
IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 1

Fixed-Parameter Tractability of the Maximum
Agreement Supertree Problem

Sylvain Guillemot and Vincent Berry

Abstract— Given a set L of labels and a collection of rooted
trees whose leaves are bijectively labelled by some elements
of L, the Maximum Agreement Supertree problem (SMAST) is
as follows: find a tree T on a largest label setL′ ⊆ L that
homeomorphically contains every input tree restricted toL′. The
problem has phylogenetic applications to infer supertreesand
perform tree congruence analyses.

In this paper, we focus on the parameterized complexity of
this NP-hard problem, considering different combinations of
parameters as well as particular cases. We show that SMAST
on k rooted binary trees on a label set of sizen can be solved
in O((8n)k) time, which is an improvement with respect to the
previously known O(n3k2

) time algorithm. In this case, we also
give anO((2k)pkn2) time algorithm, where p is an upper bound
on the number of leaves ofL missing in a SMAST solution. This
shows that SMAST can be solved efficiently when the input trees
are mostly congruent. Then for the particular case where any
triple of leaves is contained in at least one input tree, we give
O(4pn3) and O(3.12p + n4) time algorithms, obtaining the first
fixed-parameter tractable algorithms on a single parameterfor
this problem. We also obtain intractability results for several
combinations of parameters, thus indicating that it is unlikely
that fixed-parameter tractable algorithms can be found in these
particular cases.

Index Terms— Phylogenetics, maximum agreement supertree,
parameterized complexity, algorithms, reductions, rooted triples.

I. I NTRODUCTION

A. Motivation.

Supertree construction consists of building trees on a large
set of labels from smaller trees covering parts of the label
set. This task is applied in bioinformatics where trees represent
phylogenies, but also in other fields such as databases [1] and data
mining [2]. In phylogenetics, the tree nodes represent sequences
or organisms (taxa), and the labels are bijectively associated with
the leaves of the trees, representing current organisms, while
internal nodes represent hypothetical ancestors. Rooted trees are
usually described by their set ofclades: a clade is the set of labels
present under a same internal node. Clades represent related sets
of organisms such as species, orders, families, etc. The goal of
supertree methods is to infer a tree that complies as closelyas
possible with the topological information of the source trees. The
task is relatively easy when the input trees fully agree on the
relative positions of the labels. In this case, it is possible to find,
in polynomial time, a supertree that contains any input treeas
an induced subtree [1], hence fully respecting the topological
information present in the data. However, practical input trees
usually conflict with respect to the relative positioning ofsome
labels. These incompatibilities sometimes affect only twoinput

Manuscript submitted July 13, 2007
S. Guillemot and V. Berry are with the LIRMM, CNRS - University

Montpellier 2. Emails:{vberry,sguillem}@lirmm.fr

trees, but sometimes result from a combination of more source
trees which do not conflict when considered pairwise.

The most used supertree methods focus on clades, e.g., the
well-known Matrix Representation with Parsimony (MRP)
method [3], [4] and its variants. This is a problem whenever
the input trees contain some “rogue” taxa, i.e., labels whose
position greatly differs from one input tree to another. Such rogue
taxa can result from horizontal gene transfer (HGT) events [5],
a phenomenon that commonly arises in bacteria, plants, and to
a lesser extent among vertebrates. The presence of rogue taxa
can induce tremendous changes in the clade set of an input tree,
and hence have a non-negligible impact in the supertree obtained
by clade-based methods. The Maximum Agreement Supertree
(SMAST) method [6], [7], [8] has been specifically designed to
deal with rogue taxa: it infers a supertree from a set of source
trees by removing some labels, i.e., taxa, on the position ofwhich
the source trees disagree. More precisely, given a collection T of
rooted trees with labels taken in a common setL, an agreement
supertreefor T is a treeT on a subsetL′ ⊆ L such that each tree
of T restricted toL′ is included inT . The computational problem
called SMAST, or sometimes MASP [6], consists of finding an
agreement supertree containing the maximum number of labels
from L.

The SMAST method, an extension of the maximum agreement
subtree method (MAST), specifically allows the input trees to
have different, and usually overlapping, label sets. With this
flexibility, SMAST is well-adapted to replace MAST in several
practical applications where input trees have non-identical label
sets. The first such application is tree congruence analysis. Before
building a supertree for a set of source trees, it is essential to
certify that the source trees are not telling completely different
stories on the evolution of studied taxa: if a set of source
trees is not congruent enough, then no supertree can accurately
represent the set. This can be problematic when subsequent
analyses have to be conducted from the supertree, e.g., measuring
the influence of geographical or climate factors on speciation
events. Several studies have recently proposed proceduresto
assess the congruence of a set of source trees by randomization
tests performed on MAST scores obtained for these trees: the
source trees become more congruent as the number of leaves
contained in their maximum agreement subtree increases [9], [10],
[11]. The study of [9] focuses on the case where the considered
source trees have different label sets and no taxon is common
to all trees. They propose to divide the congruence analysisinto
MAST computations on pairs of trees. The obtained values are
then normalized and summarized by an average value, for which
a p-value is computed by similar MAST computations on random
trees. Here, replacing MAST with SMAST copes with the fact
that input trees have different label sets, and thus the congruence
analysis can be performed directly: the whole set of trees can be
considered at once, instead of resorting to separate analyses on

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2

pairs of trees. This is preferable to indirect analysis, since a same
average value of the separate MAST computations on tree pairs
can be induced by completely different situations: for instance,
a small average value can be obtained when:(i) the input trees
all roughly conflict on the same small label subset, where it is
possible to obtain a large supertree complying with the source
trees on all other labels plus on part of those involved in the
conflict; (ii) when each pair of source trees conflict on different
label subsets, where a supertree agreeing with all source trees can
only contain a small portion of the labels. In contrast, resorting
to SMAST instead of MAST can distinguish between these two
different situations in the congruence of the source trees,with the
SMAST value being large in case (i) and small in case (ii).

A second application where there can be some advantage
to replacing MAST with SMAST is HGT detection [12], [13].
[12] show that MAST computations on gene trees enables the
successful detection of HGT events. For each pair of trees, the
size (i.e., number of labels) of a MAST is computed for the two
trees restricted to their common labels. A gene tree is detected
to be affected by HGT events depending on the distribution of
MAST scores obtained for the pairs to which it belongs. However,
here a MAST cannot be computed for a vast majority of pairs
simply because the considered genes do not have enough labels
in common, which limits the confidence in the final conclusions
[12]. Replacing the MAST computations on pairs of gene trees by
SMAST computations on more than two trees would undoubtedly
increase the proportion of cases where there is enough overlap to
conduct the analysis.

B. Theoretical framework.

The current paper addresses questions of parameterized com-
plexity for the SMAST problem. The theory of parameterized
complexity [14], [15] was developed as a framework to study
computational problems which, in spite of beingNP-hard, can
be efficiently solved when a parameter of the problem is small.
This situation occurs in various applied domains such as database
querying and computational biology: (a) when answering a query
in a database, the size of the query is small with respect to that
of the database; (b) when dealing with with biological sequences,
the size of the alphabet is small, e.g., 4 in the case of DNA
sequences.

In both cases, algorithms with a time complexity that is
exponential only within the parameter are practical, with the
parameter being the query size in case (a) and the alphabet size
in case (b). A well-known example for case (b) is the perfect
phylogeny problem, related to character compatibility: given a
setS of n sequences ofm characters admittingk different states,
does a tree exist whose leaves are bijectively labeled byS and
internal nodes assigned to sequences of sizem such that for each
i ∈ [m] and each statea, the subset of sequences having statea

as ith character form a connected subgraph ofT . This problem
can be solved inO(23k(nm3 + m4)) [16].

Traditional computational complexity expresses time complex-
ity of algorithms in terms of the instance size alone, while pa-
rameterized complexity considers both the instance size (usually
denotedn) and a parameter (usually denotedk). Parameterized
complexity theory makes a distinction between: (i) a problem
solvable inO(2kn) time, (ii) a problem solvable inO(nk) time,
and (iii) a problem which isNP-hard for any value ofk larger than
some constant. In case (i), the corresponding algorithm remains

practical for largen values, provided thatk is small. In case (ii),
the algorithm is still practical for the smallestk values. In case
(iii), the problem is not easier for instances where the parameter
is small.

The central concept of fixed-parameter tractability has been
introduced to deal with case (i). A problem is said to be fixed
parameter tractable (fpt) if there is an algorithm that solves the
problem on an instance of sizen in time O(f(k)nc), wheref is
any function of the parameterk, andc is a constant independent of
k. In most cases,f has exponential growth. The above definition
naturally extends to problems involving a combination of several
parameters. In the last 10 years, a large number ofNP-hard
problems have been shown to be fpt for natural parameters,
particularly in the computational biology and graph theoryfields.

Tools are also available to distinguish problems that specifically
fall into case (ii) above. Parameterized complexity classes and
parameterized reduction enables one to show that a parameterized
problem is unlikely to be fpt. The ground complexity class
is that of fpt problems and is denoted hereFPT. The theory
defines several other complexity classes, which are conjectured to
properly contain theFPT class. Showing that a studied problem is
hard for one of these classes is done by a parameterized reduction
from an already classified problem, and rules out the possibility of
an fpt algorithm (under some complexity-theoretic assumption).
We refer the reader to [14], [15] for formal definitions of these
concepts.

C. Results.

We first detail known theoretical results for the SMAST prob-
lem. Complexities for this problem are mainly expressed in terms
of the total numbern of distinct labels appearing in the input trees,
and the numberk of input trees. This problem involves several
other natural parameters:d, the maximum outer degree (number
of children) of a node in an input tree (when considering rooted
input trees);l, an upper bound on the maximum size of the input
trees;p (resp.q), an upper (resp. lower) bound on the number
of input labels that are missing (resp. are present) in a SMAST

solution. The SMAST problem isNP-hard as it generalizes the
MAST problem [17]. It remainsNP-hard when the outer degree
d is unrestricted fork ≥ 3 input trees [6], and for trees with
d ≥ 2 when k is unrestricted [6], [7]. Whenk = 2, SMAST

can be solved in polynomial time by reduction to MAST [6], [7].
A sufficient condition for SMAST to be solved by resorting to
MAST algorithms is also given in [7]. For such cases, [7] provide
an algorithm for solving SMAST in time linear to that needed to
solve MAST. For the particular case whered = 2, [6] give an
O(n3k2

) time algorithm for SMAST.
Until now, the only parameterized complexity result related to

SMAST has been obtained for a decision version of the comple-
ment problem. The SMAST problem parameterized inp has been
shown to beW[2]-hard [7], which rules out the possibility of an fpt
algorithm for this parameterization of the problem. Several works
have also considered the approximability of the corresponding
minimization problem, where the measure is the numberp of
input labels missing in an outputted agreement supertree [6], [7].
The problem cannot be approximated in polynomial time within
a constant factor, unlessP = NP [7].

In this paper, we focus on the particular case whered = 2. Note
that in phylogenetics, SMAST input trees will often be binary

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 3

Parameters Complexity of SMAST Source

q W[1]-complete (even forl = 3) [6], Thm 6 & 7
q, k W[1]-complete Thm 6
p W[2]-hard (even forl = 3) [7]
k, p fpt by anO((2k)p × kn2) time algorithm Thm 2
k XNL-hard Thm 6

Solvable inO((8n)k) time Thm 3

TABLE I

SUMMARY OF PREVIOUS AND NEW RESULTS. n IS THE NUMBER OF DISTINCT LABELS APPEARING IN THE INPUT TREES; k IS THE NUMBER OF INPUT

TREES; l IS AN UPPER BOUND ON THE MAXIMUM SIZE OF THE INPUT TREES; p, RESPECTIVELYq, IS AN UPPER BOUND, RESPECTIVELY LOWER BOUND,

ON THE NUMBER OF INPUT LABELS THAT ARE MISSING, RESPECTIVELY ARE PRESENT, IN A SMAST SOLUTION.

as a result of the optimization algorithms used to analyze raw
molecular data. We improve on previous results in several ways.

First, we give an algorithm that solves SMAST on k rooted
binary trees on a label set of sizen in O((2k)pkn2) time.
This algorithm is only exponential inp, the number of input
labels that are missing in a SMAST solution. Thus, the algorithm
will be reasonably fast when dealing with trees inferred by
different methods on a same data set, or with trees inferred from
genes displaying a low level of conflict. Then we provide an
O((8n)k) time algorithm, independent ofp. This is a significant
improvement on theO(n3k2

) time algorithm of [6] and shows
that SMAST is tractable for a small number of trees, extending
the previously known results fork = 2 trees [6], [7].

Secondly, we consider SMAST on collections of rooted triples
(binary trees on 3 leaves), focusing on the complexity of this
variant parameterized inp. Since this problem is equivalent to
SMAST in its general setting [7], it isW[2]-hard. However, we
show here that an fpt algorithm can be achieved forcomplete
collections of rooted triples, i.e., when there is at least one rooted
triple for each set of 3 labels inL. This results from the fact that
conflicts between input trees can be circumvented to small sets
of labels, leading toO(4pn3) andO(3.12p +n4) time algorithms.
Note that this result also applies to input trees of arbitrary size,
provided their decomposition in rooted triples yields a complete
collection.

Lastly, we obtain some fixed-parameter intractability results,
showing that SMAST is hard for several parameterized complexity
classes when considering various parameters. The classes of in-
terest here areW[1], W[2] andXNL (introduced in Section V), and
the considered parameters arek, p, q and/or l. The intractability
results we obtain are detailed in Table I together with otherresults
for the problem. In particular, theW[1]-completeness of SMAST

on binary trees regarding parameterp, resp.k, q, contrasts with
the results obtained for MAST. Indeed, the latter is polynomial
for binary trees [18], [19] and, for trees of unbounded degree,
MAST is fpt in p [20], [21] and fpt ink, q [22].

Overall, this paper proposes a number of results on the pa-
rameterized complexity of the SMAST problem for binary trees,
including two fpt algorithms and an algorithm that runs in
polynomial time for a fixed number of input trees.

II. D EFINITIONS

In this paper, we consider rooted trees which are bijectively
leaf-labelled. We first define some notations for these trees, their
nodes and subtrees.

Definition 1: Let T be a leaf-labelled tree. We identify its leaf
set with its label set, denoted byL(T). Thesizeof T is the number
of its labels, i.e.,

˛

˛T
˛

˛ =
˛

˛L(T)
˛

˛. The node set ofT is denoted by
N(T), and r(T) stands for the root ofT . We use a recursive
parenthesized notation for trees: ifℓ is a label, thenℓ denotes
the trivial tree whose root is a leaf labelled byℓ; if T1, ..., Tk are
trees, then(T1, ..., Tk) stands for the tree whose root is unlabeled
and hasT1, ..., Tk as child subtrees. Ifu is a node in a treeT , then
T (u) stands for the complete subtree ofT rooted atu (i.e., the
subtree made of all nodes descending fromu), andL(u) for the
label set of this subtree, i.e., the labels descending fromu. If
u, v are two nodes ofT , thenu <T v means thatu is a proper
descendant ofv in T ; we denote byu ≤T v if and only if u <T v

or u = v. The smallest upper bound of two nodesu, v of T with
respect to<T is called the lowest common ancestor ofu, v, and
is denoted bylcaT (u, v).

Given a treeT and a label setL, the restriction of T to L,
denoted byT |L, is the tree homeomorphic to the smallest subtree
of T connecting leaves ofL. Let T, T ′ be two trees. We say that
T embedsin T ′, denoted byT ≤ T ′, if and only if T = T ′|L(T).
We say thatT and T ′ agree if and only if T |L(T ′) = T ′|L(T).
A collection is a family T = {T1, ..., Tk} of trees, the label set
of the collection isL(T) = ∪k

i=1L(Ti). Given a label setL, the
restriction of T to L is the collectionT |L = {T1|L, ..., Tk|L}.
See Figure 1 for an example of a collection.

We now recall several useful relations on trees.
Definition 2: An agreement supertreefor a collectionT is a

tree S such thatL(S) ⊆ L(T) and for eachTi ∈ T , S and
Ti agree. We say thatS is a total agreement supertreefor T if
additionally L(S) = L(T). A collection T is compatibleif and
only if there exists a total agreement supertree forT . A conflict
amongT is a setC ⊆ L(T) such thatT |C is incompatible. For
instance,S = (((a, b), c), (e, f)) is an agreement supertree for the
collectionT of Figure 1, andC = {a, b, c, d} is a conflict among
T .

The MAXIMUM AGREEMENT SUPERTREEproblem (SMAST)
asks: given a collectionT , find an agreement supertree forT
with the largest size. Equivalently, this amounts to seek a largest
set L ⊆ L(T) such thatT |L is compatible. The size of such
an optimal solution is denoted bysmast(T) and SMAST (T)

stands for the set of agreement supertrees ofT . See Figure 2 for
an example on a real data.

We also denote by P-SMAST the parameterized version of
SMAST, which asks: given a collectionT and a parameterp,
canT be made compatible by removing at mostp distinct labels

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 4

r3

d c fab c ed

u
t

s
w

r1

p

q

r2

fb ca

zy
xv

Fig. 1. A collectionT of three input trees on the label setL = {a, b, c, d, e, f}. Several internal nodes are also given names (but notlabels) for the purpose
of referencing them in the text.

irbp xk albui34 SMAST

Fig. 2. A collection of three source trees on Old World primates (Catarrhinii) and a maximum agreement supertree, represented as cladograms. Source
trees were respectively obtained by PhyML analyses of DNA sequences of Interphotoreceptor Retinoid Binding Protein exon 1 (irbp), chromosome Xq13.3
fragment (xk) and Albumin gene introns 3 and 4 (albui34). The maximum agreement supertree is obtained by removing leaves Colobus and Chloroce on
the relative position of which the source trees disagree.

form the trees inT ?

III. A LGORITHMS FOR SOLVINGSMAST ON BINARY TREES

Throughout this section, we consider a fixed collectionT =

{T1, ..., Tk} of binary trees, letn denote the size of the corre-
sponding label setL(T) and k the number of trees inT . In the
following algorithms, we usually consider nodes of input trees as
ancestors of label sets. Furthermore, a treeT will sometimes be
considered together with a setL of labels, some of which will
come from other trees. In such cases, we will be interested inthe
node ofT that is the least common ancestor of the labels inL

appearing inT . In the case where no label ofL appears inT ,
we assign the label set with the null node, denoted by the special
symbol⊥. We adjoin the null node to the node setN(T) of any
tree T for the rest of Section III, as this facilitates descriptions.
We also extend the notation for complete subtrees, assumingT (⊥)

denotes the empty tree, and that for node descendencies in trees,
assuming⊥ ≤T u for eachu ∈ N(T).

As several papers describing algorithms for MAST, we will
consider tuples of nodes, each tuple containing a node per input
tree. We will solve SMAST recursively by considering subtrees of
the input trees whose roots will correspond to the nodes in tuples.
Formal definitions are given below:

Definition 3: A positionin T is a tupleπ = (u1, ..., uk), where
eachui is in the respective setN(Ti) and is called acomponent
of π. For anyi ∈ [k], the ith component ofπ is denotedπ[i]. We
define theinitial position π⊤ = (r(T1), ..., r(Tk)) and thefinal
positionπ⊥ = (⊥, ...,⊥). The set of labels under a positionπ is
denotedL(π) = ∪i∈[k]L(π[i]).

A. SolvingSMAST in O((2k)p × kn2) time

In this section, we first describe an algorithm deciding the
compatibility of a collection inO(kn2) time, and returning a
conflict of size≤ 2k in case of incompatibility. This yields an fpt
algorithm for P-SMAST with O((2k)p × kn2) running time.

The compatibility of a collectionT can be decided by the
well-known BUILD algorithm [1], [23]. However, in case of
incompatibility, this algorithm does not provide a conflict, which
is required here to serve as basis for a bounded search fpt
algorithm. Like BUILD , the compatibility algorithm presented
here progressively builds the supertree using a recursive top-
down approach. Each step constructs a graph where the connected
components correspond to subtrees of the supertree. Here, we
replace the graphs used in BUILD with graphsG(T , π), with
varying postitionsπ. When such a graph is connected, it yields
a conflict of size≤ 2k, identified thanks to a spanning tree. The
recursive steps of the algorithm focus on particular positions π

in the collectionT . We first define these positions, then we will
define theG(T , π) graphs and state associated results.

Definition 4: A position isreducedif and only if no component
is a leaf (i.e., each component is either⊥ or an internal node). To
any positionπ, we associate a reduced positionπ↓ by replacing
by ⊥ any component ofπ that is a leaf.

Given a position π in T , we set T (π) =

{T1(π[1]), ..., Tk(π[k])}; we say thatπ is compatible if and
only if T (π) is compatible.
Observe that:

Lemma 1:
1) π⊥ is compatible.
2) π is compatible if and only ifπ↓ is compatible.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 5

BA
a

u v

z

w

q

p

u v

y

x
b

c c d

t

s

Fig. 3. A. The graphG(T , π⊤) of the positionπ⊤ = (r1, r2, r3) for the collection of trees of Figure 1. This graph is disconnected, the two connected
components indicate the two successor positionsπ1 = (p, r2, w) and π2 = (q,⊥, z) of π⊤. B. The graphG(T , π1) is connected. Choosing a spanning
tree (bold edges) of the graph and an arbitrary label shared by the two subtrees corresponding to the extremities of each edge of this tree identifies a conflict
C = {a, b, c, d}.

3) if T is compatible thenT (π) is compatible, for any position
π in T .

Proof: Points 1 and 2 result from definitions. Point 3 results
from the fact that any tree ofT (π) is a restriction of a tree inT .
The compatibility ofT (π) hence follows from that ofT .

We now turn to the definition of the graphs that will serve as
a basis for testing the compatibility of a collection.

Definition 5: Let π be a reduced position, the graphG(T , π)

is defined as follows:

(i) its vertex setV is composed of the two child nodes of each
nodeπ[i] such thatπ[i] 6=⊥;

(ii) two vertices u, v ∈ V are adjacent if and only ifL(u) ∩

L(v) 6= ∅.

In other terms,G(T , π) is the intersection graph of the set system
{L(u) : u ∈ V }.

We are also interested in subsetsV ′ ⊆ V of vertices in a graph
G(T , π), to which we can associate respective successor positions
of π:

Definition 6: GivenV ′ ⊆ V , we define the successor ofπ with
respect toV ′, denoted bysuccV ′(π), as the positionπ′ such that

• if π[i] = ⊥, thenπ′[i] = ⊥;
• if π[i] is an internal nodeui of Ti, with childrenvi, v

′
i, then

either:
8

>

>

>

>

<

>

>

>

>

:

if vi ∈ V ′ andv′i /∈ V ′ thenπ′[i] = vi,

if vi /∈ V ′ andv′i ∈ V ′ thenπ′[i] = v′i,

if vi ∈ V ′ andv′i ∈ V ′ thenπ′[i] = ui,

if vi /∈ V ′ andv′i /∈ V ′ thenπ′[i] = ⊥.
In other words,succV ′(π) is the position whoseith component

is the root of the smallest subtree inTi including nodes inV ′, or
is set to⊥ when V ′ contains no node ofTi. See Figure 3A for
an illustration of these definitions.

We now describe a recursive algorithm to decide the compati-
bility of a given position (see pseudo-code ISCOMPATIBLE). Call-
ing this algorithm withπ⊤ allows us to decide the compatibility
of T . Any recursive step of the algorithm is given a positionπ in
T . For the rest of the algorithm, by consideringπ↓ instead ofπ,
we can assume thatπ is a reduced position. The base case of the
recursion corresponds toπ = π⊥, the algorithm then succeeds
since π⊥ is known to be compatible. The general case of the
recursion corresponds to a reduced positionπ 6= π⊥, for which the
algorithm tries to identify two successorsπ1, π2, corresponding
to child subtrees of an hypothetical agreement supertree for T (π).
To that aim, it considers the graphG(T , π), and performs a
connectivity test on this graph. If the graph is not connected, then
the connectivity test yields a partition ofV into two disconnected
setsV1, V2 (whereV2 can contain several connected components);

then the successor positions areπ1 = succV1
(π), π2 = succV2

(π),
and recursive calls are issued forπ1, π2. The correctness of this
step is precisely stated in Lemma 2. If the graph is connected,
then the connectivity test yields a spanning tree ofG(T , π) from
which a conflict can be obtained by choosing, for each edge(u, v)

of the tree, a label present inL(u) ∩ L(v) (as shown in Lemma
3). See Figure 3B for an illustration of this process.

To prove these lemmas, we need some intermediary results on
parts of a graphG(T , π). Given V1, V2 ⊆ V , we say thatV1, V2

areconnectedif and only if G(T , π) contains an edge(u, v) with
u ∈ V1 andv ∈ V2; otherwise,V1, V2 are said to bedisconnected.
Additionally, givenV ′ ⊆ V , setL(V ′) = ∪u∈V ′L(u).

Observation 1:Two setsV1, V2 ⊆ V are connected inG(T , π)

if and only if L(V1) ∩ L(V2) 6= ∅.
Proof: V1, V2 are connected if and only if there existsu ∈

V1, v ∈ V2 such thatL(u) ∩ L(v) 6= ∅, which is equivalent to the
statementL(V1) ∩ L(V2) 6= ∅.

Observation 2:Let V ′ ⊆ V , and letπ′ = succV ′(π). Then:
L(π′) = L(V ′).

Proof: For eachi ∈ [k], let V ′
i be the set of nodes ofV ′

belonging toL(Ti). Observe thatL(V ′) = ∪i∈[k]L(V ′
i) and that

L(π′) = ∪i∈[k]L(π′[i]). We conclude by noting that for each
i ∈ [k], L(V ′

i) = L(π′[i]), by definition of the notationsucc.
Observation 3:Let V1, V2 ⊆ V , and letπ1 = succV1

(π), π2 =

succV2
(π). Then, L(π1) ∩ L(π2) = ∅ if and only if V1, V2 are

disconnected inG(T , π).
Proof: Directly follows by applying Observations 1 and 2.

Let us now consider a reduced positionπ 6= π⊥. We have the
following recursive characterization of compatibility:

Lemma 2:Suppose thatπ is a reduced position such that
π 6= π⊥ and letV be the vertex set of the graphG(T , π). The
following statements are equivalent:

• π is compatible;
• there exists a partitionV1, V2 of V such that

(i) V1, V2 are disconnected inG(T , π), and
(ii) π1 = succV1

(π) andπ2 = succV2
(π) are compatible.

Proof: For a given partitionV1, V2 of V , and forj ∈ {1, 2},
let πj = succVj

(π).
(⇒). Suppose thatπ is compatible. LetS be a total agreement

supertree forT (π). Sinceπ 6= π⊥, then
˛

˛L(π)
˛

˛ ≥ 2, henceS =

(S1, S2). Since S is a total agreement supertree forT (π), for
eachi ∈ [k] the subtreeTi(π[i]) embeds inS, which is denoted
Ti(π[i]) ≤ S. Define a partitionV1, V2 of V by considering all
componentsi ∈ [k] of π as follows. Suppose thatπ[i] is an internal
node ofTi with children vi, v

′
i. ThenTi(π[i]) = (Ti(vi), Ti(v

′
i))

using bracket notation for trees. Together withTi(π[i]) ≤ S, this

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 6

yields eitherTi(vi) ≤ S1 or Ti(vi) ≤ S2: addvi to V1 in the first
case, and toV2 in the second case. Proceed similarly forv′i. In the
end,V1 andV2 are a partition ofV such thatL(V1) ⊆ L(S1) and
L(V2) ⊆ L(S2), i.e., such thatL(V1)∩L(V2) = ∅. Thus, we obtain
Point (i) by applying Observation 1. We now prove Point (ii):π1

and π2 are positions inT (π), and sinceT (π) is compatible by
hypothesis, it follows thatπ1 and π2 are compatible by Point 3
of Lemma 1.

(⇐). Suppose that there exists a partitionV1, V2 of V satisfying
Points (i) and (ii). Sinceπ1 andπ2 are compatible by hypothesis,
there exists a total agreement supertreeS1 for T (π1) and similarly
S2 for T (π2). We then haveL(π1) = L(S1) and L(π2) =

L(S2). Since V1, V2 are disconnected,L(π1) ∩ L(π2) = ∅ by
Observation 3. Therefore, we haveL(S1) ∩ L(S2) = ∅, and we
can define the treeS = (S1, S2). We show thatS is a total
agreement supertree forT (π) by showing thatTi(π[i]) ≤ S for
eachi ∈ [k].

Fix such ani, let ui = π[i]. If ui = ⊥, then the relation
obviously holds. Suppose now thatui is an internal node ofTi,
and let vi, v

′
i be its two children. We consider three cases. If

vi, v
′
i ∈ V1: then π1[i] = ui, which together with the definition

of S1 implies Ti(ui) ≤ S1; we conclude thatTi(ui) ≤ S. If
vi, v

′
i ∈ V2: in a similar way, we conclude thatTi(ui) ≤ S. If

vi ∈ V1, v′i ∈ V2: then π1[i] = vi, which implies thatTi(vi) ≤

S1, and π2[i] = v′i, which implies thatTi(v
′
i) ≤ S2. It is easy

to see thatTi(vi) ≤ S1 and Ti(v
′
i) ≤ S2 imply that Ti(ui) =

(Ti(vi), Ti(v
′
i)) ≤ (S1, S2) = S.

We now prove that if the graphG(T , π) turns out to be
connected, a spanning tree of this graph yields a small conflict
amongT :

Lemma 3:Let π be a reduced position such thatπ 6= π⊥.
Suppose thatG(T , π) is connected, and letT = (V, F) be a
spanning tree ofG(T , π). For each edgee = (u, v) ∈ F , choose
ℓe ∈ L(u)∩L(v). ThenC = {ℓe : e ∈ F} is a conflict amongT .

Proof: We show thatT ′ = T |C is incompatible. For eachi
such thatπ[i] 6=⊥, let ui = π[i], and letvi, v

′
i be its two children in

Ti. By definition ofC, the setsL(vi)∩C, L(v′i)∩C are not empty,
hence to the nodesui, vi, v

′
i there corresponds nodesũi, ṽi, ṽ

′
i in

Ti|C, whereũi is the least common ancestor inTi|C of L(ui)∩

C, and the other two nodes are defined similarly. Letπ′ be the
reduced position inT ′ obtained by settingπ′[i] = ⊥ if π[i] =⊥,
or π′[i] = ũi π[i] 6=⊥. Consider the graphG(T ′, π′), then by
definition ofC for each edge(x, y) of T , the edge(x̃, ỹ) is present
in G(T ′, π′), therefore the treeT ′ formed by these edges is a
spanning tree ofG(T ′, π′), hence the graph is connected. By
Lemma 2, we conclude thatπ′ is an incompatible position ofT ′,
thereforeT ′ is incompatible (by Point 3 of Lemma 1).

Lemmas 2 and 3 give rise to an algorithm for deciding the
compatibility of a collection, and obtaining a conflict of small
size in case of incompatibility.

Theorem 1:There is an algorithm which, inO(kn2) time,
decides ifT is compatible, and returns a conflict of size≤ 2k in
case of incompatibility.

Proof: We rely on the procedure ISCOMPATIBLE(π) which
takes as input a positionπ in T , decides if π is compatible
and returns a conflict of size≤ 2k in case of incompatibility.
The procedure is formally stated in the pseudo-code called
Algorithm 1. To decide ifT is compatible, the procedure is called
with the argumentπ⊤.

The correctness of the procedure ISCOMPATIBLE follows from

Algorithm 1: ISCOMPATIBLE(π)

Input : A position π in a collectionT of trees.
Result: A tuple (B, C) where

• B is a boolean indicating whetherπ is compat-
ible

• C is a conflict amongπ when the positionπ is
not compatible.

if π = π⊥ then return (true, ∅)

if π is not reducedthen π ← π↓

if G(T , π) is connectedthen
C ← ∅ ; Let T = (V, F) be a spanning tree ofG
foreach edge(u, v) ∈ F do

choose a labelℓ ∈ L(u) ∩ L(v) ; C ← C ∪ {ℓ}

return (false, C);
else

Let V1 be a connected component ofG(T , π) ; V2 ←

V − V1

π1 ← succV1
(π) ; π2 ← succV2

(π)

(B1, C1)← ISCOMPATIBLE(π1) ; if B1 is false then
return (false, C1)

(B2, C2)← ISCOMPATIBLE(π2) ; if B2 is false then
return (false, C2)

return (true, ∅)

Lemmas 2 and 3. For the running time, we rely on the fact
that using appropriate data structures, we can ensure that a
call to ISCOMPATIBLE takes O(kn) time (see Appendix I for
details). Moreover, when a call ISCOMPATIBLE(π) issues two
recursive calls for positionsπ1, π2, thenL(π1), L(π2) are disjoint
(by Observation 3) and included inL(π) (as a consequence of
Observation 2). Hence the total number of calls to ISCOMPATIBLE

is O(n), therefore the total running time of the algorithm is
O(kn2).

On the basis of this compatibility algorithm, we can design
a simple fpt algorithm for solving P-SMAST on a collectionT
with parameterp (see end of section II for the formal definition
of this problem). Algorithm 2 contains the pseudo-code for
this procedure, called RECSMAST, that uses the well-known
bounded search tree technique. Note that the third argument
mentioned in the heading of the procedure, namelyX, is only
present in order to know a set of leaves to remove from the input
trees in case of success. The initial call to the algorithm uses
X = ∅.

Theorem 2:The P-SMAST problem can be solved in
O((2k)p × kn2) time.

Proof: A run of the algorithm follows a search tree of height
≤ p, whose nodes at depthi are each labelled by a set of labels
X ⊆ L such that

˛

˛X
˛

˛ = i. At a given nodeu labelled by a
set X, the algorithm determines inO(kn2) time if T |(L\X) is
compatible, using the procedure of Theorem 1. If the answer is
positive, the node is labelled by ”success”, and is then a leaf of
the search tree. Otherwise, the algorithm proceeds as follows: if
the node is at depthp, then it is labelled by ”failure” and becomes
a leaf of the search tree; if it is at depth< p, then the procedure
of Theorem 1 has returned a conflictC of size≤ 2k, and for each
ℓ ∈ C a child node ofu is added in the search tree, with label
X ∪ {x}. The running time follows easily, since the search tree

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 7

Algorithm 2: RECSMAST(T, p, X)

Input : A collectionT of rooted binary trees, an integerp ≥

0 and a setR ⊆ L(T).
Result: A tuple (B, X) where

• B is a boolean stating whether a solution to
SMAST for T can be obtained by removing at
mostp leaves fromL(T);

• X is a set of leaves to remove fromL(T) to
obtain such a solution when it exists, otherwise
X = ∅.

π⊤ ← the initial position ofT , ie (r(T1), r(T2), . . . , r(Tk))

(compatible,C)← ISCOMPATIBLE(π⊤)

if compatible is true then return (True, X)

if p > 0 then
foreach label ℓ ∈ C do

(rc, Xc) ←RECSMAST
`

T |(L(T)−{ℓ}), p− 1,X ∪
{ℓ}

´

if rc is true then return (true, Xc)

return (false, ∅)

has height≤ p, degree≤ 2k, and since each node is processed
in O(kn2) time.

B. SolvingSMAST in O((8n)k) time

In this section, we describe an algorithm to solve SMAST in
O((8n)k) time. The algorithm uses dynamic programming, and
is somewhat similar in spirit to the algorithm described in [24]
for solving MAST on two trees.

For the needs of this section, it is convenient to characterize
the agreement relation on trees in terms ofpartial embeddings.
First definechildT (u, v) as the child ofv along the path joining
v to u in T , whereu, v are two nodes ofT such thatu <T v.
Let T, T ′ be two trees, say that a partial embedding ofT into T ′

is a functionφ : N(T)→ N(T ′) such that:

• for any u leaf of T , we haveφ(u) = ⊥ if u /∈ L(T ′), or
φ(u) = u otherwise,

• for any u internal node ofT with children u1, ..., up, let
V = {j : φ(uj) 6= ⊥}, then (i) either V = ∅, and
φ(u) = ⊥, (ii) either V = {i} and φ(u) = φ(ui), (iii) or
˛

˛V
˛

˛ ≥ 2 and φ(ui) <T φ(u) for eachi ∈ V , and the nodes
{childT (φ(u), φ(ui)) : i ∈ V } are pairwise distinct.

ThenT andT ′ agree if and only if there exists a partial embedding
of T into T ′ (and equivalently a partial embedding ofT ′ into T).

Let T be a collection andπ a position inT . Let SMAST (π)

denote the set of treesT such that (i)T is an agreement supertree
for T , (ii) for each i, the partial embeddingφi : T → Ti is such
that φi(r(T)) ≤Ti

π[i]. We denote bysmast(π) the size of a
largest tree ofSMAST (π).

The algorithm computes valuessmast(π) for each positionπ
using a recurrence relation whose base case is stated in Lemma
4 and general case is stated in Lemma 5. The recurrence relation
relies on a partial order≤T on positions, which is defined below.
Given a positionπ, smast(π) will be computed from values
smast(π′) with π′ <T π. At the end of the algorithm,smast(T)

is obtained assmast(π⊤).
We define the relation≤T on positions inT by: π ≤T π′ if

and only if for eachi ∈ [k], π[i] ≤Ti
π′[i]. We denote by<T its

strict counterpart, whereπ <T π′ if and only if for eachi ∈ [k],
π[i] ≤Ti

π′[i], and one of these relations is strict.
The following observation states that agreement supertrees of

restricted parts of the input trees (identified in a positionπ)
are also agreement supertrees of wider parts of the input trees
(associated with a positionπ with π′ ⊆ π).

Observation 4:If π′ ≤T π, then SMAST (π′) ⊆

SMAST (π).
The base case of the recurrence corresponds toterminal posi-

tions: a positionπ is terminal if and only if for eachi ∈ [k], π[i]

is a leaf or⊥. For a terminal positionπ, note thatL(π) is the set
of labels occuring as components inπ. Moreover, in this case,
say that an elementx ∈ L(π) is maximally presentif and only if
for eachi ∈ [k], x ∈ L(Ti) impliesπ[i] = x. Let P (π) denote the
set of maximally present elements ofL(π). Then:

Lemma 4:Suppose thatπ is terminal. Then:smast(π) =
˛

˛P (π)
˛

˛.
Proof: First, letT be any binary tree on the label setP (π),

then T ∈ SMAST (π). Indeed, for eachi ∈ [k] define φi as
follows:

• if π[i] = ⊥, thenφi(u) = ⊥ for eachu ∈ L(T);
• if π[i] is a leafx of Ti, thenφi(u) = x if x ∈ T (u), otherwise

φi(u) = ⊥.

Then φi is a partial embedding ofT into Ti satisfying
φi(r(T)) ≤Ti

π[i]. We conclude thatT ∈ SMAST (π).
We now show that for eachT ∈ SMAST (π), we haveL(T) ⊆

P (π). Indeed, consider such a treeT , and for eachi ∈ [k] consider
the partial embeddingφi : T → Ti. Fix an elementx ∈ L(T),
and consideri ∈ [k] such thatx ∈ L(Ti), we show thatπ[i] = x.
By definition of a partial embedding we have:φi(x) = x. Since
φi(x) ≤Ti

π[i] andπ[i] is a leaf (becauseπ is terminal), it follows
that π[i] = x. We conclude thatx ∈ P (π).

We now describe the general case of the recurrence relation,
corresponding to nonterminal positions. Ifπ is nonterminal, then
smast(π) is computed from two valuessmast1(π), smast2(π).

We first definesmast1(π). Say that a positionπ′ is asuccessor
of π if and only if there existsi ∈ [k] such thatπ′[i] is a child of
π[i] and π′[j] = π[j] for eachj 6= i. Let S(π) denote the set of
successors ofπ. Then define:

smast1(π) = max
π′∈S(π)

smast(π′). (1)

We now definesmast2(π). Say that a pair(π1, π2) of positions
is a decompositionof π if and only if (i) π1 6= π, π2 6= π and (ii)
for eachi ∈ [k], the following holds:

• eitherπ[i] = ⊥, in which caseπ1[i] = π2[i] = ⊥;
• eitherπ[i] is a leafx, in which case we have{π1[i], π2[i]} =

{⊥, x};
• either π[i] is an internal nodeu with two children v, v′,

in which case we have either{π1[i], π2[i]} = {⊥, u} or
{π1[i], π2[i]} = {v, v′}.

Let D(π) denote the set of decompositions ofπ. Then define:

smast2(π) = max
(π1,π2)∈D(π)

(smast(π1) + smast(π2)). (2)

Note that computing the valuessmast1(π) andsmast2(π) only
involves valuessmast(π′) with π′ <T π, by the following
observation:

Observation 5:

(i) If π′ ∈ S(π), thenπ′ <T π;

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 8

(ii) If (π1, π2) ∈ D(π) thenπ1 <T π andπ2 <T π.
We are now ready to state the relation for nonterminal positions:
Lemma 5:Suppose thatπ is not terminal. Then:

smast(π) = max(smast1(π), smast2(π)).
Proof: We first prove thatsmast1(π) ≤ smast(π). Let S ∈

SMAST (π′) for someπ′ ∈ S(π), such that|S| is maximal. Since
π′ <T π by Lemma 5, we haveS ∈ SMAST (π) by Observation
4, and the result follows.

We now prove thatsmast2(π) ≤ smast(π). Let (π1, π2) ∈
D(π), and letS1, S2 such thatSj ∈ SMAST (πi),

˛

˛Sj

˛

˛ maximal.
If one of the Sj ’s is empty, sayS1, then smast(π1) = 0, and
we obtain smast2(π) =

˛

˛S2

˛

˛ = smast(π2) ≤ smast(π) by
Observations 4 and 5. Suppose now thatS1, S2 are not empty.
For j ∈ {1, 2}, since Sj ∈ SMAST (πj), there exists partial
embeddingsφj,i : Sj → Ti such thatφj,i(r(Si)) ≤Ti

πj [i] for
eachi ∈ [k]. Let S = (S1, S2), we claim thatS ∈ SMAST (π).
Indeed, defineφi : S → Ti as follows. Setφi(x) = φj,i(x) if
x is a node ofSj , and φi(x) = lcaTi

(φ1,i(r(S1)), φ2,i(r(S2))

if x is the root ofS. Then: (i) L(S1) ∩ L(S2) = ∅, henceS

is well-defined, (ii)φi is a partial embedding ofS into Ti, (iii)
φi(r(S)) ≤Ti

π[i] (see Appendix II-A for a proof). We conclude
that smast2(π) =

˛

˛S1

˛

˛ +
˛

˛S2

˛

˛ =
˛

˛S
˛

˛ ≤ smast(π).
Finally, we show thatsmast(π) ≤ max(smast1(π), smast2(π)).

Let S ∈ SMAST (π) such that|S| is maximal. Then there exists
partial embeddingsφi : S → Ti such thatφi(r(S)) ≤Ti

π[i] for
eachi ∈ [k]. Let ui = φi(r(S)) for eachi. We consider two cases.

First case: there existsi ∈ [k] such thatui <Ti
π[i]. This case

holds in particular if
˛

˛S
˛

˛ ≤ 1. Define π′ from π by setting the
ith component tochildTi

(ui, π[i]), thenπ′ ∈ S(π). We verify that
S ∈ SMAST (π′): indeed,φi is a partial embedding ofS into Ti

such thatφi(r(S)) ≤Ti
π′[i]. We conclude that

˛

˛S
˛

˛ = smast(π) ≤

smast(π′) ≤ smast1(π).
Second case:ui = π[i] for eachi ∈ [k]. In this case, we have

˛

˛S
˛

˛ ≥ 2, henceS = (S1, S2). Let u be the root ofS, let vj be the
root of Sj in S, then π = (φ1(u), ..., φk(u)). For j ∈ {1, 2},
define πj as follows: given i ∈ [k], (i) if φi(vj) = φi(u),
set πj [i] = φi(u), (ii) if φi(vj) = ⊥, set πj [i] = ⊥, (iii)
if φi(vj) <Ti

φi(u), set πj [i] = childTi
(φi(vj), φi(u)). Then

(π1, π2) ∈ D(π) (see Appendix II-B for a proof). We now show
that Sj ∈ SMAST (πj): indeed,φi is a partial embedding ofSj

into Ti, and by definition ofπj we haveφi(r(Sj)) ≤Ti
πj [i] for

eachi ∈ [k]. We conclude that
˛

˛S
˛

˛ = smast(π) =
˛

˛S1

˛

˛ +
˛

˛S2

˛

˛ ≤

smast(π1) + smast(π2) ≤ smast2(π).
Lemmas 4 and 5 yield an algorithm for computingsmast(T):
Theorem 3:smast(T) can be computed inO((8n)k) time and

O((2n)k) space.
Proof: Using dynamic programming, the algorithm com-

putes the valuessmast(π) for eachπ position in T , using the
recurrence relations stated in Lemmas 4 and 5. The correctness
of the algorithm follows from the lemmas, and the termination of
the algorithm is ensured by Observation 5 and the fact that<T

is an order relation on positions inT .
We now consider the space and time requirements for the

algorithm. First observe that the number of positionsπ in T
is ≤ (2n)k: a componentπ[i] has≤ 2n possible values (one
of the ≤ 2n − 1 nodes of Ti, or the value⊥). It follows
that the space complexity isO((2n)k). We claim that the time
complexity is O((8n)k). Indeed, consider the time required to
computesmast(π), assuming that the valuessmast(π′) for π′ <T

π are available. Testing ifπ is terminal requiresO(k) time.

If π is terminal, computing
˛

˛P (π)
˛

˛ takes O(k) time. If π is
nonterminal, then we need to computesmast1(π) andsmast2(π),
which respectively requireO(k) andO(4k) time. Thus,smast(π)

is computed inO(4k) time, hence the total running time of the
algorithm isO((8n)k).

We note that after the first version of this paper was submitted,
an O((6n)k) algorithm was provided in [25]. However, applying
a finer mathematical analysis of the subcases encountered byour
algorithm, similar to that of [25], also yields anO((6n)k) time
complexity. We refer the reader to [25] for mathematical details.

IV. A LGORITHM FOR SOLVINGSMAST ON COMPLETE

COLLECTIONS OF TRIPLES

Recall that P-SMAST is the version of SMAST parameterized
in the numberp of distinct labels to remove from the input trees
to obtain an agreement. We consider in this section the restriction
of P-SMAST to complete collections of rooted triples.

A rooted triple (or triple for short) is a binary treeT such
that

˛

˛L(T)
˛

˛ = 3; such a tree has the formT = ((x, y), z) in
parenthetical notation, and will be denoted byxy|z. A collection
of triplesis a collectionR = {T1, ..., Tk} where eachTi is a triple.
R is completeif each set of three labels inL(R) is present in at
least oneTi. To a binary treeT of arbitrary size, we associate a
complete collection of triplesrt(T) formed by the triplesTi ≤ T ;
to a collectionT , we associate a collection of triplesrt(T) =

∪T∈T rt(T). For a complete collection of triplesR, we say that
R is treelike if there exists a treeT such thatR = rt(T); then
we say thatR displaysT .

We consider the following parameterized problem, denoted
P-SMASTCR: given a complete collection of triplesR and a
parameterp, can R be made treelike by removing at most
p distinct labels? Observe that this problem is the restriction
of P-SMAST to complete collections of triples, since for such
collections treelikeness is equivalent to compatibility,as defined
in Section II.

This section presents an fpt-algorithm to solve P-SMASTCR,
which contrasts with the fact that P-SMAST is W[2]-hard on
non-complete collections of triples. This algorithm also applies
to collections of general trees such that any triple of labels is
present in at least one input tree. Indeed, recall that any tree can
be equivalently described by the triples it contains.

It is possible to show that non-treelike complete collections of
triples have conflicts of size≤ 4, a result similar to that known
on quartets [26]. This allows to solve P-SMASTCR in O(n4 +

3.12p) time by reduction to 4-HITTING SET [27], and also in
O(4pn4) time by bounded search (similar to the work of [28] for
the minimum quartet inconsistency problem). In the following,
we describe a faster algorithm withO(4pn3) running time. We
first present an algorithm to decide treelikeness in linearO(n3)

time (Proposition 1 and Theorem 4).
Proposition 1: There is an algorithm

INSERT-LABEL-OR-FIND -CONFLICT(R, X, x, T) which takes a
complete collection of triplesR, a setX ⊆ L(R), an element
x ∈ L(R)\X and a treeT such thatR|X displaysT , and in
O(n2) time decides ifR′ = R|(X∪{x}) is treelike. Additionally,
the algorithm returns the treeT ′ displayed byR′ in case of
positive answer, or returns a conflictC amongR′ with

˛

˛C
˛

˛ ≤ 4

in case of negative answer.
Proof: In a first step, the algorithm checks whetherR

contains two different triples on the same set of three labels

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 9

x, ℓ, ℓ′. In such a case, they form a conflict of size 3 which is
then returned by the algorithm.

If no such conflict is found, the algorithm proceeds to a second
step during which it determines for each internal nodeu of T ,
the relative subtree in whichu would accept to insertx: its left
subtree (denotedL), its right subtree (denotedR), or the subtree
above it, i.e., the part of the tree excludingT (u) (denotedA),
namely the part of the tree that is not belowu. To that aim, the
algorithm checks that the triplesx, ℓ, ℓ′, with ℓ, ℓ′ labels underu
in T , all indicate the same subtree relative tou. More formally,
let v, v′ be the two children ofu. An u-fork is a pair{ℓ, ℓ′} where
ℓ ∈ L(v), ℓ′ ∈ L(v′). Eachu-fork {ℓ, ℓ′} gives an opinionoℓ,ℓ′

on the positioning ofx with respect tou in T , where oℓ,ℓ′ is
computed fromR as follows: if ℓx|ℓ′ ∈ R thenoℓ,ℓ′ is set toL,
if ℓ′x|ℓ ∈ R thenoℓ,ℓ′ is set toR, otherwise,ℓℓ′|x ∈ R andoℓ,ℓ′

is set toA. The algorithm considers each internal nodeu in turn
and computes the opinionsoℓ,ℓ′ of the u-forks {ℓ, ℓ′}. If two u-
forks indicate a different subtree forx, then the algorithm easily
identifies a conflict. In such a case, it can be shown that there
exist ℓ, ℓ1, ℓ2 such thatoℓ,ℓ1 6= oℓ,ℓ2 (or oℓ1,ℓ 6= oℓ2,ℓ), in which
caseC = {x, ℓ1, ℓ2, ℓ} is a conflict, which is then returned by the
algorithm. Otherwise, allu-forks indicate the same subtree forx,
and the opinion ofu, denotedou is defined to be this direction
(L, R or A).

In a third step, the algorithm checks that the opinions of the
different nodesu in T consistently indicate a single position to
insert x in T . The opinions are compatible if and only if for
each edgeu, v of T with u abovev, we have: (i) ifv is the left
child of u, then ou = R ⇒ ov = A, (ii) if v is the right child
of u, then ou = L ⇒ ov = A, (iii) if v is a child of u, then
ou = A ⇒ ov = A. If one pair of nodesu, v does not meet
the above requirements, then by considering{ℓ, ℓ′} v-fork and
{ℓ, ℓ′′} u-fork, we obtain a conflictC = {x, ℓ, ℓ′, ℓ′′}. Otherwise,
consider the sets of nodesu such thatou 6= A, they form a
(possibly empty) path inT starting at the root and ending at
a nodev. ThenR|(X ∪ {x}) is treelike, and displays the tree
obtained fromT by insertingx abovev, which is returned by the
algorithm.

We now justify the running time of the algorithm. The first
step trivially takesO(n2) time. Consider the second step. Given
a nodeu, let Fu be the set ofu-forks, then an internal nodeu
is processed in timeO(|Fu|). Therefore, the time required by the
second step is

P

u O(|Fu|) = O(n2). Now consider the third step.
The algorithm checks that for each edgeu, v of T , Conditions (i)-
(ii)-(iii) hold: for a given edge, checking the conditions or finding
a conflict is done in constant time, hence the time required by
this step isO(n). It follows that the total time required by the
algorithm isO(n2).

Theorem 4:There is an algorithm
FIND -TREE-OR-CONFLICT(R) which takes a complete
collection of triplesR, and in O(n3) time decides ifR is
treelike, returns a treeT displayed byR in case of positive
answer, or a conflictC amongR with

˛

˛C
˛

˛ ≤ 4 in case of
negative answer.

Proof: We use the procedure INSERT-LABEL-OR-FIND -
CONFLICT to decide treelikeness as follows. We iteratively insert
each label, starting from an empty tree, until: (i) either every label
has been inserted, in which case the collection is treelike and the
displayed tree is returned, (ii) or a conflict is found and returned.

Using bounded search, we obtain:
Theorem 5:The P-SMASTCR problem can be solved in

O(4pn3) time.

V. HARDNESS RESULTS

The parameterized complexity of the SMAST problem on binary
trees is considered with respect to the following parameters: k

denotes the number of input trees,l denotes an upper bound on
the maximum size of the input trees,p (resp.q) denotes an upper
(resp. lower) bound on the number of labels to remove (resp.
conserve) in order to obtain compatibility of the collection. After
having obtained an fpt algorithm when the SMAST problem is
parameterized ink, p, we now turn to intractability results. We
remind the reader thatW[1], W[2] and XNL are parameterized
complexity classes which are conjectured to properly contain
FPT. They have the respective complete problems:

• W[1]: CLIQUE: given a graphG and a parameterq, decide
if G has a clique of size≥ q;

• W[2]: DOMINATING SET: given a graphG and a parameter
q, decide ifG has a dominating set of size≤ q;

• XNL: BOUNDED SPACE TURING MACHINE COMPUTA-
TION: given a nondeterministic Turing machineM with a
binary tape alphabet, an integern in unary, and a parameter
q, decide if M accepts the empty string using space≤
q log2 n.

The classXNL is a parameterized analogue of the classNL; it
has been introduced in [29], [15], note that the class we call
XNL is the class[UNIFORM-XNL]FPT of [29].

The intractability results we prove here mainly follow from
similar results for the SLCS problem [30], which we now define. A
p-sequence(after [31], or sequence for short)s is a word without
repetition on an alphabetL. We denote byL(s) ⊆ L the label set
of s, i.e., the set of letters (orlabels) appearing ins. We define
the relation<s on L(s) by: x <s y if and only if x precedesy in
s. A collection(of sequences) is a familyC = {s1, ..., sk}, where
the sis are sequences. Thelabel setof C is L(C) = ∪i∈[k]L(si).

Given a sequences and a label setL′, we denotes|L′ the
restriction of s to L′. Given two sequencess, s′, we say thats
and s′ agree if s|L(s′) = s′|L(s). A compatible sequencefor a
collectionC = {s1, ..., sk} is a sequences such thatL(s) ⊆ L(C)
and for eachi ∈ [k], s andsi agree.

The SLCS problem consists in finding a largest compatible
sequence of a collectionC (the size of such a sequence is
denoted by#SLCS(C)). While the SLCS and SMAST problems
are optimization problems, for the need of the proofs we consider
their decision version SLCS-D and SMAST-D, which are defined
as follows. SLCS-D takes a collectionC of k sequences and
an integerq, and asks if#SLCS(C) ≥ q. SMAST-D takes a
collectionT of k trees and an integerq, and asks ifsmast(T) ≥
q. We denote by P-SLCS-D (resp. P-SMAST-D) the problem
SLCS-D (resp. SMAST-D) parameterized byk, q.

We rely on a parameter-preserving reduction from P-SLCS-D
to P-SMAST-D. For the sake of clarity, the reduction is performed
in two steps.

First step: a parameter-preserving reduction from P-SLCS-D to
a variant called P-COLORED-SLCS. This problem is defined as
follows. Given a label setL partitioned inq setsL1, ..., Lq, and a
collectionC on L, a colored sequenceis a sequencea1...aq with

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 10

ai ∈ Li. The problem P-COLORED-SLCS asks: given parameters
k, q, a collectionC of k sequences on a label set partitioned inq

sets, doesC have a colored compatible sequence? We show:
Lemma 6:There is a polynomial-time reduction from

P-SLCS-D to P-COLORED-SLCS which maps an instance
(C, k, q) of P-SLCS-D to an instance (C′, 2k, q) of
P-COLORED-SLCS.

Proof: Given an instanceI = (C, k, q) of P-SLCS-D, we
construct an instanceI ′ = (C′, 2k, q) of P-COLORED-SLCS as
follows. Suppose thatC = {s1, ..., sk} has label setL. For each
x ∈ L we create new labelsx1, ..., xq, we setL′i = {xi : x ∈ L}

andL′ = L′1∪ ...∪L′q . Consider the morphisms of free monoids
φ, φ′, from L∗ to L′∗, defined as follows: for eachx ∈ L,

(

φ(x) = x1...xq

φ′(x) = xq ...x1

For each sequencesi ∈ C, defines′i = φ(si) and s′′i = φ′(si).
ThenC′ = {s′1, s′′1 , ..., s′k, s′′k}.
Note that C′ contains 2k sequences. Thus, the reduction is
parameter-preserving. The correction of the reduction is detailed
in Appendix III-A.
Second step:we give a parameter-preserving reduction from
P-COLORED-SLCS to P-SMAST-D. If T1, ..., Tm are trees, the
notationrake(T1, ..., Tm) is defined as follows using the paren-
thesized notation for trees:

(

rake(T1) = T1

rake(T1, ..., Tm) = (rake(T1, ..., Tm−1), Tm)

In other words,rake(T1, ..., Tm) is a caterpillar tree whose leaves
are replaced by the treesT1, ..., Tm hanging in increasing order
from the bootom to the root the tree. We show:

Lemma 7:There is a polynomial-time reduction from
P-COLORED-SLCS to P-SMAST-D which maps an instance
(C, k, q) of P-COLORED-SLCS to an instance(T , k + 2, 2q + 1)

of P-SMAST-D.
Proof: Let I = (C, k, q) be an instance of

P-COLORED-SLCS, where C = {s1, ..., sk} is a collection
on a label setL, partitioned inq setsL1, ..., Lq. We construct an
instanceI ′ = (T , k′, q′) of SMAST[k, q] as follows.

• we first define the label setL′: we create new labels
z0, z1, ..., zq. For eachi ∈ [q], we setL′

i = Li ∪ {zi}, and
we defineL′ = {z0} ∪ L′

1 ∪ ... ∪ L′
q.

• we defineT = {S, S′} ∪ {T1, ..., Tk} as follows. For each
i ∈ [q], we defineRi, R

′
i as follows: consider an enumeration

of L′
i = {x1, ..., xm}, thenRi = rake(x1, ..., xm) andR′

i =

rake(xm, ..., x1). We then setS = rake(z0, R1, ..., Rq) and
S′ = rake(z0, R

′
1, ..., R′

q). For each sequencesi = y1...zn

in C, we create a treeTi = rake(z0, y1, ..., yn).
• we setk′ = k + 2 andq′ = 2q + 1.

Note thatT containsk+2 trees. Thus, the reduction is parameter-
preserving. The correction of the reduction is detailed in Ap-
pendix III-B.

Combining the two above results we obtain:
Proposition 2: There is a polynomial-time reduction from

P-SLCS-D to P-SMAST-D which maps an instance(C, k, q) of
P-SLCS-D to an instance(T , 2k + 2, 2q + 1) of P-SMAST-D.

Proof: Direct consequence of Lemma 6 and Lemma 7.
Proposition 2 allows us to transfer to SMAST known hardness

results for SLCS [30]:

Theorem 6:The following results hold for SMAST:

• W[1]-hardness forq and for q, k;
• XNL-hardness fork.

Proof: The hardness results follow from similar results for
SLCS [30], and from the parameter-preserving reduction given by
Proposition 2.

In addition, we now show membership inW[1] for SMAST

parameterized byq (Thm 7) by resorting to triples (see Section
IV for related definitions). We rely on two preliminary lemmas.

Proposition 3: Let T be a tree such thatL(T) ⊆ L(T). The
following statements are equivalent:

• T is an agreement supertree forT ;
• rt(T)|L(T) ⊆ rt(T).

Proof: Observe that for eachTi ∈ T , there is equivalence
between: (i)T andTi agree, (ii)rt(Ti)|L(T) ⊆ rt(T).

We are now ready to show:
Theorem 7:SMAST parameterized inq is in W[1].

Proof: We use a parameterized reduction to SHORT TURING

MACHINE COMPUTATION [14]. Let I = (T , q) be an instance of
SMAST, where T is a collection andq an integer. We define
a nondeterministic Turing machineM which accepts the empty
string in q′ steps if and only ifT has an agreement supertree of
size≥ q.

The tape alphabet ofM consists of the following symbols:

• a symbolpx for eachx ∈ L;
• a symbolrxy|z for eachx, y, z ∈ L, x < y andxz|y, yz|x /∈

rt(T).

In a first step,M guessesq symbolspx, and
`

q
3

´

symbolsrxy|z.
The idea is that for a consistent solution, the symbolspx will
correspond to a label setL, and the symbolsrxy|z will form a
complete collection of triplesR, such that: (i)L(R) = L, (ii) R
is treelike. ThenR = rt(T) for some treeT , and sincert(T)|L ⊆

rt(T) by definition of the symbolsrxy|z, it will follow that T is
an agreement supertree forT by Proposition 3.

In a second step,M checks that the labelspx and rxy|z

are consistent. First, it checks that the symbolspx1
, ..., pxq are

such that x1 < ... < xq, which requiresO(q) steps. Let
L = {x1, ..., xq}, then M verifies that for eachx, y, z ∈ L

distinct with x < y < z, one of rxy|z, rxz|y, ryz|x is present.
The machine needs to examineO(q3) triples, and each triple is
checked inO(q3) time by scanning the tape. Now,R = {xy|z :

rxy|z guessed} is a complete collection of triples without direct
contradiction (i.e., such that for all elementsx, y, z ∈ L(R),
not xy|z and xz|y are both inR). Finally, M verifies thatR
satisfies property (P): there areO(q4) quadruples to examine,
and each check takes timeO(q3). Overall, the machine performs
q′ = O(q7) steps.

REFERENCES

[1] Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree
from lowest common ancestors with an application to the optimization
of relational expressions. SIAM Journal on Computing10(3) (1981)
405–421

[2] Xia, Y., Yang, Y.: Mining Closed and Maximal Frequent Subtrees from
Databases of Labeled Rooted Trees. IEEE Transactions on Knowledge
and Data Engineering17(2) (2005) 190–202

[3] Baum, B.R.: Combining trees as a way of combining data sets for
phylogenetic inference, and the desirability of combininggene trees.
Taxon41 (1992) 3–10

[4] Ragan, M.: Matrix representation in reconstructing phylogenetic rela-
tionships among the eukaryots. Biosystems28(1–3) (1992) 47–55

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 11

[5] Daubin, V., Gouy, M., Perrière, G.: A phylogenomic approach to
bacterial phylogeny: evidence of a core of genes sharing a common
history. Genome Research12(7) (2002) 1080–1090

[6] Jansson, J., Ng, J.H.K., Sadakane, K., Sung, W.K.: Rooted Maximum
Agreement Supertrees. Algorithmica43(4) (2005) 293–307

[7] Berry, V., Nicolas, F.: Maximum Agreement and Compatible Supertrees.
Journal of Discrete Algorithms5(3) (2007) 564–591

[8] Kao, M.Y.: Encyclopedia of Algorithms.
http://refworks.springer.com/algorithms/ (2007)

[9] Lapointe, F.J., Rissler, L.J.: Congruence, consensus and the comparative
phylogeography of codistributed species in California. Am. Nat. 166(2)
(2005) 290–299

[10] de Vienne, D.M., Giraud, T., Martin, O.C.: A congruencyindex for
testing topological similarity between trees. Bioinformatics 23(23)
(2007) 3119–3124

[11] Jousselin, E., van Noort, S., Berry, V., Rasplus, J.Y.,Ronsted, N.,
Erasmus, J., Greeff, J.: One fig to binf them all: host conservatism
in a fig wasp community unraveled by cospeciation analyses among
pollinating and nonpollinating fig wasps. Evolution (2008)

[12] Ge, F., Wang, L.S., Kim, J.: The cobweb of life revealed by genome-
scale estimates of horizontal gene transfer. PLOS Biology3(10) (2005)
1709–1718

[13] Nakhleh, L., Ruths, D., Wang, L.S.: RIATA-HGT: a fast and accurate
heuristic for reconstructing horizontal-gene transfer. In Wang, L., ed.:
Computating and Combinatorics, 11th Ann. Int. Conf. (COCOON).
Volume 3595 of LNCS., Springer (2005) 84–93

[14] Downey, R., Fellows, M.: Parameterized Complexity. Springer-Verlag
(1999)

[15] Flum, J., Grohe, M.: Parameterized Complexity Theory.Springer-Verlag
(2006)

[16] Agarwala, R., Fernandez-Baca, D.: A polynomial time algorithm for
the perfect phylogeny problem when the number of character states is
fixed. SIAM Journal on Computing23 (1994) 1216–1224

[17] Amir, A., Keselman, D.: Maximum agreement subtree in a set of
evolutionary trees: metrics and efficient algorithm. SIAM Journal on
Computing26(6) (1997) 1656–1669

[18] Farach, M., Przytycka, T.M., Thorup, M.: On the agreement of many
trees. Information Processing Letters55(6) (1995) 297–301

[19] Bryant, D.: Building trees, hunting for trees and comparing trees:
theory and method in phylogenetic analysis. PhD thesis, University
of Canterbury, Department of Mathemathics (1997)

[20] Downey, R.G., Fellows, M.R., Stege, U.: Computationaltractability: The
view from mars. Bulletin of the European Association for Theoretical
Computer Science69 (1999) 73–97

[21] Berry, V., Nicolas, F.: Improved parametrized complexity of the Max-
imum Agreement Subtree and Maximum Compatible Tree problems.
IEEE/ACM Transactions on Computational Biology and Bioinformatics
3(3) (2006) 289–302

[22] Guillemot, S., Nicolas, F.: Parameterized complexityof the MAST and
MCT problems. Technical report, LIRMM, Univ. Montpellier 2LIRMM,
Univ. Montpellier 2 LIRMM, Univ. Montpellier 2, (extended version of
the CPM’06 paper) (2007)

[23] Henzinger, M., King, V., Warnow, T.: Constructing a Tree from Home-
omorphic Subtrees, with Applications to Computational Evolutionary
Biology. Algorithmica24(1) (1999) 1–13

[24] Steel, M., Warnow, T.: Kaikoura tree theorems: computing the maximum
agreement subtree. Information Processing Letters48(2) (1993) 77–82

[25] Hoang, V., Sung, W.K.: Fixed parameter polynomial timealgorithms
for maximum agreement and compatible supertrees. In: Proceedings of
STACS’08. (2008) 361–372

[26] Bandelt, H., Dress, A.: Reconstructing the shape of a tree from observed
dissimilarity data. Advances in Applied Mathematics7 (1986) 309–343

[27] Fernau, H.: Parameterized Algorithmics: A Graph-Theoretic Approach.
Habilitationsschrift, Universität Tübingen, Germany (2005)

[28] Gramm, J., Niedermeier, R.: A fixed-parameter algorithm for minimum
quartet inconsistency. Journal of Computer and System Sciences67(4)
(2003) 723–741

[29] Chen, Y., Flum, J., Grohe, M.: Bounded Nondeterminism and Alterna-
tion in Parameterized Complexity Theory. In: Proceedings of CCC’03.
(2003) 13–29

[30] Guillemot, S.: Parameterized complexity and approximability of the
SLCS problem. In Grohe, M., Niedermeier, R., eds.: Proceedings of
IWPEC’08. Volume 5018 of LNCS., Springer (2008) 115–128

[31] Fellows, M., Hallett, M., Stege, U.: Analogs & duals of the MAST
problem for sequences & trees. Journal of Algorithms49(1) (2003)
192–216

APPENDIX I
COMPLEMENTS OF PROOF OFTHEOREM 1.

We show that the procedure ISCOMPATIBLE can be imple-
mented as aO(kn) time algorithm. Obviously, (i) testing if
π = π⊥ is done inO(k) time, (ii) given T spanning tree of
G(T , π), constructingC is done in |T | = O(k) time, provided
we have stored a labelle for each edge ofT , (iii) given V1, V2

partition of V , constructing the positionsπ1, π2 is done inO(k)

time. We now justify that inO(kn) time we can perform a
connexity test onG(T , π).

The crucial point is that the algorithm tests the connexity of
the graph, by working on the intersection model ofG := G(T , π)

provided by the sets{L(x) : x ∈ V }. In this way, we avoid
constructing the adjacency matrix ofG, which would require
O(k2n) time. We thus need to describe a connexity test for a
graphG = (V, E) given by an intersection model{Sv : v ∈ V },
where theSv are subsets of a base setS. We will justify that the
algorithm has running timeO(kn), wherek = |V | andn = |S|.

The algorithm proceeds as follows. It performs a traversal of
the graph, by starting at an arbitrary vertexu ∈ V , and maintains
the following information during the traversal: (i) the setU of
nodes already visited, (ii) a setF of edges forming a spanning
tree ofG[U]. At each step, the algorithm seeks atransversal edge,
which is an edgee = (u, v) ∈ E with u ∈ U, v ∈ U . If such an
edge is found, thenv is added toU , ande is added toF . If no
such edge exists, the algorithm stops, and the graph is connected
if and only if U = V .

We show that using appropriate data structures, each step of
the algorithm can be done inO(n) time. For eachx ∈ S, let
Vx = {v ∈ V : x ∈ Sv}. We maintain for eachx ∈ S, two lists
representing the setsUx = Vx ∩U andUx = Vx ∩U . Initializing
these lists at the beginning of the algorithm is done inO(kn)

time. Moreover, at a given step of the algorithm: (i) we can find
a tranversal edge inO(n) time, (ii) we can update the structures in
O(n) time. To justify Point (i), observe that finding a transversal
edge amounts to find an elementx ∈ S such that bothUx and
Ux are non empty; if such anx is found then by choosingu ∈
Ux, v ∈ Ux we obtain a transversal edge(u, v); clearly, these
operations can be performed inO(n) time. To justify Point (ii),
observe that when adding a new vertexv to U , we need, for each
x ∈ Sv , to addv to Ux and to removev from Ux, which can be
performed inO(n) time by using appropriate linkage in the data
structure storing elements in a set.

Pseudo-code of algorithm 3, called CONNECTIVITYTEST, de-
scribes this routine in detail, in the context where the vertives of
V are subtrees corresponding to a positionπ in treesT and the
sets{L(x) : x ∈ V } are the leaves of these subtrees. Note that the
forestF could be obtained by adding edge(u, v) to F after line 2,
but the forest itself is not useful as for each of its edges, a labelf
shared by the extremities of that edge is already identified and put
into the conflict set at line 1. For ease of implementation we also
give in Algorithm 4 the variant ISCOMPATIBLE* of Algorithm 1
that resorts to CONNECTIVITYTEST for deciding if a position in
a collectionT is compatible.

APPENDIX II
COMPLEMENTS OF PROOF OFLEMMA 5.

A.

(i) L(S1) ∩ L(S2) = ∅: indeed, if there wasx ∈ L(S1) ∩ L(S2)

then we would havex ∈ L(Ti) for some i ∈ [k]; then

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 12

Algorithm 3: CONNECTIVITYTEST(π,V)

Input : A position π in a collectionT of trees and the setV
of vertices of the graphG(T , π).

Result: A tuple (B, R) where

• B is a boolean indicating whetherG(T , π) is
disconnected

• R a setU ⊆ V of nodes forming a connected
component when the graph is disconnected,
otherwiseR is a conflict amongπ.

/* Note that the graphG(T , π) is never explicitly built */
Choose an arbitrary vertexu in V and setU ← {u}
foreach ℓ ∈ L(π) do

if ℓ ∈ L(u) then Uℓ ← {u} elseUℓ ← ∅

U ℓ ← ∅
foreach v ∈ V with v 6= u do

if ℓ ∈ L(v) then U ℓ ← Uℓ ∪ {v}

C ← ∅
while U 6= V do

/* Look for a transversal edge, i.e.,(u, v) such thatu ∈
U, v /∈ U */
Choosef ∈ L(π) such thatUf 6= ∅ andUf 6= ∅

if no suchf existsthen
return (true, U) /* U is a connected component
of G(T , π) */

else
1 C ← C ∪ {f}

2 Chooseu ∈ Uf andv ∈ Uf

U ← U ∪ {v}
foreach ℓ ∈ L(π) do

if v ∈ Uℓ then Uℓ ← U ℓ−{v} ; Uℓ ← Uℓ∪{v}

return (false, C) /* C is a conflict */

x = φj,i(x) ≤Ti
πj [i]. Since x ∈ L(Ti), we must have

π1[i], π2[i] 6=⊥; then they are equal to distinct children ofπ[i],
impossible.

(ii) φi is a partial embedding ofS into Ti:
• if x ∈ L(S), then x ∈ L(Sj). We conclude using the fact

that φj,i is a partial embedding and thatφi(x) = φj,i(x).
• if x is an internal node ofS with childrenx′, x′′, then:

– if x ∈ N(Sj), we conclude using the fact thatφj,i is a
partial embedding and thatφi(x) = φj,i(x).

– if x = r(S), with childrenx′ = r(S1), x
′′ = r(S2): then

∗ either φ1,i(x
′) = φ2,i(x

′′) =⊥, in which case
φi(x) =⊥;

∗ either φ1,i(x
′) 6=⊥, φ2,i(x

′′) =⊥, in which case
φi(x) = φ1,i(x

′);
∗ either φ1,i(x

′) =⊥, φ2,i(x
′′) 6=⊥, in which case

φi(x) = φ2,i(x
′′);

∗ eitherφ1,i(x
′) 6=⊥, φ2,i(x

′′) 6=⊥, in which case these
are nodesy′, y′′ such thaty′ ≤Ti

π1[i], y′′ ≤Ti
π2[i].

Since (π1, π2) ∈ D(π), it follows that π1[i], π2[i]

are 6=⊥ and are distinct children ofπ[i], hence
φi(x) = π[i], which implies thatφ1,i(x

′) <Ti
φi(x),

φ2,i(x
′′) <Ti

φi(x).
(iii) φi(r(S)) ≤Ti

π[i]: follows from the definition ofφi(r(S))

Algorithm 4: ISCOMPATIBLE* (π)

Input : A position π in a collectionT of trees.
Result: A tuple (B, C) where

• B is a boolean indicating whetherπ is compat-
ible

• C is a conflict amongπ when the positionπ is
not compatible.

if π = π⊥ then return (true, ∅)

if π is not reducedthen π ← π↓

V ←
S

i childrenTi
(π[i])

(disconnected, RCT)← CONNECTIVITYTEST(π,V)

if disconnected is false then
return (false, RCT) /*RCT is a conflict amongπ*/

else
/* RCT is a connected component ofG(T , π) */
V1 ← RCT ; V2 ← V −RCT

π1 ← succV1
(π) ; π2 ← succV2

(π)

(B1, C1)← ISCOMPATIBLE* (π1) ;
if B1 is false then return (false, C1)

(B2, C2)← ISCOMPATIBLE* (π2) ;
if B2 is false then return (false, C2)

return (true, ∅)

and from the fact thatφi(r(Sj)) ≤Ti
πj [i].

B.

We show that(π1, π2) ∈ D(π). Indeed, (i) we haveπj 6= π since
if we hadπ1[i] = π[i] for eachi, this would implyπ2[i] =⊥ for
eachi, but givenx ∈ L(S2) there existsi such thatx ∈ L(Ti),
impossible; (ii) fix i ∈ [k]:

• if π[i] =⊥, then φi(u) =⊥, and we then haveφi(v1) =

φi(v2) =⊥ by definition of a partial embedding, hence
π1[i] = π2[i] =⊥;

• if π[i] 6=⊥, thenφi(u) is a node ofTi, and we have:

– either φi(v1), φi(v2) 6=⊥, in which case the nodes
childTi

(φi(v1), φi(u)),

childTi
(φi(v2), φi(u)) are distinct, which implies that

π1[i], π2[i] are distinct children ofπ[i];
– or one ofφi(v1), φi(v2) is equal to⊥, in which case

the other must be equal toφi(u), which implies that
π1[i] = π[i], π2[i] =⊥ or the symmetric case.

APPENDIX III
COMPLEMENTARY PROOFS FOR INTRACTABILITY RESULTS

Below, given two treesT, T ′, we use the notationT ⋊⋉ T ′

to denote thatT and T ′ agree. We use a similar notation for
sequences.

A. Complement for the proof of Lemma 6

Proof: The correctness of the reduction given in the main
text follows by proving that:I is a positive instance of P-SLCS-D
if and only if I ′ is a positive instance of P-COLORED-SLCS.

(⇒): suppose thats is a compatible sequence forC with |s| = q.
Then s = z1...zq. Let s′ = z1

1 ...zq
q , we show thats′ is a colored

compatible sequence forC′. Clearly s′ is a colored sequence. To

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 13

prove thats′ is a compatible sequence forC′, we need to show
that:

• s′ ⋊⋉ s′p: considerx, y ∈ L(s′) ∩ L(s′p) such thatx <s′ y,
then x = zi

i , y = zj
j with i < j, and sincezi <s zj and

s ⋊⋉ sp it follows that zi <sp zj , thus zi
i <s′

p
z

j
j , and we

obtain thatx <s′

p
y.

• s′ ⋊⋉ s′′p : the reasoning is similar.

(⇐): suppose thats′ is a colored compatible sequence forC′.
Then s′ = y1...yq with yi ∈ L′i for eachi. Sinceyi ∈ L′i, there
existszi ∈ L such thatyi = zi

i .
Note that the labelsz1, ..., zq are pairwise distinct: ifzj , zj′

were equal (to a labelx) with j < j′, then by considering a
sequencesi such thatx ∈ L(si), we would obtainzj

j <s′

i
zj′

j′
but

zj′

j′
<s′′

i
zj
j , impossible.

Let us now defines = z1...zq , we show thats is a compatible
sequence forC. We need to show thats ⋊⋉ sp. Considerx, y ∈

L(s) ∩ L(sp) such thatx <s y, thenx = zi, y = zj with i < j.
Since zi

i <s′ zj
j and sinces′ ⋊⋉ s′p, we obtainzi

i <s′

p
zj
j , and

sincezi, zj are distinct this implieszi <sp zj , and thusx <sp y.

B. Complement for the proof of Lemma 7

Proof: The correctness of the reduction given in the
main text follows by proving that:I is a positive instance of
P-COLORED-SLCS if and only if I ′ is a positive instance of
P-SMAST-D.

(⇒): suppose thats is a colored compatible sequences for
C, with |s| = q. Then s = y1...yq , with yi ∈ Li. Let T =

rake(z0, (z1, y1), ..., (zq , yq)), then T is an agreement supertree
for T , with |T | = q′. Clearly, we haveT ⋊⋉ S andT ⋊⋉ S′, since
Ri|{zi, yi} = R′

i|{zi, yi} = (zi, yi) for eachi ∈ [q]. Moreover,
we haveT ⋊⋉ Ti for eachi ∈ [k]: indeed, ifs|L(si) = si|L(s) =

yi1 ...yim
with i1 < ... < im, then T |L(Ti) = Ti|L(T) =

rake(z0, yi1 , ..., yim
).

(⇐): suppose thatT is an agreement supertree forT , with
|T | = q′. First observe that|L(T)∩L′

i| ≤ 2 for eachi ∈ [q], since
otherwise one ofT ⋊⋉ Ri, T ⋊⋉ R′

i would fail. Since|T | = q′, it
follows that we have|L(T) ∩ L′

i| = 2 for eachi ∈ [q], and thus
z0 ∈ L(T). Now, for eachi ∈ [q] chooseyi ∈ L(T) ∩ L′

i distinct
from zi, and let s = y1...yq. Then s is a colored compatible
sequence forC. Indeed, consideri ∈ [k], sinceT ⋊⋉ Ti we have
T |L(Ti) = Ti|L(T) = rake(z0, yi1 , ..., yim

) with i1 < ... < im,
it follows that s|L(si) = si|L(s) = yi1 ...yim

, hences ⋊⋉ si.

ACKNOWLEDGMENT

This paper was supported by theAction incitativeBIOSTIC-
LR, the Action Jeunes Chercheursof University Montpellier II
and the french ANRPhylAriane.

