
From Constrained to Unconstrained Maximum

Agreement Subtree in Linear Time∗

V. Berry
†

Z.S. Peng
‡

H.F. Ting
‡

Abstract

We propose and study the Maximum Constrained Agreement Sub-

tree (MCAST) problem, which is a variant of the classical Maximum

Agreement Subtree (MAST) problem. Our problem allows users to ap-

ply their domain knowledge to control the construction of the agreement

subtrees in order to get better results. We show that the MCAST prob-

lem can be reduced to the MAST problem in linear time and thus we

have algorithms for MCAST with running times matching the fastest

known algorithms for MAST.

Key Words. Maximum Agreement Subtrees, Constrained Maximum

Agreement Subtrees, Consensus, Reduction, Bioinformatics, Evolution-

ary trees.

1 Introduction

Evolutionary trees, which are rooted trees with their leaves labeled by some

unique species, are commonly used to capture the evolutionary relationship

of the species in nature. Different biological theories capture different kinds

of evolutionary relationships and induce different evolutionary trees. To find

out how much these theories are in common, we compare the corresponding

evolutionary trees and find some consensus of these trees.

∗A preliminary version of this paper will appear in the Proceedings of the Fifth Workshop

on Algorithms in Bioinformatics (WABI 2005).
†Departement Informatique, L.I.R.M.M., Université de Montpellier II - C.N.R.S.,

vberry@lirmm.fr.
‡Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong

Kong, {zspeng,hfting}@cs.hku.hk.

1

d

d

f

e

hf

f h

e

dj k b i

e

a

n g

f

h

c

m

k g j ib

hfenma

c

n

ma

ibk

Mast(S, T) Mcast(S, T, P)

S T P

Figure 1: Maximum agreement and maximum constrained agreement subtrees

One successful approach for finding consensus of different evolutionary trees

is to construct their maximum agreement subtree (MAST), which is the largest

evolutionary tree that is a topology subtree of all the given trees. There are

many algorithms proposed for constructing MAST; for example, [5, 6, 8, 9, 11,

12, 16], or more recently, [1, 2, 4, 13].

A problem of these algorithms is that it does not allow users to apply

their biological knowledge to control the construction to get better results.

For example, the evolutionary relationship of many species is well understood.

Any evolutionary tree including these species should be consistent with this

commonly accepted relationship. With this additional constraint, MAST is

not a good measure for comparing evolutionary trees. Let us consider the trees

S and T in Figure 1. Note that the maximum agreement subtree of S and T

is large, and one would consider that the two trees are similar. However, the

two trees agree on almost nothing if we insist that the agreement subtree must

be consistent with the evolutionary relationship of e, f, h, which is given by

the tree P . In fact, if P is a correct relationship, then S and T infer different

evolutionary relationship for many other species. For example, for the species

a, S suggests that the least common ancestor of a and e is different from the

least common ancestor of a and f , while T suggests they are the same.

To allow users to enforce such predefined relationship in the agreement

subtree, we propose and study the maximum constrained agreement subtree

(MCAST) problem, which is defined as follows:

Let S and T be two evolutionary trees, and P be an agreement

2

subtree of S and T . Find the largest agreement subtree of S and T

that contains P as a subtree. We say that this agreement subtree

is the maximum constrained agreement subtree of S and T with

respect to P .

In [14], we gave an O(n log n) time recursive algorithm for this problem when

the input trees are binary. However, it is difficult to generalize the algorithm

for general trees. In this paper, we give a deeper analysis of the structure of

the constrained agreement subtrees and show that the MCAST problem can be

reduced to the Maximum Agreement Subtree (MAST) problem in linear time.

Note that this reduction is not surprising when P is empty or has only one leaf.

If P is the empty tree, our MCAST problem is just the MAST problem. If P

has only one leaf κ, the problem is equivalent to finding a largest agreement

subtree A of S and T that contains κ. By a simple trick, we can reduce the

problem to the MAST problem as follows. Let |S| and |T | be the number of

leaves in S and T , respectively. To find A, we simply replace the leaf κ in S

and T by some large tree X of size at least |S| + |T |. Then, any maximum

agreement subtree A′ of the enlarged trees must contain X. In other words,

the role of X is the same as the role of κ in S and T . By replacing X in A′ by

κ, we get A.

The major contribution of this paper is to show that we have this reduction

even for general P . We prove that given S, T and P , we can find in linear time

(i.e., O(|S| + |T |) time) subtrees S1, S2, . . . , Sm of S, T1, T2, . . . , Tm of T , and

P1, . . . , Pm of P such that to find a maximum constrained agreement subtree of

S and T with respect to P , it suffices to find maximum constrained agreement

subtrees of Si and Ti with respect to Pi for 1 ≤ i ≤ m. Furthermore, the

subtrees satisfy the following conditions:

• ∑

1≤i≤m |Si| ≤ 2|S| and
∑

1≤i≤m |Ti| ≤ 2|T |.

• Each Pi has only one leaf.

As mentioned above, finding a MCAST of Si and Ti with respect to the single

leaf tree Pi can be reduced to finding a MAST of two trees with size doubled.

Therefore, if φ(n) is the worst case running time of an algorithm for finding a

maximum agreement subtree of two trees with totally n leaves, then T (S, T, P),

the time complexity of finding a maximum constrained agreement subtree of S

3

MAST MCAST

Binary trees O(n log n) [3] O(n log n)

Trees with constant degree d O(
√

dn log n) [15] O(
√

dn log n)

General trees O(n1.5) [10] O(n1.5)

Table 1: Time complexity of MAST and MCAST

and T with respect to P , can be bounded as follows:

T (S, T, P) =
∑

1≤i≤m

T (Si, Ti, Pi) + O(|S|+ |T |)

≤
∑

1≤i≤m

φ(2(|Si| + |Ti|)) + O(|S| + |T |). (1)

We note that for all existing algorithms for MAST, their running times are

upper bounded by some convex functions φ(n), and by Jensen’s inequality [7],

we have

∑

1≤i≤m

φ(2(|Si| + |Ti|)) ≤ φ
(

∑

1≤i≤m

(2(|Si| + |Ti|)
)

≤ φ(4(|S| + |T |)). (2)

From (1) and (2), we conclude that the time complexity of solving an instance

of MCAST is no more than that of solving an instance of MAST with input

size four times of the original one. For a summary, Table 1 lists the running

time of the MCAST problem by our reduction using the fastest known MAST

algorithms for different kinds of trees.

Our paper is organized as follows. In Section 2, we give the necessary

definitions and notations for our discussion. We also prove some properties

on agreement subtrees that help simplify our analysis. In Section 3 and 4,

we analyze the structure of the agreement subtrees, and in Section 5, we give

formally our linear time reduction.

2 Preliminaries

A labeled tree S is a rooted tree with every leaf being labeled with a unique

species. In this paper, we use the label of the leaf as its name. Let L(S)

denote the set of leaves of S. For any two leaves a, b, let lcaS(a, b) denote the

4

least common ancestor of a, b in S. Given any subset H ⊆ L(S) of leaves, the

restricted subtree of S on H , denoted as S‖H , is the subtree of S whose nodes

include the set of leaves in H as well as the least common ancestors of any two

leaves in H , and whose edges preserve the ancestor-descendent relationship of

S. Intuitively, S‖H can be constructed as follows: Discard those leaves of S

not in H , as well as those internal nodes whose degrees eventually become one;

then contract every path whose intermediate nodes are each of degree two into

an edge. The following fact comes directly from the definition.

Fact 1. Suppose that H ⊆ L ⊆ L(S). Then, we have (i) for any two leaves

a, b ∈ H, lcaS‖H
(a, b) = lcaS‖L

(a, b), and (ii) (S‖L)‖H = S‖H .

Let T be another labeled tree. We say that S and T are leaf-label preserving

isomorphic if (i) they have the same set of leaves (i.e., L(S) = L(T)) and (ii)

there existsa bijection f from the nodes of S to the nodes of T such that for

any pair of leaves a, b of S, f(lcaS(a, b)) = lcaT (a, b). Note that for any leaf a,

f(a) = f(lcaS(a, a)) = lcaT (a, a) = a; f maps every leaf in S to the leaf in T

with the same label. We write S = T if the two trees are leaf-label preserving

isomorphic.

Observe that given any two trees S and T with the same set of leaves, we can

always define a mapping f such that for any pair of leaves a, b, f(lcaS(a, b)) =

lcaT (a, b). However, the necessary and sufficient condition for f being bijective,

and hence S = T , is that for any two pairs of leaves a, b and c, d (not necessarily

distinct), we have

lcaS(a, b) = lcaS(c, d) if and only if lcaT (a, b) = lcaT (c, d). (3)

The following lemma gives a somewhat simpler condition; it helps simplify our

analysis given in the rest of this paper.

Lemma 1. Following is a necessary and sufficient condition for S = T : for

any three leaves a, b, c, we have

lcaS(a, b) = lcaS(a, c) ⇐⇒ lcaT (a, b) = lcaT (a, c). (4)

Proof. It suffices to prove that (3) is equivalent to (4). Obviously, (3) implies

(4). To prove the other direction, suppose that (3) does not hold. In other

words, there are four leaves a, b, c, d such that in one tree, say S, we have

lcaS(a, b) = lcaS(c, d), but lcaT (a, b) 6= lcaT (c, d). Below, we identify three

leaves from a, b, c, d that violate (4).

5

In T , since lcaT (a, b) 6= lcaT (c, d), they cannot be descendent of each other

at the same time. Thus, one of them, say lcaT (a, b), is not a descendent of

lcaT (c, d), and this further implies either a or b, say a, is not a descendent of

lcaT (c, d). In other words, all of the ancestors of a are not lcaT (c, d), and it

follows that

lcaT (a, c) 6= lcaT (c, d) and lcaT (a, d) 6= lcaT (c, d). (5)

In S, since lcaS(a, b) = lcaS(c, d), a is a descendent of lcaS(c, d). Let w

be the least common ancestor of lcaS(a, c) and lcaS(a, d). Since lcaS(a, c)

and lcaS(a, d) are on the same path from a to the root, their least common

ancestor w must be equal to one of these to nodes, i.e., w = lcaS(a, c) or

w = lcaS(a, d). We observe that w = lcaS(c, d) because

• lcaS(c, d) is an ancestor of a, c, d in S and hence it is an ancestor of w,

and

• w is an ancestor of c and d in S, and hence is an ancestor of lcaS(c, d).

Therefore

lcaS(a, c) = lcaS(c, d) or lcaS(a, d) = lcaS(c, d). (6)

Taking (5) and(6) together, we conclude that (4) does not hold; the lemma

follows.

We say that a subset K ⊆ L(S)∩L(T) of leaves is an agreement leaf subset

of S and T if S‖K = T‖K ; the two restricted subtrees are called agreement

subtrees of S and T . Suppose that K is an agreement leaf subset of S and T .

A leaf subset L ⊆ L(S) ∩ L(T) is called a constrained agreement leaf subset of

S and T with respect to K if

(i) K ⊆ L and

(ii) L is an agreement leaf subset of S and T .

Note that given a constrained agreement leaf subset, we can find the corre-

sponding agreement subtree in linear time, and vice versa. The classical maxi-

mum agreement subtree problem asks to find the largest agreement leaf subset

of S and T . In this paper, we study the maximum constrained agreement sub-

tree, which asks for finding the maximum constrained agreement leaf subset

of S and T with respect to K. As shown in Figure 1, the output of the two

problems can be very different.

6

In the rest of the paper, we assume that K 6= ∅ and S‖K = T‖K . We

define Cast(S, T, K) to be the set of all constrained agreement leaf subsets of

S and T with respect to K, and define Mcast(S, T, K) ⊆ Cast(S, T, K) to be

the subset of those with maximum size. In the next two sections, we describe

some structural properties on S, T and K, which help us to design efficient

algorithms for solving the maximum constrained agreement subtree problem,

or equivalently, finding an element in Mcast(S, T, K). Our analysis depends on

an arbitrary, but fixed leaf κ in K. We consider two cases. In the following

section, we focus on the case when κ is a child of the root of both S and T ;

we call such leaf a shallow leaf. The existence of a shallow leaf in K greatly

simplifies our analysis. We handle the other case, that is when κ is not a

shallow leaf, in Section 4.

3 The case when κ is a shallow leaf

In this section, we show that the existence of a shallow leaf imposes some re-

strictions on the structure of a constrained agreement leaf subset. The following

lemma describes one such restriction. Recall that a rooted subtree of some tree

X is the whole subtree rooted at some child of X’s root.

Lemma 2. Suppose that L ∈ Cast(S, T, K). For any rooted subtrees S ′ of S

and T ′ of T , if S ′ and T ′ have a common leaf in L, i.e., L∩L(S ′)∩L(T ′) 6= ∅,
then L ∩ L(S ′) = L ∩ L(T ′).

Proof. It suffices to prove that for any leaves a, b ∈ L, a, b are in different

rooted subtrees of S if and only if a, b are in different rooted subtrees of T , or

equivalently, lcaS(a, b) is the root of S if and only if lcaT (a, b) is the root of

T .

From Fact 1, lcaS(a, b) = lcaS‖L(S)
(a, b) = lcaS‖L

(a, b), and lcaT (a, b) =

lcaT‖L(T)
(a, b) = lcaT‖L

(a, b). Since κ ∈ K ⊆ L, a, b ∈ L, and S‖L = T‖L, by

Lemma 1, lcaS‖L
(a, b) = lcaS‖L

(a, κ) ⇐⇒ lcaT‖L
(a, b) = lcaT‖L

(a, κ). The

lemma follows immediately because κ is a shallow leaf, and lcaS‖L
(a, κ) and

lcaT‖L
(a, κ) are the root of S and T , respectively.

Note that K ∈ Cast(S, T, K) and we can apply Lemma 2 to conclude that

for any rooted subtree S ′ of S, if S ′ have a leaf in K, then there is a rooted

subtree T ′ of T such that K ∩ L(S ′) = K ∩ L(T ′). Let S1, S2, . . . , Sm be

all the rooted subtrees of S that contain some leaf in K, and T1, T2, . . . , Tm

7

be the rooted subtrees of T where K ∩ L(Si) = K ∩ L(Ti). Suppose that

Sm and Tm are the subtrees that contain the single shallow leaf κ. Define

S0 to be the tree obtained by removing S1, S2, . . . , Sm−1 from S. Note that

only Sm remains in S0 and thus S0 has a single leaf in K, namely κ. The

other rooted subtrees of S0 are those of S which do not contain any leaf of K.

Define T0 similarly. It should be clear that K ∩ L(S0) = K ∩ L(T0) = {κ}.
We call 〈(S0, S1, . . . , Sm−1), (T0, T1, . . . , Tm−1)〉 the κ-decomposition of S and T

with respect to K. The following lemma shows that κ-decomposition imposes

another restriction on the structure on any constrained agreement leaf subset.

Lemma 3. Suppose that L ∈ Cast(S, T, K). Then, for 0 ≤ i ≤ m − 1,

Li = L ∩ L(Si) ∈ Cast(Si, Ti, K ∩ L(Si))

Proof. Since for each 1 ≤ i ≤ m − 1, K ∩ L(Si) = K ∩ L(Ti) 6= ∅ and

K ⊆ L, Si and Ti have a common leaf in L. By Lemma 2, we conclude

L ∩ L(Si) = L ∩ L(Ti). It follows that the remaining leaves of L in S and

T are the same; in other words, L ∩ L(S0) = L ∩ L(T0). Therefore, for each

0 ≤ i ≤ m − 1, Li = L ∩ L(Si) = L ∩ L(Ti). We use this fact to prove that

Si‖Li
= Ti‖Li

, and hence Li = L ∩ L(Si) ∈ Cast(Si, Ti, K ∩ L(Si)) as follows:

Consider any leaves a, b, c ∈ Li. We have

lcaSi‖Li
(a, b) = lcaSi‖Li

(a, c) ⇐⇒ lcaS‖Li
(a, b) = lcaS‖Li

(a, c)

(as Li ⊆ L(Si))

⇐⇒ lcaS‖L
(a, b) = lcaS‖L

(a, c) (as Li ⊆ L)

⇐⇒ lcaT‖L
(a, b) = lcaT‖L

(a, c)

(as S‖L = T‖L)

⇐⇒ lcaT‖Li
(a, b) = lcaT‖Li

(a, c)

⇐⇒ lcaTi‖Li
(a, b) = lcaTi‖Li

(a, c).

By Lemma 1, we conclude that Si‖Li
= Ti‖Li

.

The following theorem shows that based on the κ-decomposition, we can

solve the MCAST problem by solving some smaller subproblems.

Theorem 4. For 0 ≤ i ≤ m − 1, let Hi ∈ Mcast(Si, Ti, K ∩ L(Si)). Then,

H =
⋃

0≤i≤m−1 Hi is in Mcast(S, T, K).

8

Proof. Note that K =
⋃

0≤i≤m−1(K ∩ L(Si)) ⊆ ⋃

0≤i≤m−1 Hi = H . Below, we

prove that S‖H = T‖H and hence H ∈ Cast(S, T, K). By Lemma 1, it suffices

to prove that for any three leaves a, b, c ∈ H , we have

lcaS‖H
(a, b) = lcaS‖H

(a, c) ⇐⇒ lcaT‖H
(a, b) = lcaT‖H

(a, c). (7)

Note that if a, b, c are all in the same leaf set Hi, then

lcaS‖H
(a, b) = lcaS‖H

(a, c) ⇐⇒ lcaS‖Hi
(a, b) = lcaS‖Hi

(a, c)

⇐⇒ lcaT‖Hi
(a, b) = lcaT‖Hi

(a, c) ⇐⇒ lcaT‖H
(a, b) = lcaT‖H

(a, c),

and we have (7). Suppose that a, b, c are not in the same leaf set. Either a, b

or a, c are in different sets. Assume that a and c are in different sets Hi and

Hj. Then, lcaS‖H
(a, c) and lcaT‖H

(a, c) are the root of S and T , respectively.

Therefore, to prove (7), it suffices to prove that

lcaS‖H
(a, b) is the root of S ⇐⇒ lcaT‖H

(a, b) is the root of T. (8)

Note that if a, b are in different leaf sets, lcaS‖H
(a, b) and lcaT‖H

(a, b) are the

roots of S and T , respectively. If a, b are in the same set Hi where i 6= 0, a, b

are within the rooted subtrees Si in S and subtree Ti in T ; hence, lcaS‖H
(a, b)

and lcaT‖H
(a, b) are not the root of S and T . For the case when a, b ∈ H0,

recall that κ ∈ K ∩L(S0) ⊆ H0 and S0‖H0 = T0‖H0. Thus, for the three leaves

a, b, κ ∈ H0, we have

lcaS0‖H0
(a, b) = lcaS0‖H0

(a, κ) ⇐⇒ lcaT0‖H0
(a, b) = lcaT0‖H0

(a, κ). (9)

Note that (9) is equivalent to (8) because (i) lcaS0‖H0
(a, b)=lcaS‖H0

(a, b)=

lcaS‖H
(a, b), lcaT0‖H0

(a, b)=lcaT‖H0
(a, b)=lcaT‖H

(a, b), and (ii) lcaS0‖H0
(a, κ)

and lcaT0‖H0
(a, κ) are the root of S and T , respectively. Hence, in all pos-

sible cases, we have (8), and hence (7). Therefore S‖H = T‖H and H ∈
Cast(S, T, K).

To see that H ∈ Mcast(S, T, K), i.e., H is a largest element in Cast(S, T, K),

let us consider any L ∈ Cast(S, T, K). Lemma 3 asserts that for 0 ≤ i ≤ m−1,

Li = L ∩ L(Si) ∈ Cast(Si, Ti, K ∩ L(Si)). Since Hi ∈ Mcast(Si, Ti, K ∩ L(Si),

we have |Li| ≤ |Hi|. Then, |L| =
∑

0≤i≤m−1 |Li| ≤
∑

0≤i≤m−1 |Hi| = |H|.

4 The case when κ is not a shallow leaf

In this section, we analyze the structure of the maximum agreement leaf subsets

of S and T with respect to K under the assumption that κ is not a shallow

leaf.

9

Consider the unique path from the root of S to κ. We call the nodes on

this path κ-nodes of S. Given any two different κ-nodes u, u′, we say that u

is higher than u′, denoted as u � u′, if u is nearer the root. We say u � u′ if

either u = u′ or u � u′. Note that κ itself is the lowest κ-node in S. For any

leaf a of S, define the κ-parent of a, denoted as κS(a), to be the least ancestor

of a that is κ-node. Let Lκ(u) = {a | κS(a) = u} be the set of leaves whose

κ-parents are u. Note that Lκ(κ) = {κ}, and for other u, Lκ(u) includes all

the leaf descendents of u except those that are in the subtree rooted at the

unique κ-node child of u. For any set I of κ-nodes, define Lκ(I) =
⋃

u∈I Lκ(u).

For any κ-node u, we say that u is precious if Lκ(u) has at least one leaf in

K, i.e., K ∩ Lκ(u) 6= ∅. Otherwise, we say that u is ordinary. We have similar

definitions for T .

Lemma 5. Suppose that L ∈ Cast(S, T, K). For any two leaves a, b ∈ L, we

have (i) κS(a) � κS(b) ⇐⇒ κT (a) � κT (b), and (ii) κS(a) 6= κS(b) ⇐⇒
κT (a) 6= κT (b).

Proof. To prove (i), suppose that κS(a) � κS(b). Since κ ∈ L and S‖L = T‖L,

the three leaves in L are related as follows:

lcaS‖L
(a, b) = lcaS‖L

(a, κ) ⇐⇒ lcaT‖L
(a, b) = lcaT‖L

(a, κ). (10)

Note that among the ancestors of b that are on the path from b to κS(a), there

is only one node, namely κS(a) that is an ancestor of a; hence lcaS‖L
(a, b) =

κS(a) = lcaS‖L
(a, κ) (because κ is the lowest κ-node and all κ-nodes are its

ancestors). Together with (10), lcaT‖L
(a, b) = lcaT‖L

(a, κ) = κT (a), or equiv-

alently, we have κT (a) � κT (b). The other direction of (i) can be proved

symmetrically.

Note that (ii) follows from (i) directly.

Let u1 � u2 � · · · � um be the sequence of precious κ-nodes on S. We define

the κ-decomposition of S to be the sequence of sets (I1, I2, . . . , I2m) where

• I2` is a singleton containing the `th precious κ-node u`,

• I1 contains all the κ-nodes higher than u1, and

• for 2 ≤ ` ≤ m, I2`−1 contains those κ-nodes between u`−1 and u`.

See Figure 2 for an example. Note that I2m = {κ} and the κ-decomposition

covers all the κ-nodes. We define the κ-decomposition (J1, J2, . . . , J2n) for T

similarly.

10

I1

I2

I3

I4

I5

u1

u2

κ

I6

Figure 2: The κ-decomposition of S

Recall that we assume S‖K = T‖K and hence Cast(S, T, K) is not empty.

In the rest of the section, we study the structure of any L ∈ Cast(S, T, K)

according the κ-decompositions (I1, I2, . . . , I2m) and (J1, J2, . . . , J2n) of S and

T , respectively. The following lemma shows that the two lists have the same

length, i.e., m = n, and there is a one-one correspondence between the sets in

the lists.

Lemma 6. Given any L ∈ Cast(S, T, K), L∩Lκ(I`) = L∩Lκ(J`) for 1 ≤ ` ≤
2m. Furthermore, m = n.

Proof. We claim that for every 1 ≤ ` ≤ min{m, n}, a leaf a ∈ L is in Lκ(I`) if

and only if a is in Lκ(J`). This implies L ∩ Lκ(I`) = L ∩ Lκ(J`) for 1 ≤ ` ≤
min{m, n}. Together with the fact that Lκ(I2m) = Lκ(J2n) = {κ}, we conclude

m = n and the lemma follows.

We prove our claim by induction. Note that by symmetry, we only need to

prove that if a leaf a ∈ L is in Lκ(I`), then a is in Lκ(J`). For the base case,

suppose to the contrary that L has a leaf a in Lκ(I1) but not in Lκ(J1). Recall

that J2 has only one element, which is a precious κ-node v. It follows that

Lκ(J2) has a leaf b ∈ K ⊆ L, and κT (b) = v � κT (a) (because a 6∈ Lκ(J1)). On

the other hand, by definition, Lκ(I1) contains no leaf in K and thus b 6∈ Lκ(I1)

and κS(a) � κS(b). Note that the κ-parent of the two leaves a, b ∈ L have

different relationships in S and T . By Lemma 5, S‖L 6= T‖L, a contradiction.

Thus, the claim is true for ` = 1.

Suppose that the claim is true for 1, 2, . . . , `− 1 and we consider `. Assume

that L has a leaf a in Lκ(I`) but not in Lκ(J`). Note that if ` is odd, the

assumption will lead us to the contradictory conclusion that S‖L 6= T‖L as in

the base case ` = 1. Suppose that ` is even. Then, J` has a single precious κ-

node v, and there is a leaf b ∈ K ⊆ L that is in Lκ(J`). Together with induction

11

hypothesis that L∩Lκ(Ik) = L∩L(Jk) for 1 ≤ k ≤ `− 1, we conclude that (i)

a ∈ Lκ(I`) and a ∈ Lκ(Jp) for some p > `, and (ii) b ∈ Lκ(J`) and b ∈ Lκ(Iq)

for some q ≥ `. Therefore, κS(a) � κS(b) and κT (b) � κT (a), and by Lemma 5,

S‖L 6= T‖L, a contradiction. Thus the claim is also true for `.

Corollary 7. Suppose that L ∈ Cast(S, T, K). For any two leaves a, b ∈ L, if

a ∈ Lκ(Ip) and b ∈ Lκ(Iq) where p < q then

(i) κS(a) � κS(b) and lcaS(a, b) = κS(a), and

(ii) κT (a) � κT (b) and lcaT (a, b) = κT (a).

Proof. (i) follows directly from definition. From Lemma 6, we have L∩Lκ(Ip) =

L ∩ Lκ(Jp) and L ∩ Lκ(Iq) = L ∩ Lκ(Jq). Hence, a ∈ Lκ(Jp) and b ∈ Lκ(Jq)

and we have (ii).

Below, we give some structure properties that are similar to those given

in Lemma 3 and Theorem 4. First, we need to extend the leaf sets of the

κ-decomposition as follows: for 1 ≤ ` ≤ 2m, let L̄κ(I`) = Lκ(I`) ∪ {κ} and

L̄κ(J`) = Lκ(J`) ∪ {κ}. Note that K ∈ Cast(S, T, K) and by Lemma 6, we

have K∩Lκ(I`) = K∩Lκ(J`), and hence K∩L̄κ(I`) = K∩L̄κ(J`) for 1≤`≤ 2m.

It follows that Cast(S‖L̄κ(I`), T‖L̄κ(J`), K ∩ L̄κ(I`)) is not empty.

Lemma 8. Suppose that L ∈ Cast(S, T, K). For 1 ≤ ` ≤ 2m, the set L` =

L ∩ L̄κ(I`) is in Cast(S‖L̄κ(I`), T‖L̄κ(J`), K ∩ L̄κ(I`)).

Proof. Obviously K ∩ L̄κ(I`) ⊆ L`. Below, we show that (S‖L̄κ(I`))‖L`
=

(T‖L̄κ(J`))‖L`
and the lemma follows.

By Lemma 6, we have L ∩ Lκ(I`) = L ∩ Lκ(J`) and hence L ∩ L̄κ(I`) =

L ∩ L̄κ(J`). Therefore, L` = L ∩ L̄κ(I`) = L ∩ L̄κ(J`) and (S‖L̄κ(I`))‖L`
= S‖L`

and (T‖L̄κ(J`))‖L`
= T‖L`

. As in the proof of Lemma 3, we have, for any three

leaves a, b, c ∈ L`,

lca(S‖
L̄κ(I`)

)‖L`
(a, b) = lca(S‖

L̄κ(I`)
)‖L`

(a, c) ⇐⇒ lcaS‖L`
(a, b) = lcaS‖L`

(a, c)

⇐⇒ lcaS‖L
(a, b) = lcaS‖L

(a, c) ⇐⇒ lcaT‖L
(a, b) = lcaT‖L

(a, c) ⇐⇒
lcaT‖L`

(a, b) = lcaT‖L`
(a, c) ⇐⇒ lca(T‖

L̄κ(J`)
)‖L`

(a, b) = lca(T‖
L̄κ(J`

)‖L`
(a, c),

and by Lemma 1, (S‖L̄κ(I`))‖L`
= (T‖L̄κ(J`))‖L`

.

The next theorem is similar to Theorem 4; it suggests a divide-and-conquer

approach to find the maximum agreement leaf subset.

12

Theorem 9. For 1 ≤ ` ≤ 2m, let H` ∈ Mcast(S‖L̄κ(I`), T‖L̄κ(J`), K ∩ L̄κ(I`)).

Then, H =
⋃

1≤`≤2m H` is in Mcast(S, T, K).

Proof. Note that K =
⋃

1≤`≤2m K∩L̄κ(I`) ⊆
⋃

1≤`≤2m H` = H. Below, we show

that S‖H = T‖H , and hence H ∈ Cast(S, T, K). By Lemma 1, it suffices to

prove that for any three leaves a, b, c ∈ H , we have

lcaS‖H
(a, b) = lcaS‖H

(a, c) ⇐⇒ lcaT‖H
(a, b) = lcaT‖H

(a, c) (11)

Note that if a, b, c are all in the same leaf set H`, then,

lcaS‖H
(a, b) = lcaS‖H

(a, c) ⇐⇒ lcaS‖H`
(a, b) = lcaS‖H`

(a, c)

⇐⇒ lcaT‖H`
(a, b) = lcaT‖H`

(a, c) ⇐⇒ lcaT‖H
(a, b) = lcaT‖H

(a, c),

and we have (11). Suppose that a, b, c are not in the same leaf set. Then, either

a, b or a, c, say a, b are in different leaf sets. Suppose a ∈ Hp and b ∈ Hq. Note

that κ is in all the leaf sets because κ ∈ K∩L̄κ(I`) ⊆ H` for 1 ≤ ` ≤ 2m; hence

a and b cannot be κ. We consider two cases.

Case 1: p < q. Since a ∈ Hp ⊆ L̄κ(Ip), b ∈ Hq ⊆ L̄κ(Iq) and a, b are not κ,

we conclude that a ∈ Lκ(Ip) and b ∈ Lκ(Iq). Together with p < q, we have

lcaS‖H
(a, b) = κS(a) and lcaT‖H

(a, b) = κT (a) (Corollary 7). To prove (11), it

suffices to show that

lcaS‖H
(a, c) = κS(a) ⇐⇒ lcaT‖H

(a, c) = κT (a). (12)

Suppose that a, c are in the same leaf set, i.e., a, c ∈ Hp. Since κ ∈ Hp and

S‖Hp
= T‖Hp

, the three leaves a, c, κ are related by lcaS‖Hp
(a, c)=lcaS‖Hp

(a, κ)

=κS(a) ⇐⇒ lcaT‖Hp
(a, c) =lcaT‖Hp

(a, κ)=κT (a). Then, we have (12) because

lcaS‖H
(a, c) = lcaS‖Hp

(a, c) and lcaT‖H
(a, c) = lcaT‖Hp

(a, c).

Suppose that a, c are in the different leaf sets and let c ∈ Hg ⊆ L̄κ(Ig).

Again, c cannot be κ and thus c ∈ Lκ(Ig). From Corollary 7, if g > p, then

lcaS‖H
(a, c) = κS(a) and lcaT‖H

(a, c) = κT (a); and if g < p, then lcaS‖H
(a, c)

= κS(c) 6= κS(a) and lcaT‖H
(a, c) = κT (c) 6= κT (a). Therefore, regardless of

where c is, we have (12), and hence (11).

Case 2: p > q. Similar to Case 1, we have lcaS‖H
(a, b)=κS(b) and lcaT‖H

(a, b)

=κT (b). To prove (11), it suffices to prove that

lcaS‖H
(a, c) = κS(b) ⇐⇒ lcaT‖H

(a, c) = κT (b). (13)

13

Suppose c 6∈ Hq. Then neither a nor c are in Lκ(Iq) and thus their least

common ancestor in S and T are not in Iq and Jq, respectively. Since b ∈ Lκ(Iq),

κS(b) and κT (b) are in Iq and Jq respectively. Hence, lcaS‖H
(a, c) 6= κS(b) and

lcaT‖H
(a, c) 6= κT (b) and we have (13).

Suppose c ∈ Hq. Since b, c, κ ∈ Hq and S‖Hq
= T‖Hq

, the three leaves are

related by lcaS‖H
(c, κ) = lcaS‖H

(b, κ) ⇐⇒ lcaT‖H
(c, κ) = lcaT‖H

(b, κ), or

equivalently,

κS(c) = κS(b) ⇐⇒ κT (c) = κT (b). (14)

Since p > q, we have lcaS‖H
(a, c) = κS(c) and lcaT‖H

(a, c) = κT (c). Together

with (14), we have (13) and hence (11).

In both cases, we have (11) and hence S‖H = T‖H and H ∈ Cast(S, T, K).

Together with Lemma 8, we can prove easily that H ∈ Mcast(S, T, K) as in

the proof of Theorem 4.

5 The Reduction

In this section, we describe an O(n)-time reduction for finding a maximum

constrained agreement subtree of S and T with respect to K where n = |S|+|T |.
To efficiently apply the decomposition theorems shown in the previous sections,

the subtrees of internal nodes have to be ordered in the same way in S and T ,

that is sorted according to some common measure. Without loss of generality,

we assume that the set of leaves are totally ordered. For every internal node

u, define cl(u), the classifying leaf of u, to be the smallest leaf descendent of

u that is in K; if u has no such leaf, the classifying leaf of u is defined to be

−∞. For simplicity, we let cl(`) = ` for every leaf ` ∈ K. Let C(u) be the set

of classifying leaves of the children of u.

Lemma 10. The sets C(u) of classifying leaves can be obtained sorted for every

internal node u of S and T in O(n) total time.

Proof. We consider this computation in the tree S, the case of T is done sim-

ilarly. By performing a depth first search on S, we can decide in O(|S|) time

the classifying leaf cl(u) of every node u. Then, we associate with every node

u ∈ S a list L(u), which is empty initially, and will be equal to the sorted list

of C(u) eventually.

To fill up these lists correctly and efficiently, we pick the leaves ` ∈ L(S)

one by one, from the smallest to the largest, every time appending ` to the

14

correct L(u)’s. Observe that ` can only be in those lists L(u) where u is along

the path from ` to the root and for any node u along this path, ` ∈ C(u) if and

only if ` is the classifying leaf of some child of u. Hence, we “push” ` along

this path as follows: Starting from the node v equal to the leaf `,

• If ` = cl(v), then push ` upward to its parent u and append ` at the end

of L(u).

• If ` 6= cl(v), then stop pushing `. (Note that in this case, ` /∈ C(u) for

the ancestor nodes u of v.)

Note that for every node u ∈ S, L(u) will eventually include all elements in

C(u), and they will be in order because a smaller leaf will always be inserted

before a larger leaf. To see that the whole process takes linear time, observe

that for every edge (u, v) of S where u is a parent of v, only the leaf cl(v) can

be pushed along (u, v).

Below, we explain how to use these sorted C(u)’s and apply the results of

the previous sections to find MCAST of S and T with respect to K.

We pick arbitrarily a leaf κ in K.

• If κ is a shallow leaf, then by Theorem 4, we can reduce the problem of

Mcast(S, T, K) to the subproblems Mcast(S0, T0, K ∩L(S0)), . . . , Mcast(

Sm−1, Tm−1, K ∩L(Tm−1). Note that by comparing the sorted C(rS) and

C(rT) of the roots rS and rT , we can identify the Si’s and Ti’s.

• If κ is not a shallow leaf, then by Theorem 9, we can reduce the problem

to the subproblems Mcast(S‖Lκ
′(I`), T‖Lκ

′(J`), K ∩Lκ
′(I`)) (1 ≤ ` ≤ 2m).

Note that by comparing the sorted C(u) of those nodes along the paths

from κ to the root of S and T , we can identify the S‖Lκ
′(I`) and T‖Lκ

′(J`)

for 1 ≤ ` ≤ 2m.

Observe that any two of the above subproblems share only one leaf, namely

κ. For those subproblems with more than one leaf in K, we can recursively

apply Theorems 4 and 9 to further divide them until we come up with only

subproblems with only one leaf in K. It should be clear that the whole process

takes O(n) time. Together with the O(n) time needed for sorting the C(u)’s,

we can reduce the MCAST problem to the MAST problem in O(n) time. Then,

we have the following theorem.

15

Theorem 11. Consider any labeled trees S, T and K. Suppose that S‖K =

T‖K. Let n be the total number of leaves of S and T . Then, using O(n) time,

we can find subtrees S1, S2, . . . , Sm of S, T1, T2, . . . , Tm of T such that

1. given any Hi∈Mcast(Si, Ti, K∩L(Si)) for 1≤i≤ m, we have
(
⋃

1≤i≤m Hi

)

∈
Mcast(S, T, K);

2. Pi = K ∩ L(Si) has only one leaf; and

3. all the Si’s, as well as all the Ti’s, have at most one leaf in common and

hence
∑

1≤i≤m |Si| ≤ 2|S| and
∑

1≤i≤m |Ti| ≤ 2|T |.

References

[1] K. Amenta and F. Clarke. A linear-time majority tree algorithm. In

Proceedings of the 3rd International Workshop on Algorithms in Bioinfor-

matics, pages 216–227, 2003.

[2] T.Y. Berger-Wolf. Online consensus and agreement of phylogenetic trees.

In Proceedings of the 4th International Workshop on Algorithms in Bioin-

formatics, pages 350–361, 2004.

[3] R. Cole, M. Farach, R. Hariharan, T. Przytycka, and M. Thorup. An

O(n logn) algorithm for the maximum agreement subtree problem for bi-

nary trees. SIAM Journal on Computing, 30(5):1385–1404, 2000.

[4] S. Dong and E. Kraemer. Calculation, visualization and manipulation

of MASTs (maximum agreement subtrees). In Proceedings of the IEEE

Computational Systems Bioinformatics Conference, pages 1–10, 2004.

[5] M. Farach and M. Thorup. Optimal evolutionary tree comparison by

sparse dynamic programming. In Proceedings of the 35th Annual IEEE

Symposium on Foundations of Computer Science, pages 770–779, 1994.

[6] M. Farach and M. Thorup. Fast comparison of evolutionary trees. In

Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algo-

rithms, pages 481–488, 1995.

[7] G.H. Hardy, J.E. Littlewood, and G. Pólya. Inequalities. Cambridge, 1952.

16

[8] M.Y. Kao. Tree contractions and evolutionary trees. SIAM Journal on

Computing, 27:1592–1616, 1998.

[9] M.Y. Kao, T.W. Lam, W.K. Sung, and H.F. Ting. A decomposition

theorem for maximum weight bipartite matchings with applications in

evolution trees. In Proceedings of the 7th Annual European Symposium on

Algorithms, pages 438–449, 1999.

[10] M.Y. Kao, T.W. Lam, W.K. Sung, and H.F. Ting. An even faster and more

unifying algorithm comparing trees via unbalanced bipartite matchings.

Journal of Algorithms, 20(2):212–233, 2001.

[11] D. Keselman and A. Amir. Maximum agreement subtree in a set of evo-

lutionary trees– metrics and efficient algorithms. In Proceedings of 35th

Annual Symposium on the Foundations of Computer Sciences, pages 758–

769, 1994.

[12] E. Kubicka, G. Kubicki, and F. McMorris. An algorithm to find agreement

subtrees. Journal of Classification, 12:91–99, 1995.

[13] A. Messmark, J. Jansson, A. Lingas, and E. Lundell. Polynomial-time

algorithms for the ordered maximum agreement subtree problem. In Pro-

ceedings of the 15th Annual Symposium on Combinatorial Pattern Match-

ing, pages 220–229, 2004.

[14] Z.S. Peng and H.F. Ting. An O(n log n)-time algorithm for the maximum

constrained agreement subtree problem for binary trees. In Proceedings

of the 15th symposium on Algorithms and Computations, pages 754–765,

2004.

[15] T. Przytycka. Sparse dynamic programming for maximum agreement sub-

tree problem. In Mathematical Hierarchies and Biology, pages 249–264.

DIMACS series in Discrete Mathematics and Theoretical Computer Sci-

ence, 1997.

[16] M. Steel and T. Warnow. Kaikoura tree theorems: computing the max-

imum agreement subtree. Information Processing Letters, 48(2):77–82,

1994.

17

