconstruction Using SDM

A distance-based algorithm is applied to the SDM distance supermatrix to obtain a phy-

logeny. However, just as with ACS, missing entries may occur in this distance supermatrix

depending on the extent of taxon overlap within the source matrices. It has been shown

(Farach et al., 1995) that tree reconstruction from distance matrices with missing entries

is computationally hard, and heuristics approaches have to be used. Two types of method

have been proposed:

• The indirect method involves �rst estimating missing distances by applying an ul-

trametric (De Soete, 1984), additive (Landry et al., 1996), decomposition-based (La-

pointe and Landry, 2001) or quartet-based (Guénoche and Grandcolas, 1999) com-

pletion algorithm. The Trex package (Makarenkov, 2001) provides several imple-

mentations of such algorithms to be used before tree building using any standard

method with the completed matrix.
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• The direct method involves using a weighted least-squares algorithm and associating

missing distances with null weight, which means that missing distances are simply dis-

carded from weighted least-squares computations (Swo�ord et al., 1996, p.449). The

MWmodif algorithm (Makarenkov and Leclerc, 1999) from Trex and the Fitch al-

gorithm (Felsenstein, 1997) from the Phylip package (Felsenstein, 1993) implement

this technique.

A combination of both direct and indirect methods is provided by MW* (Makarenkov

and Lapointe, 2004) (also available in Trex); this algorithm �rst applies an ultrametric or

additive completion algorithm (depending on the density of missing distances), and then

infers a tree using the weighted least-squares algorithm MW (Makarenkov and Leclerc,

1999), where weights are set at 1.0 for known distances, 0.5 for estimated distances, and

0.0 for missing distances (if any remain).

However, missing distances are relatively rare, though the amount of missing characters

is usually high in the gene collections that are commonly used in phylogenomics studies.

For example, datasets of Gatesy et al. (2002), Philippe et al. (2004) and Philippe et al.

(2005) have high ratio of missing characters (about 68%, 25%, 35% respectively) but do

not produce any missing distances when using SDM. Indeed, in these data sets some genes

(e.g. cytochrome b and ribosomic protein L10) have been sequenced for all taxa; at least

one gene distance matrix is then complete, which induces that the SDM supermatrix is also

complete. Moreover, it is a simple consequence of randomness that the number of missing

distances tends to decrease when the number of genes increases. For example, with the

two very large datasets of Driskell et al. (2004), which were collected from Swiss-Prot and

GenBank thanks to a computer program (previous collections were collected manually),

the ratio of missing distances is of ≈ 19% and ≈ 1%, while the ratio of missing characters

is of ≈ 92% and ≈ 87%, respectively. In the same way, in our simulations study (see
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below), missing distances are very rarely observed when the number of genes is above 10

and when the ratio of missing characters (equal in expectation to the taxon deletion rate)

is of 25%. When the SDM distance supermatrix is complete, fast algorithms (e.g., NJ,

BioNJ or FastME) can be used to infer the corresponding tree.

Simulation Protocol

We conducted large-scale simulations to evaluate the topological accuracy of SDM. Our aim

was to compare the ability to recover the correct topology, and the running times, of low,

high and medium-level approaches. In the three cases, we present standard methods that

are compared to SDM-based scenarios. Moreover, we emphasize distance-based methods

as SDM belongs to this category. We �rst describe the way trees and sequences were

generated, then the various methods we tested, and �nally the criteria we used in the

comparisons.

Tree Generation

The procedure was similar to the one used in Guindon and Gascuel (2003), which can be

referred to for further details. Random 48-taxon trees were generated using the standard

Yule-Harding process, via the r8s program (Sanderson, 2003). This process makes the

trees clocklike, so we created a deviation from this model by multiplying every branch

length by (1 +X), where X followed an exponential distribution with expectation µ. The

µ value represents the extent of deviation and was identical within each tree but di�erent

from tree to tree and equal to 0.2/(0.001 + U), with U being uniformly drawn from [0, 1].

The smaller the U , the larger the µ and the larger the deviation from the molecular clock.
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Let tbl be the total branch length of the generated tree. We obtained the non-clocklike

tree T with total length 1.0 by dividing every branch length by tbl. T was the "correct"

tree that the various methods aimed at recovering.

To simulate the evolution of the di�erent genes, we generated k trees T p from T by

multiplying every branch length of T by 0.4 + 8.6Vp, where Vp was uniformly drawn from

[0, 1]. The Vp value was the same within each tree T p, but di�erent from tree to tree. These

k source trees T p thus have the same topology as the tree T . However, they have their own

evolutionary rates with relative values ranging from 1.0 to 22.5 (= (0.4+8.6)/0.4) in ex-

treme cases; such values are in agreement with real values (see Guindon and Gascuel, 2003,

for more and, below, our analysis of Gatesy et al. data, 2002).

Sequence Generation

We considered gene collections of size k = 2, 4, 6, ..., 20 and generated 500 datasets per k

value. For each of these datasets, we �rst generated a correct tree T and then a collection

of k gene trees T p, as explained above. For each gene p, we uniformly drew sequence

length �p between 200 and 1000 bp, and then used the Seq-Gen program (Rambaut

and Grassly, 1997) to simulate the sequence evolution along T p according to the K2P

substitution model (Kimura, 1980). We used a transition/transversion ratio of 2.0 and

did not re-scale the T p trees. To simulate partial overlap that occurs in real datasets,

we randomly removed some of the taxa within each gene alignment obtained. Following

Eulenstein et al. (2004), two overlap conditions were studied, corresponding to 25% taxon

deletion per gene (strong overlap) and 75% deletion (low overlap). However, an overlap of

at least 4 taxa was preserved between each gene pair to maintain a common evolutionary

history between genes and avoid meaningless datasets. Note that the expected ratio of

missing characters was also equal to 25% and 75%, respectively, due the random processes
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we used for sequence length generation and taxon deletion.

Inference Methods

The (10 gene collection sizes× 500 collections× 2 overlap conditions =) 10,000 generated

datasets were used to compare a number of tree building approaches. Our aim was (1)

to check the properties of SDM when used in various scenarios of low, medium and high-

levels, (2) to compare these SDM-based scenarios to classical approches (e.g. MRP), and

(3) to compare SDM with other distance-based methods (e.g. ACS). All tested methods

and scenarios are described below, grouped according to their combination level. Figure 1

displays a �owchart indicating the way the various scenarios combine several methods to

achieve tree construction from gene collections (e.g., PhyML+MRP scenario involves �rst

inferring gene trees using PhyML, then combining these trees using MRP).

Medium-level, distance-based approaches � For each dataset, we used Paup* with

K2P to estimate k distance matrices from the k sequence alignments. The SDM distance

supermatrix was computed from this collection of matrices, with each matrix weighted by

the length of the corresponding sequences (i.e. wp = �p) in formula (1). We then used the

Fitch program (with all default options, notably without global rearrangements) to build

a phylogeny from the SDM distance supermatrix that (possibly) contains missing entries.

This tree building scenario is called SDM+Fitch (Figure 1). In order to test for the

advantage of using aip variables, instead of solely using αp variables that deal with gene

rate heterogeneity, we ran another similar scenario, where the aip variables were forced

to be zero. This second scenario is called SDM*+Fitch; it is close to ACS as it only

uses multiplication operation to rescale matrices (see also Bevan et al., 2005). We tested

other approaches to deal with missing entries, as listed in the Introduction, but they all

performed poorer than the Fitch weighted least-squares program (see further results and
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discussions regarding MW* by Makarenkov and Lapointe, 2004).

Low-level combination � For each data, a supermatrix of characters was obtained

by concatenating the k partially deleted genes. We computed the K2P distance matrix

from this supermatrix of characters using the PAUP*'s MissDist=Ignore option (see

Introduction), and then used BioNJ to infer the DTE (Distance-based Total Evidence)

phylogeny.

To obtain a ML-based total evidence phylogeny, we analysed the supermatrix of char-

acters using PhyML with K2P. This program searches for the optimal tree according to

the ML criterion, via topological rearrangements from a starting tree. As these topological

rearrangements are local and solely based on Nearest Neighbor Interchange (NNI) (Swof-

ford et al., 1996), the resulting tree depends, to some extent, on the starting tree. We call

DTE+PhyML the scenario whereby the PhyML default option is used, which involves

using DTE (see above and Figure 1) to compute the starting tree. As we suspected that

DTE would generate poor trees in this phylogenomics context, we also used SDM+Fitch

(see above and Figure 1) to infer the starting tree to be then re�ned by PhyML; we call

this scenario SDM+Fitch+PhyML (Figure 1). Our aim was to check that using the im-

proved SDM starting tree, we improve the resulting PhyML tree, and reduce the number

of NNIs and the running time.

High-level combination � A collection of k ML phylogenies was built from the k par-

tially deleted genes using PhyML with K2P. We then combined these trees using the

standard MRP technique, which involves �rst coding the tree topologies in a partial bi-

nary matrix, then inferring the supertree by maximum parsimony. To achieve this task, we

used TNT (Golobo� et al., 2003), which is well known for its e�ciency, and followed the

standard approach (Bininda-Emonds and Bryant, 1998) that de�nes the MRP supertree

as the strict consensus of the most parsimonious trees. TNT was run with 25 random ad-
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dition sequences, TBR branch swapping and ratchet default option. We call this supertree

construction scenario PhyML+MRP (Figure 1).

We also tested three distance-based supertree approaches, using the same PhyML

source trees as with MRP. First, we evaluated ACS regarding its pioneer role in the �eld.

Gene trees were transformed into path-length matrices, and we used the standardization

procedure of Lapointe and Cucumel (1997), which applies to any number of source matri-

ces, unlike the other standardizations presented by Lapointe and Levasseur (2004). This

version of ACS was combined with the recentMW* algorithm (Makarenkov and Lapointe,

2004), which invokes both indirect and direct algorithms to deal with missing distances (see

above). This scenario is called PhyML+ACS97+MW* (Figure 1). We selected MW* to

be combined with ACS as it was designed by the same author group, but we also performed

experiments substituting MW* by Fitch. We applied SDM to the same path-length ma-

trices as ACS and combined it with Fitch; this scenario is called PhyML+SDM+Fitch

(Figure 1). Finally, we evaluated MSS (Creevey and McInerney, 2005) using default pa-

rameters and recommended options: NJ was applied to theMRP matrix using p-distances

to obtain a starting tree; unitary path-length matrices corresponding to each gene tree

were then computed and fed into MSS which was run with SPR rearrangements. This

scenario is called PhyML+MSS (Figure 1).

Topological Accuracy Measure

We measured the topological accuracy of every scenario using the quartet distance dq

(Estabrook et al., 1985) between the inferred tree T̂ and the model tree T . dq counts

the number of resolved 4-trees (i.e. four taxon trees) present in one tree but not in the

other. dq is then the sum of two error types: the type I error corresponding to resolved

4-trees induced by T̂ but not present in T , the type II error corresponding to resolved
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4-trees in T but not induced by T̂ . As any fully resolved tree with n taxa induces
(

n
4

)
4-

trees, this measure can take any integer value between 0 and 2
(

n
4

)
. dq is then more precise

than the widely used bipartition distance (Bourque, 1978; Robinson and Foulds, 1979),

which counts the number of internal branches present in one tree but not in the other, and

then takes integer values between 0 and 2(n − 3). Moreover, dq is less sensitive to slight

topological di�erences; e.g., when just one taxon is misplaced and far away from its correct

location, the bipartition distance is high as a number of bipartitions are incorrect, while the

dq distance remains moderate as only quartets involving this taxon are modi�ed. Thus,

dq is better suited than bipartition distance to compare remote trees (Steel and Penny,

1993), as obtained with 75% deletion rate where tree inference is hard (see below). dq was

normalized by dividing its value by 2
(

n
4

)
; 0 then corresponds to identical trees, while a

distance of 1 means that both trees do not share any 4-tree. To avoid giving a topological

meaning to very short branches in the infered trees, every branch length less than 0.0001

was collapsed to make a multifurcation.

Simulation Results

Topological Accuracy

For each of the 20 conditions (10 gene collection sizes×2 overlap conditions), the collected

500 dq values were averaged and are graphically represented in Figure 2. These graphs

show the average dq value as a function of the number (k) of genes.

As expected, all curves in Figure 2 are decreasing: the correct tree T is better recovered

(i.e. the dq distance between T̂ and T decreases) as the number of genes increases. As

also expected, the inferred phylogeny is closer to the correct tree as the taxon deletion
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rate decreases. The more information we have, the easier tree building is, whatever the

reconstruction scenario. However, some of the scenarios are clearly more accurate than

others.

Among pure distance-based scenarios, SDM+Fitch is best. It outperforms

SDM*+Fitch in all conditions, indicating that incorporating aip variables in criterion

(1) gives a signi�cant improvement over using only the αp multiplication factors. As ex-

pected DTE performance is very poor and its results are out of the scales used in Figure 1.

This is due to weak distance estimation caused by rate heterogeneity among genes and

missing sequences. Indeed, when two taxa share slow genes, they are estimated to be close,

whereas when their common genes are evolving fast, they are predicted to be distant. Ap-

plying BioNJ (or any other algorithm) to such a poor distance matrix inevitably results

in a poor tree.

High-level scenarios combine the source trees inferred by PhyML into a supertree.

Among the three distance approaches, PhyML+SDM+Fitch is best in all conditions,

and PhyML+ACS97+MW* tends to outperform PhyML+MSS when the gene number

(k) is relatively high. We also tested other combinations, substituting Fitch and MW*

to obtain the PhyML+ACS97+Fitch and PhyML+SDM+MW* scenarios. Neither

one nor the other is better than PhyML+SDM+Fitch, and PhyML+ACS97+Fitch

outperforms PhyML+ACS97+MW*. This seems to indicate that Fitch (direct method)

could be better suited than MW* (combining direct and indirect algorithms) to deal with

distance matrices obtained in phylogenomics studies and containing missing entries. This

somewhat contradicts �ndings presented by Makarenkov and Lapointe (2004), but could be

explained by di�erences in the simulation protocols. These authors used a single distance

(super)matrix with random deletion of pre-�xed numbers of entries, while our protocol is

based on the assembly of several gene distance matrices and closer to phylogenomics data.
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Thus, our supermatrices are likely to be more perturbed than those in (Makarenkov and

Lapointe, 2004), which could penalize indirect methods that only use a few distances to

�ll each of the missing entries. Note, moreover, that Fitch slightly outperformed MW*

in one of the two experiments presented by Makarenkov and Lapointe (2004).

Comparing now SDM and MRP, we see that PhyML+MRP and

PhyML+SDM+Fitch show similar accuracy with 25% taxon deletion, while the

SDM-based scenario outperforms MRP with 75% deletion. In fact, it can be seen that

PhyML+SDM+Fitch deals better with missing information (e.g. k = 2 with 25%

and 75% deletion), while PhyML+MRP performs well when information is abundant

(e.g. k = 20, where the two methods are close in both deletion conditions). This could

be explained by the often poor resolution of MRP supertrees, which is due to the use

of strict consensus and is higher with low source tree overlap (e.g. for k = 10 and 75%

deletion rate, MRP supertrees contain 17% unresolved quartets on average). However,

in the bootstrap analysis context, we showed that collapsing poorly supported branches

improves topological accuracy (Berry and Gascuel, 1996) by decreasing type I error

without signi�cantly augmenting type II. A better explanation (Lapointe and Cucumel,

1997) could be that SDM not only uses the topology of the source trees (as MRP) but

also their branch lengths. SDM-based trees then have more information than MRP

trees. This could also explain the poor results of MSS which loses information by

setting all branches to length 1. Weighted MRP (where branches of the source trees

are weighted by their bootstrap support, Ronquist, 1996) performs better than standard

MRP (Bininda-Emonds and Sanderson, 2001), but at the expense of huge computing

times as with this approach the initial tree building algorithm (here, PhyML) has to run

a number of times (at least 100) on each of the source datasets. However, fast branch

support estimates could be used to accelerate these computations (Kishino et al., 1990;
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Waddell et al., 2002; Anisimova and Gascuel, 2006).

Low-level scenarios analyze the supermatrix of characters using PhyML, which im-

proves, via NNIs, a starting tree built by a fast distance method. SDM+Fitch+PhyML

clearly outperforms DTE+PhyML, which is a poor method with 75% taxon deletion.

This is due to the extreme weakness of DTE with phylogenomics data (not true with sin-

gle gene study or when there are no missing characters). NNIs considerably improve DTE

trees (see 25% deletion, where DTE+PhyML shows similar accuracy asMRP), but NNIs

are not powerful enough to obtain a satisfactory tree when starting from quasi-random

trees, as is the case with 75% deletion.

We then see the advantage of using SDM within the three combination levels. The

medium-level SDM+Fitch scenario is even better than standardMRP with 75% deletion,

while low-level SDM+Fitch+PhyML is clearly the best in all conditions, among the

methods we tested. Moreover, this latter scenario could likely be improved by incorporating

the speci�c rate of every gene in likelihood computations, as proposed by Yang (1996) ,

Pupko et al. (2002), and Bevan et al. (2005). Finally, in the high-level context (which

greatly simpli�es the processing of various data types and evolutionary modes), SDM o�ers

a relevant alternative to MRP as it is nearly equivalent with low (25%) taxon deletion,

but signi�cantly better with high (75%) deletion rate. Comparing the three SDM-based

scenarios, we see a clear ordering: the low-level approach is best in all conditions, the

medium-level method is worst and the high-level combination is in between. As we shall

see (and not surprisingly), this ordering is inverse of that induced by the computing times,

the low-level scenario being much heavier than the two other methods. Moreover, the gap

between high-level and low-level scenarios is moderate, and their ordering could be inverted

with complex datasets showing strong heterogeneity in the evolutionary modes.
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Running Time

The average running times of the main scenarios used in the simulations are displayed in

Table 1, with k = 10, 20, and 25% and 75% taxon deletion. We also generated additional

datasets with n = 96 taxa (10 per condition), using the previously described procedure

and the same k values and taxon deletion rates, and reported the running times in Table 1.

Note that all these times strongly depend on implementation. For example, the weighted

least-squares procedure in Paup* is clearly faster than Fitch, while both follow a closely

related scheme. Thus, results in Table 1 illustrate the main tendencies but should not be

over-interpreted.

We �rst see that SDM on its own is a fast algorithm. For example, it only requires

48 seconds with 96 taxa, k = 20 and 25% taxon deletion. It follows that the running

times of the SDM-based scenarios mostly depend on the other components of the scenar-

ios, which tend to be (much) slower than SDM itself. The medium-level SDM+Fitch

scenario is one of the fastest methods. For example, with 96 taxa, k = 20 and 25% taxon

deletion, SDM+Fitch requires 539 seconds. Thanks to the speed of PhyML and TNT,

PhyML+MRP is also quite e�cient, being slower than SDM+Fitch with 48 taxa, but

generally faster with 96. However, most of the computing time required by SDM+Fitch

is spent by Fitch (e.g. 491 seconds as compared to 539 seconds, in our previous ex-

ample). Fitch is useful as it copes with missing entries, but, as explained earlier, real

datasets often yield full supermatrices of distance. In such cases, much faster inference

algorithms do exist. In our simulations, all distance supermatrices are full when k = 20,

n = 48, 96, and for both taxon deletion rates. With this (k = 20) datasets, we then used

FastME instead of Fitch. Topological accuracy remains similar (e.g. with 48 taxa and

25% deletion, average dq topological distances are 0.0242 for SDM+Fitch and 0.0268 for

SDM+FastME) but the tree inference time is less than 1 second in all settings; e.g., with
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96 taxa, k = 20 and 25% taxon deletion, the SDM+FastME scenario requires approx-

imately 50 seconds, as compared to 539 seconds when using Fitch. In this biologically

common case, SDM+FastME is the fastest inference scenario, by a factor of 10- to 100-

fold with 96 taxa, and this factor increases with the number of taxa. With 500 taxa and

k = 20, SDM+FastME requires a few minutes, while other scenarios require hours (or

days) of computation.

Comparing high-level scenarios, we see that with (n = 96) PhyML+SDM+Fitch

tends to be handicapped in comparison to PhyML+MRP, due to the use of Fitch. Re-

placing Fitch by FastME in case of full distance supermatrix does not signi�cantly

change the topological accuracy (e.g. with k = 20, 48 taxa and 25% deletion rate,

average dq topological distances are 0.0162 for PhyML+SDM+Fitch and 0.0168 for

PhyML+SDM+FastME) but makes the SDM approach faster than PhyML+MRP.

The two other high-level scenarios, PhyML+ACS97+MW* and PhyML+MSS, are

slower than MRP and SDM-based scenarios. PhyML+ACS97+MW* is penalyzed by

MW* that is slower than Fitch (used here without global rearrangements, contrary to

Makarenkov and Lapointe, 2004). MSS appears as a slow algorithm, likely due to the

combination of its complex optimality criterion and of SPR topological rearrangements.

Finally, as trees built with SDM+Fitch are close to the correct tree T , we observe a

clear improvement in PhyML running time when using SDM+Fitch as starting tree in-

stead of DTE. Thus, with 96 taxa, k = 20 and 75% taxon deletion, SDM+Fitch+PhyML

runs 4,286 seconds, as compared to 6,329 seconds for DTE+PhyML, i.e. a relative gain

of around 50%.

We see from these comparisons that SDM-based scenarios not only have high topological

accuracy but are also e�cient relative to the other approaches. Moreover, they become

much faster when the distance supermatrix does not contain any missing entry, thanks to
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the use of a fast distance-based tree building method.

Application

To illustrate the properties of SDM, we analyzed a dataset of placental mammals (with

focus on Cetartiodactyla), which was used by Gatesy et al. (2002) in a parsimony-based

low-level combination framework. This taxonomic group was recently studied using high-

level approaches by Mahon (2004) and Price et al. (2005) and di�erent data. We �rst

describe Gatesy et al. dataset and the various tree building scenarios we tested, then

provide the results, both in terms of running time and likelihood of the inferred trees. As

we shall see, these results con�rm our �ndings with simulated datasets.

Data and Tree Building Scenarios

The original Gatesy et al. dataset comprises 57 character sources: 3 morphological datasets,

5 protein sequences, 1 tranposon, 33 nuclear genes, and 15 mitochondrial genes. As the

current version of PhyML does no allow for separate analysis of various data types, we

only retained the DNA coding sequences. We then considered a dataset of 48 genes, 36,639

sites, and 75 placental mammals, from which 7 Afrotherians were used to root the inferred

trees. As shown in Gatesy et al. (2002), this gene collection has high taxonomic sampling

heterogeneity, and 68% of the characters are missing. To obtain a fair comparison between

Gatesy's et al. tree building approach and the other scenarios, we run TNT on the 48

concatenated genes, with 25 random taxon additions, TBR branch swapping and ratchet

default option. The corresponding tree is called Gatesy-TNT in the following.

All scenarios described in our simulations were also applied to this gene collection. The

distance matrices were estimated using the GTR model (Rodriguez et al., 1990). To weight
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source matrices in SDM, we used wp = �p/(ñp(ñp−1)) in equation (1), which compensates

for taxon number heterogeneity among genes (e.g. 10 taxa for α-lactalbumin and 75 for

cytochrome b). As the cytochrome b gene is present for all of the 75 taxa, the SDM

distance supermatrix does not contain any missing entry and we used FastME instead of

Fitch. TNT was run with 500 random taxon additions, TBR branch swapping and ratchet

default option. Likelihood computations were performed using PhyML with the GTR+Γ

model; we used 8 rate categories and the gamma distribution parameter was estimated

from the data. Invariant sites were not used as their proportion was estimated to be zero

in preliminary studies. Moreover, to estimate the likelihood of all the topologies from the

various scenarios, we �tted branch lengths and parameters to the original supermatrix of

characters, using PhyML with the same GTR+Γ8 substitution model.

Results

The most likely tree is built by SDM+FastME+PhyML. This phylogeny is

shown in Figure 3 and its log-likelihood is equal to −330, 354. This tree is rel-

atively close to Gatesy et al. original tree, which has a log-likelihood of −330, 492.

Quartet distance between both is of 0.028. While Gatesy et al. found that

Camelidae + Tayassuidae + Suidae were monophyletic, our tree displays a basal position

of Camelidae among Cetartiodactyla and a sister group relationship between Suina and

Hippopotamidae + Cetacea + Ruminantia. Such basal position of Camelidae has already

been proposed and discussed by Madsen et al. (2001) and Waddell et al. (2003) in low-level

combination studies, and by Price et al. (2005) in a high-level combination framework. We

also found that the Pholidota + Carnivora is the nearest parent of Perissodactyla, which

is another di�erent branching relative to the topology found by Gatesy et al. As the cor-

responding branching has low bootstrap support in the tree of Gatesy et al., the tree in
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Figure 3 represents a likely alternative (biologically and mathematically). Gatesy-TNT

tree is not much di�erent from the original tree ; its log-likelihood is of −330, 428 (instead

of −330, 492) and quartet distance between both is equal to 0.007.

Results of all the scenarios are summarized in Table 2. We measured: (1) the log-

likelihood (as explained above), (2) the running time (using a 1.8 GHz Pentium IV PC with

1 Gb RAM), and (3) the topological distance between the corresponding tree and the best

(SDM+FastME+PHYML) tree. As all trees are relatively close, we used the bipartition

distance instead of the quartet distance to augment the contrast (see above comparison

between both measures). This distance, also called Robinson and Foulds (dRF ) distance,

was normalized; 0 corresponds to identical trees, while 1 means that both trees do not share

any bipartition (clade). Finally (4), we checked for the signi�cance of our �ndings using

Shimodaira asymptotically unbiased test (2002), as implemented in CONSEL software.

SDM+FastME+PHYML tree is signi�cantly better than the other trees (p = 0.986).

Overall the results are in good accordance with simulations, even though the ranking

criteria are not the same (likelihood versus topological distance with the model tree).

Low-level methods tend to be the best ones, including Gatesy-TNT parsimony-based ap-

proach (but excluding DTE). Moreover, using SDM+FastME (instead of DTE) to build

a starting tree increases the likelihood of the resulting PHYML tree. Among high-level

scenarios, PHYML+MRP performs best (∼ 70 log-likelihood units below the best tree),

PhyML+SDM+FastME is also e�cient (∼220 log-likelihood units below the best tree),

while PhyML+MSS and PhyML+ACS+MW* are outperformed (∼1, 900 log-likelihood

units below the best tree). SDM+FastME medium-level scenario (∼1, 200 log-likelihood

units below the best tree) is behind the best high-level methods, but performs better than

PhyML+MSS and PhyML+ACS+MW*. Finally, DTE is the worst of all methods, just

as in simulations (∼3, 000 log-likelihood units below the best tree). Topological distances
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(measured by dRF ) between the best and the other trees are also signi�cant; e.g. DTE and

the best trees share only 41% of clades, while PhyML+MRP value is of 84%. Results

with quartet distance are much less contrasted as those measures become 88.5% and 98.5%,

respectively.

This ordering of the scenarios is very similar to that of Figure 2 with 25% taxon deletion

and large number of genes. Even though the ratio of missing characters in Gatesy et al.

dataset is closer to 75% than to 25%, the gene number in this data set is large (48) and

some genes are sequenced for all taxa (e.g., cytochrome b); information is then abundant,

which explains the closeness with 25% (rather than 75%) taxon deletion.

The SDM+FastME tree is inferred in a running time of approximately 30 seconds,

considerably faster than any other scenario (except SDM* and DTE). This con�rms the

bene�ts of this medium-level approach at an exploratory stage, or for building a starting

tree. This speed should also be useful to perform bootstrap analysis, which is hardly

achievable with other scenarios. The αp values estimated by SDM range from 0.26 to

2.80, with a median value of 1.17. As the αp parameters are inversely proportional to

the evolutionary rates, these results show that the dataset of Gatesy et al. is composed of

genes with quite heterogeneous rates. For example, 1/αp = 0.356 corresponds to the slowest

gene, the nuclear ZFX, and 1/αp = 3.755 corresponds to the fastest one, the mitochondrial

ATP8; the rate ratio between both is about 11.0. SDM medium-level based scenario can

then be used to obtain the evolutionary rates of the studied genes in a quick way (i.e.

much faster than any ML-based method). The advantage of such approach was already

discussed by Bevan et al. (2005), who used it to account for gene rate heterogeneity with

very low computational cost.
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Conclusion

We have presented a novel method, named SDM, to combine a collection of source dis-

tance matrices into a single distance supermatrix. SDM can be used in tree building

scenarios of various levels and computational costs. Using large-scale simulations and a

real phylogenomics case study, we have shown that SDM, used together with Fitch or

FastME tree building programs, has topological accuracy similar to that of the popular

MRP method. With low taxon overlap, SDM tends to outperform MRP, notably when it

is used in a high-level way to combine gene trees. Moreover, in a low-level context SDM

can be used to quickly construct a starting tree to be re�ned by a maximum likelihood

method. According to our simulations, this latter approach seems to be the most accurate

gene combination method to date. This result could be a�ected by strong heterogeneity in

the evolutionary modes of the studied genes, which was not incorporated in our simulations

but may occur with real phylogenomic data. However, likelihood-based separate analysis

(e.g. MrBayes, Huelsenbeck and Ronquist, 2001) provides a way to deal with such scheme

in the low-level context, and SDM-based medium and high-level scenarios should not be

a�ected as di�erent models can be used to estimate their input (i.e. distances and trees,

respectively).

The SDM algorithm is very fast. The computing time required by the SDM approach

(i.e. �rst running SDM, then inferring the tree from the SDM supermatrix using a dis-

tance algorithm) greatly depends on the taxon overlap among genes. When the SDM

supermatrix is complete (which occurs frequently, as some genes have been sequenced for

a large number of species), the SDM approach is very e�cient thanks to the use of fast

algorithms such as NJ, BioNJ or FastME; in this case, huge datasets can be dealt with

in a few minutes on a standard computer. When the SDM supermatrix contains missing

entries, as is the case for some recent very sparse datasets selected by computer programs
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(Driskell et al., 2004), slower algorithms such as Fitch or MW* must be used; then, the

SDM approach is not as e�cient with running times similar to those of MRP.

A key direction for further research is to develop fast algorithms, as fast as NJ or

FastME, to accurately reconstruct trees from distance matrices with missing entries.

Other directions include exploring new weighting schemes within the SDM optimality

criterion (1), or new linear constraints on the parameters.

Our implementation of the SDM method, in JAVA 1.4 for better portability, is

available at http://www.lirmm.fr/~criscuol/soft/sdm . All simulated datasets can be

downloaded from http://www.lirmm.fr/~criscuol/soft/sdm/datasets .
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Appendix

The goal is to minimize criterion (3), which can be written as

f(v) =
∑

i,j:i�=j
kij≥2

∑
p:{ij}⊂L̃p

wp(αp∆
p
ij + aip + ajp − ∆ij)

2

where v = (α1 , ... , αp , ... , αk , ... , aip , ...) and

∆ij =
1

Wij

∑
p:{ij}⊂L̃p

wp(αp∆
p
ij + aip + ajp) with Wij =

∑
p:{ij}⊂L̃p

wp,

subject to linear constraints (4), (5) and (6):

h(1)(v) =
∑

p

αp = k, h
(2)
i (v) =

∑
p:i∈L̃p

aip = 0, ∀i ∈ L̃, h(3)
p (v) =

∑
i∈L̃p

aip = 0, ∀p �= k.

This is a quadratic programming problem with equality constraints. In principle, inequal-

ities αp ≥ 0 should be added, but in practice we have never found negative αp values,

neither with simulated sequences nor with biological datasets. The necessary �rst-order

condition (equivalent to nullity of the �rst derivative in unconstrained mono-dimensional

optimization) that any minimizer must satisfy is (Luenberger, 1984, p. 300):

S




∂
∂αm

f(v) + λ ∂
∂αm

h(1)(v) = 0, ∀m = 1, 2, ..., k,

∂
∂aim

f(v) + µi
∂

∂aim
h

(2)
i (v) + ηm

∂
∂aim

h
(3)
m (v) = 0, ∀m < k, ∀i ∈ L̃m,

∂
∂aik

f(v) + µi
∂

∂aik
h

(2)
i (v) = 0, ∀i ∈ L̃k,

h(1)(v) = k,

h
(2)
i (v) = 0, ∀i ∈ L̃,

h
(3)
p (v) = 0, ∀p �= k.

where λ, µi and ηp are the Lagrange multipliers induced by linear constraints h(1), h
(2)
i and

h
(3)
p , respectively.
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We have:

∂

∂αm
f(v) = 2

∑
i,j:i�=j

{ij}⊂L̃m


wm

(
∆m

ij −
wm

Wij
∆m

ij

)
(αm∆m

ij + aim + ajm − ∆ij)

+
∑

p:{ij}⊂L̃p
p �=m

wp

(
−wm

Wij
∆m

ij

)
(αp∆

p
ij + aip + ajp − ∆ij)




= 2wm

∑
i,j:i�=j

{ij}⊂L̃m

∆m
ij


αm∆m

ij + aim + ajm − ∆ij

− 1

Wij

∑
p:{ij}⊂L̃p

wp(αp∆
p
ij + aip + ajp − ∆ij)




= 2wm

∑
i,j:i�=j

{ij}⊂L̃m

∆m
ij

(
αm∆m

ij + aim + ajm − ∆ij

)

and, with similar arithmetic,

∂

∂aim

f(v) = 4wm

∑
j∈L̃m−{i}

(
αm∆m

ij + aim + ajm − ∆ij

)
.

Linear system S can then be written as:

S




∑
i,j:i�=j

{ij}⊂L̃p

∆p
ij

(
αp∆

p
ij + aip + ajp − ∆ij

)
+ λ = 0, ∀p = 1, 2, ..., k,

wp

∑
j∈L̃p−{i}

(
αp∆

p
ij + aip + ajp − ∆ij

)
+ µi + ηp = 0, ∀p < k, ∀i ∈ L̃p,

∑
j∈L̃k−{i}

(
αk∆

k
ij + aik + ajk − ∆ij

)
+ µi = 0, ∀i ∈ L̃k,

∑
p

αp = k,

∑
p:i∈L̃p

aip = 0, ∀i ∈ L̃,
∑

i∈L̃p

aip = 0, ∀p �= k.
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S is a square linear system, with ñ + 2k +
∑

p ñp equations and parameters (including

Lagrange multipliers), and S has at least one solution. For S to de�ne the unique global

optimum of f(v) subject to the constraints, the second-order necessary condition (Luen-

berger, 1984, p. 306) must be ful�lled (equivalent to positivity of the second derivative in

unconstrained mono-dimensional minimization). In our quadratic programming problem,

where f(v) is non-negative, this condition becomes:

f(v) = 0

h(1)(v) = 0

h
(2)
i (v) = 0, ∀i ∈ L̃

h
(3)
p (v) = 0, ∀p �= k




⇒ v = 0.

f(v) is a sum of squares. f(v) = 0 implies that all the squares are null, which means that for

any i, j pair (kij ≥ 2) we have αp∆
p
ij +aip+ajp = αp′∆

p′
ij +aip′ +ajp′, ∀p, p′ : {i, j} ⊂ L̃p, L̃p′.

f(v) = 0 then induces
∑

i,j:i<j,kij≥2(kij −1) independent linear equations. Combining these

equations with the k+ ñ constraints, we obtain a linear system with k+
∑

p ñp parameters

(i.e. the size of v). The second-order su�ciency condition is then equivalent to testing

the linear independence of the set of column vectors de�ning this linear system. This can

easily be achieved numerically. However, except in very special cases (corresponding to

equalities or redundancies, see example below), this vector set is linearly independent as

soon as the number of vectors is less than, or equal to, the vector dimension, that is:

k +
∑

p

ñp ≤ k + ñ +
∑

i,j:i<j
kij≥2

(kij − 1),

which simpli�es into:

∑
i,j:i<j
kij≥2

(kij − 1) + ñ −
∑

p

ñp ≥ 0 (7)

When (7) is ful�lled, the linear system S should then de�ne the unique global optimum of

our constrained optimization problem. The only exception we were able to �nd in all our

42



simulations and experiments involved �awed datasets, where one of the source matrices

was duplicated.

The left hand-side term in (7) measures the matrix overlap. For example, in the extreme

case where we only have two source matrices that only share two taxa, the three components

in this term equal 1, 2, and −4, respectively, and (7) is violated; in other words, a single

(1) distance comparison plus 4 (= 2 + k) constraints is not enough to estimate 6 (= 4 + k)

parameters. Assuming now that the two matrices share 3 taxa, the sum in (7) becomes

3+3−6 = 0, i.e. 3 comparisons are enough to estimate 8 parameters subject to 5 constraints,

and S de�nes a unique global optimum.

Unicity of the global optimum yields the consistency of the SDM approach in estimating

the relative rates of the genes. Assume that all source matrices are issued from a single (∆ij)

matrix through multiplication by θp factors, each representing the evolutionary rate of gene

p. We have (∆p
ij) = (θp∆ij), just as in the proportional model of Yang (1996). Moreover,

without loss of generality, assume that the θps are rescaled to obtain
∑

p 1/θp = k. SDM

then consistently estimates the θp values, as soon as condition (7) is ful�lled. Let v∗ be

de�ned by α∗
p = 1/θp and aip = 0, ∀i, p. It is easily seen that f(v∗) = 0 and that all

the constraints are satis�ed by v∗. As (7) is ful�lled, v∗ is the unique solution of S, and

θ̂p = 1/α∗
p is a consistent estimator of θp, which �nishes the consistency proof.
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Figure 1: Flowchart of the reconstruction scenarios.

Starting from the data comprising a collection of k genes, the various scenarios combine

several methods, as indicated by the successive arrows. Triangles represent distance ma-

trices, and hatched areas indicate missing data (characters or distances).

Figure 2: Accuracy of the eight reconstruction scenarios for 25% and 75% taxon

deletion rates.

k: number of genes used in the reconstruction. dq: quartet distance between the correct

tree and the inferred tree. Triangles: medium-level, distance-based methods; circles and

diamonds: high-level scenarios; squares: low-level scenarios. DTE does not appear in the

graphics due to its poor accuracy (dq > 0.06 and > 0.3 with 25% and 75% deletion rates,

respectively). Note the di�erence between the two dq scales in the two graphics.

Figure 3: Phylogeny inferred by the SDM+FastME+PhyML scenario on the

48-gene dataset of Gatesy et al. (2002).

This dataset comprises 75 taxa and 36,639 sites. The tree log-likelihood is -330,354. The

Afrotheria root the topology. Suina = Tayassuidae + Suidae. Cetartiodactyla = Camelidae

+ Tayassuidae + Suidae + Hippopotamidae + Cetacea + Ruminantia.
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Macroscelidea
Orycteropus afer

Trichechus sp.
Dugong dugon

Procavia capensis

Loxodonta africana
Elephas maximus

Homo sapiens

Rattus norvegicus
Mus sp.

Equus sp.
Tapirus sp.

Diceros + Ceratotherium
Rhinoceros unicornis

Dicerorhinus sumatrensis
Manis sp.

Ailurus fulgens
Procyon lotor

Lama sp.
Camelus bactrianus

Camelus dromedarius
Tayassu tajacu

Babyrousa babyrussa
Sus scrofa

Hippopotamus amphibius
Choeropsis liberiensis

Balaena mysticetus

Eschrichtius robustus

Megaptera novaeangliae
Balaenoptera acutorostrata

Balaenoptera physalus
Balaenoptera musculus

Kogia sp.
Physeter catodon

Mesoplodon sp.
Inia geoffrensis

Ziphius cavirostris

Delphinapterus leucas
Monodon monoceros

Lagenorhynchus sp.
Tursiops truncatus
Globicephala sp.

Orcinus orca
Tragulus sp.

Antilocapra americana
Giraffa camelopardalis
Okapia johnstoni

Odocoileus sp.
Alces alces
Muntiacus sp.
Cervus sp.

Boselaphus tragocamelus

Bos sp.
Syncerus caffer
Bubalus depressicomis

Bubalus bubalis

Kobus sp.
Gazella sp.

Aepyceros melampus

Cephalophus sp.
Damaliscus sp.
Oryx sp.

Capra hircus
Ovis sp.

Nemorhaedus sp.
Capricornis crispus

Ovibos moschatus

Tragelaphini

Phocoenidae

Phocidae
Ursidae

Feloidea
Canidae

Leporidae
Platyrrhini

AFROTHERIA

PRIMATES
LAGOMORPHA
RODENTIA

PERISSODACTYLA

PHOLIDOTA

CARNIVORA

CAMELIDAE

TAYASSUIDAE
SUIDAE

HIPPOPOTAMIDAE

CETACEA

RUMINANTIA

Figure 3:
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Table 1: Results of the various tree buiding scenarios with Gatesy et al. (2002)

dataset.

Gatesy-TNT stands for the MP tree that is inferred by TNT from the 48 concatenated

genes; dRF denotes the bipartition (Robinson and Foulds) distance between the best and

the inferred tree.

Table 2: Running times.

The values correspond to the average running time in seconds using a 1.8 GHz Pen-

tium IV PC with 1.8 Gb RAM. k: number of genes used in the reconstruction. 25%, 75%:

taxon deletion rates. Sums in parentheses provide the running times required by the dif-

ferent components of the scenarios.
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