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Inferring the Tree of Life

Is there at all a Tree of Life?

• Evidence that vertical signal from the early stages of life is still visible in
current genomes [DAUBIN ET AL 03, KURLAND ET AL 03, . . . ]

• The NCBI tree contains 64% unresolved nodes

• Only using single-copy genes→ ”Tree of 1%” [BAPTESTE ET AL 07]

• A reasonable and assessed ToL might only be obtained if we are able to
extract some signal from multigene families
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Gene sequence evolution

Example of a multigene family tree G:

Gene sequences are submitted to complex macro-evolutionary events
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Gene trees can (often) differ from species trees

Reconciliation approach: explicitly accounts for (some) macro events:

A B C a b c

S G

X
X X

X

1 transfer + 1 loss1 duplication + 3 losses

Reconciliation methods apply to multigene family trees G, explaining
incongruence with S by postulating macro events
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Motivation(s) for reconciliation

Organisms

Orthologous 
sequences

NGS

Orthology
inference

gene 
trees

Reconciliation

S G

Better 
estimate of S

Genomic 
data

• Identify orthologous sequences: transfers of functional annotation

• Part of a complex process to infer more accurate species trees

• ...
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A parsimony approach to reconcile trees

Preference goes to the most parsimonious history in the number of non-
speciation events (avoiding unnecessary events).

S G

A B C a b c

X

X

X

most probable history unlikely history
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A parsimony approach to reconcile trees

Remarks

• This criterion is reasonable when assuming speciation is the dominant
event (over transfers, duplications and losses)

• In this case, parsimony might be thought of as an approximation of the
maximum likelihood criterion to estimate the gene history

• Parsimony is less refined than the maximum likelihood criterion, but is
faster to compute

Genomic databases contain several dozen thousand gene families:
reconciliation needs to be as fast as possible to cope with NGS technology
[PENEL ET AL 09, ...]
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The MPR problem

The Most Parsimonious Reconciliation problem

• Consider a set of macro events affecting genes:
• Speciation (S)

• Duplication (D)

• Transfer (T)

• Loss (L)

• Give a cost to each considered event:
• Find a reconciliation that min. the overall cost of S, D, T, L events.

Transfers

• must occur between concomitant species;
• ...thus impose chronological constraints between edges of S.
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The MPR problem

Transfers

• must occur between concomitant species;
• thus some combination of T between edges of S are inconsistent.
• makes hard life for solving MPR : general pbm is NP-complete [HL04]

Gene and Species trees Time consistent reconciliation

S G

A B C D a b c d

t1

t2

a1 c1b1 d1

Rem

A B C D
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X

X
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Previous approaches & models
Species Graph SG [Gorecki]

• Transfers are allowed along inserted horizontal branches.
• Given SG, MPR is solved in O(|SG|3 · |G|).
• Computing an optimal SG is hard to solve.

Some existing reconciliation models

• Map each node of G onto a node of S, but this is not sufficient for
Transfer + Loss. [VERNOT ET AL 08]

• May have pbms to directly account for L [HALLETT & LAGERGREN 04]

• Handle transfers locally, which can lead to time inconsistent
reconciliations (Tarzan & Jane software) [MERKLE ET AL 05-10]

Dating the species tree S
[LAGERGREN’S GROUP 09-10, LYUBETSKY ET AL 09, MERKLE ET AL 05-10]

• Transfers between two concomitant branches (Local Consistency)
• Subdividing S into an S′ tree with time slices (Global Consistency)
• → algorithms in O(|S|4 · |G|4) and O(|S′|3 · |G|)
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Our contribution

For reconciling G and S while accounting for duplications (D), losses (L),
transfers (T), and speciations (S):

An efficient model for DTLS reconciliation
• Considering a species tree S that is dated (function θ : V (S)→ R).
• Relying on 6 basic cases, each one being fast to investigate
• Considering loss events in combination with other events (SL and TL),

A dynamic programming algorithm
• exact: solves MPR under the above model
• fast: runs in time O(|S′| · |G|) where S′ is a subdivision of S in a small

number of time slices.

Experimental results for the relevance of parsimony
Is parsimony relevant to infer the evolutionary scenario of a gene family?
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An Efficient Reconciliation Model

Dealing with the dated species tree S

• We add new internal vertices to partition the tree into successive sets of
concomitant edges. Thus, we obtain a subdivision S′ of the dated
species tree S.

• In other words, time is discretized into time slices [GORBUNOV ET AL 09,
LIBESKIND-HADAS 09, TOFIGH ET AL 10].

• Compared to an accurate ML model, a smaller number of time slices is
used.

• We renumber the time stamps. Harmless as parsimony is not able to
estimate precise dates within a given time interval.
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A reconciliation between G and S

• plunges G into the subdivision S′, which
• defines a map α : E(G)→ 2E(S′) assigning each edge of G onto an ordered

sequence of branches of S′ having non-decreasing time stamps.

• induces events that label internal nodes of G (S,T,D) and time slices/stamps
for these nodes.

• induces a completed gene tree G◦ where L leaves have been attached to G.

Gene tree G and Species tree S A reconciliation of G and S

A B C D

S

G

a1 c1 b1 d1 a1 c1b1 d1

0

1

2

3
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Atomic events considered by the model

The model distinguishes 6 events or combinations thereof:

Speciation (S) Duplication (D) Transfer (T)

No event (∅) Speciation + Loss (SL) Transfer+Loss (TL)

Note: for simplicity, losses are considered in combination with other events



Introduction Model of reconciliation Algorithm Experimental results Conclusion

Properties of the model in a parsimony framework

Implications due to the parsimony criterion:

Property 1

SL and TL are parsimonious event associations.

This means that when a single G edge goes through a speciation node s of
S′, there is no need to examine scenarios on the children of s that are not
seen in G.

Property 2

Each edge of G never follows several TL in a row at a same time slice t in S′

(i.e. any TL event is followed by a different event).

This allows dynamic programming to make progress without looking at more
than two concomitant branches of S′ at once (progress is done either in time,
or in gene tree nodes).
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Dynamic Programming Algorithm

Input

• Dated species tree (S, θ)

• Gene tree G (could be dated also)

• Respective costs τ, δ, λ (and σ) for DTL (and S) events

Output

• A Most Parsimonious Reconciliation α between G and (S, θ)

• Indicating where in S, DTL events occured
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Dynamic Programming Algorithm

Principle

The DP algorithm processes edges (up, u) of G in postorder from leaves to the
root, and when considering an (up, u), it successively considers S branches
slice by slice, also from the leaves to the root

SG

t=0

t=1xp

x

up

u

1: for all edge (up, u) of G following a bottom-up traversal do

2: for all time t of S′ in backward time order do

3: for all branch (xp, x) of S′ located at time t do

4: . . .
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Dynamic Programming Algorithm

The DP algorithm is based on the previous parsimony model.

Recall: six (combinations of) events can explain the presence of a gene edge
(up, u) inside an S′ branch (xp, x): {S,D,∅, SL,T,TL}

Remark

The complexity of existing parsimony algorithms is hampered by the cost of
examining possible transfers between branches of S′

Idea 1

In our model, two TL cannot happen in a row in a same time slice (Prop. 1).
Hence, for a pair

`
(up, u), (xp, x)

´
we can examine the TL senario, after all 5

others have been examined.

This is good, as predicting a TL event doesn’t make the DP progress in the
examination of G nodes, but then you’re guaranteed to make progress in t .

Then we can examine TL events separately from the others (afterwards)
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Dynamic Programming Algorithm

First (regular) version of the DP algorithm:

1: for all edge (up, u) of G following a bottom-up traversal do
2: for all time t of S′ in backward time order do

3: for all branch (xp, x) of S′ located at time t do
4: for all E ∈ {S,D,∅, SL} do
5: Compute CostE(u, x)

6: for all branch (yp, y) 6= (xp, x) of S′ located at time t do
7: CostT(u, x)← min {Cost(u1, x) + Cost(u2, y) + τ ,
8: Cost(u2, x) + Cost(u1, y) + τ ,
9: CostT(u, x) for previous (yp, y) tubes }

10: Cost5(u, x)← minE{CostE(u, x)} for E ∈ {S,D,∅, SL,T}

11: for all branch (xp, x) of S′ located at time t do
12: for all branch (yp, y) 6= (xp, x) of S′ located at time t do
13: CostTL(u, x)← min { Cost5(u, y) + τ + λ,
14: CostTL(u, x) for previous (yp, y) tubes }

Cost(u, x)← min{CostTL(u, x),Cost5(x , u)}
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Dynamic Programming Algorithm

• The first idea allows the DP algorithm to avoid considering combinations
of transfers in a row (i.e. combinations of 3 concomitant branches of G
[GORBUNOV ET AL 09]

• Hence basically to win an O(|S′|) factor.

Now

t

Idea 2

When trying to place (up, u) inside tube (xp, x) while involving a transfer (T or
TL), we have to examine all potential landing places (yp, y) at time t in S′.

However, the best landing place is independent of the donor branch (xp, x)
´
.

Hence we can factorize the computation of the best receiver.
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Dynamic Programming Algorithm

1: for all edge (up, u) of G following a bottom-up traversal do
2: for all time t of S′ in backward time order do
3: Compute the (two) best receiver(s) y∗ for (u, u1) and (u, u2) at time t
4: for all branch (xp, x) of S′ located at time t do
5: Compute E ∈ {S,D,∅, SL} that minimizes CostE(u, x)
6: Cost5(u, x)← min{CostE(u, x),Cost(ui , y∗) + Cost(uj , x) + τ}

7: Compute the (two) best receiver(s), y∗ at time t in term of Cost5(u, y∗)

8: for all branch (xp, x) of S′ located at time t do
9: Cost(u, x)← min{Cost5(u, x),Cost5(u, y∗) + τ + λ}

10: return Cost(r(G), r(S))

Theorem

1. Cost(r(G), r(S)) is the cost of a Most Parsimonious Reconciliation

2. The algorithm runs in Θ(|G| · |S′|)
3. Same optimization applies to ML version of the DP algorithm [SZÖLLÖZI

ET AL IN PREP.]
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Simulations

Species tree generation (software from A. Rambaut):

Simulation of genomic evolutionary events (DTLS) with rates typical of
Archaea [CSÜROS & MIKLÖS 09]
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Datasets

Details of the simulation process:
• 10 species trees on 100 species (standard birth and death process, with

b/d ratio = 1.25), subsequently made ultrametric (dates).

• DTL events generated according to a Poisson process running from the
root to the tips, with loss rate rλ, transfer rate rτ and duplication rate rδ
applied to extant species at time t (obtained gene trees have between 59
and 93 leaves).

First dataset – ds1

Designed to simulate a relatively large time scale, comparable to an archaean
or bacterial phylum:
• fixed loss rate rλ = 0.7
• fixed tree height h = 1
• 11 values for rτ and rδ varying in [0.01, 0.35]
• 5 gene trees per species tree in each of these 11× 11 conditions,

leading to 6,050 gene trees.
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Datasets

Second dataset – ds2

Designed to investigate the behavior of parsimony on different phylogenetic
scales:
• four different tree heights h ∈ [0.2, 0.4, 0.8, 1.6]

• fixed ratio rλ/(rδ + rτ + rλ) = 0.7 [CSUROS AND MIKLOS]

• varying the relative importance of transfers vs duplications: 11 values for
rτ ∈ [0, 0.3] each time choosing rδ = 0.3− rτ

• 20 gene trees per species tree in each of these 4× 11 conditions,
leading to 8,800 gene trees.

Running the method:
• Crude costs are given to the DP for each macro event E: 1/rE

• only one (arbitrary) MPR solution is considered
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Measures

• Running time: between 1.09s and 1.38s depending on D and T rates.

• Relative ”over cost” of the real scenario αR compared to the MP one αP :
due to homoplasy, parsimony can propose less events than really
occurred.

• Accuracy – Type I and II errors – of αP

• we account for the correct tagging of G nodes

• as well as for the branches of S involved in the events
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Efficiency of parsimony according to costs
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• Small for all D and T rates
• Increases with the height of the gene trees
• Parsimony might be considered as a credible criterion to estimate

reconciliations Great!
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Accuracy of parsimony to retrieve D events
ds1 ds2
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• Reasonnably few forgotten duplications (due to homoplasy and
non-unicity of the MPR?)

• *Very* few false positives Not bad!
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Accuracy of parsimony to retrieve T events

ds1 ds2

(a) (b)

(c) (d)

 0.05  0.15
 0.25

 0.35
 0.05

 0.15
 0.25

 0.35

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

FN
T

T
D

 0.05  0.15  0.25  0.35
 0.05

 0.15
 0.25

 0.35

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

FP
T

TD  0.05  0.1  0.15  0.2  0.25 0.3
 0.2

 0.4
 0.8

 1.6

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

T
H

T
FN

T
FP

 0.05  0.1  0.15  0.2  0.25  0.3
 0.2

 0.4
 0.8

 1.6

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

TH

Large number of D leads to non-trivial errors in T prediction
(from previous picture, some D events taken for T events) Huh huh... :(
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Accuracy of parsimony to retrieve T events
A variant: looking only at the tagging of nodes in G, i.e. independently of the
branches of S concerned. This is relevant for orthology prediction, with
various applications such as function prediction.
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Less dark picture, but still not satisfactory.
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Running times

Comparison with an implementation of [Gorbunov et al 09] algorithm

nb of leaves in G
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Relationship between the MP and ML criteria

cost of MP reconciliation
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Further analyses required

To sum up:
• DP is much faster than previous implementations we had (from dozens

minutes to less than 2 sec) [GORBUNOV ET AL 09]

• Computed parsimony cost fits nicely with real cost.

• Few duplications not recovered and almost no incorrect duplication
predicted

• Transfers less correctly predicted on average (≈ 20− 30% errors)

• How do the error levels vary depending on the parts of S where events
occur? (ancient vs recent events).

• Why are D events better prediced than T events?
• Importance of the non-unicity of the MPR (not yet accounted for)?

• Are relative costs for macro-events given to the DP too crude?

• Mathematically more stringent definition of T (3 vs 2 coordintated to
determine the event)?

• Homoplasy: combinations of D + L interpreted as T events?
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SylvX - a GUI to deal with reconciliations
We’re currently designing a reconciliation viewer/editor allowing:
• Automatic computation and manual modifications of reconciliations
• Various graphical operators & analyses: re-rooting, zooming, filtering

events
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SylvX - a GUI to deal with reconciliations

We’re currently designing a reconciliation viewer/editor allowing:
• Reusable interface to plug other reconciliation methods (ML, ...)
• Graphical computer-aided comparison of reconciliations (same G and S,

varying G, varying S).
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What next?

• Enumerating and counting the parsimonious reconciliations (dig for
common events among MPRs)

• Deeper look at links btw MPR and ML reconciliations [DOYON ET AL 09]

• Estimating the rates of events
• examining published results for different groups of species.

This will allow us to propose reconciliations of real gene trees (can already
be done this for Archaea).

• designing a method to estimate these rates from the data

• Allowing for polytomous G and S (as in Notung) [VERNOT ET AL 08]

• Using synteny information: to detect segmental events + account for
local methodological problems in gene trees

• Mixing DTLS with other reasons for incongruence btw G and S

• Consider other macro-events explicitely: gene conversion, deep
coalescence, . . .
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