# The entropy compression technique

William Lochet, UiB

# 1 Lovász Local Lemma and Moser's Algorithm

# 1 Lovász Local Lemma and Moser's Algorithm

# 2 Examples of application

- 1 Lovász Local Lemma and Moser's Algorithm
- 2 Examples of application
  - Square-free word
  - Acyclic edge-colouring

# Lovász Local Lemma and Moser's Algorithm

- Probability space  $\Omega$  + Set of bad events  $\mathcal{B} = \{B_1, \ldots, B_m\}$ .
- If  $\{B_i\}$  are independent,  $Pr[\cap \overline{B}_i] = \prod_{i=1}^m (1 Pr[B_i])$ .

- Probability space  $\Omega$  + Set of bad events  $\mathcal{B} = \{B_1, \ldots, B_m\}$ .
- If  $\{B_i\}$  are independent,  $Pr[\cap \overline{B}_i] = \prod_{i=1}^m (1 Pr[B_i])$ .
- What happens when the  $\{B_i\}$  are not independent?

- Probability space  $\Omega$  + Set of bad events  $\mathcal{B} = \{B_1, \ldots, B_m\}$ .
- If  $\{B_i\}$  are independent,  $Pr[\cap \overline{B}_i] = \prod_{i=1}^m (1 Pr[B_i])$ .
- What happens when the  $\{B_i\}$  are not independent?

## Lemma (Lovász 1975)

- If each  $B_i$  is independent from all but d events;
- $Pr[B_i] \leq p$ ; and
- $e \cdot p \cdot d \leq 1$ .

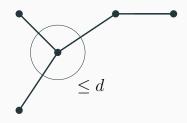
Then  $Pr[\cap \bar{B}_i] > 0$ 

- Probability space  $\Omega$  + Set of bad events  $\mathcal{B} = \{B_1, \ldots, B_m\}$ .
- If  $\{B_i\}$  are independent,  $Pr[\cap \overline{B}_i] = \prod_{i=1}^m (1 Pr[B_i])$ .
- What happens when the  $\{B_i\}$  are not independent?

# Lemma (Lovász 1975)

- If each  $B_i$  is independent from all but d events;
- $Pr[B_i] \leq p$ ; and
- $e \cdot p \cdot d \leq 1$ .

Then  $Pr[\cap \bar{B}_i] > 0$ 



A k-CNF formula is a conjunction of m clauses  $(C_1, \ldots, C_m)$ , where a clause is a disjunction of k literals.

 $F = (x_1 \lor x_2 \lor \bar{x_3}) \land (x_3 \lor \bar{x_4} \lor \bar{x_5}) \land (x_1 \lor \bar{x_2} \lor x_7)$ 

A k-CNF formula is a conjunction of m clauses  $(C_1, \ldots, C_m)$ , where a clause is a disjunction of k literals.

 $F = (x_1 \lor x_2 \lor \bar{x_3}) \land (x_3 \lor \bar{x_4} \lor \bar{x_5}) \land (x_1 \lor \bar{x_2} \lor x_7)$ 

Question (k-sat) Given a k-CNF formula F, is F satisfiable?

A k-CNF formula is a conjunction of m clauses  $(C_1, \ldots, C_m)$ , where a clause is a disjunction of k literals.

 $F = (x_1 \lor x_2 \lor \bar{x_3}) \land (x_3 \lor \bar{x_4} \lor \bar{x_5}) \land (x_1 \lor \bar{x_2} \lor x_7)$ 

Question (k-sat) Given a k-CNF formula F, is F satisfiable?

Pick the  $x_i$  uniformly at random,  $B_i := "C_i$  is not satisfied".

A k-CNF formula is a conjunction of m clauses  $(C_1, \ldots, C_m)$ , where a clause is a disjunction of k literals.

 $F = (x_1 \lor x_2 \lor \bar{x_3}) \land (x_3 \lor \bar{x_4} \lor \bar{x_5}) \land (x_1 \lor \bar{x_2} \lor x_7)$ 

Question (k-sat) Given a k-CNF formula F, is F satisfiable?

Pick the  $x_i$  uniformly at random,  $B_i := "C_i$  is not satisfied".

#### Observation

If  $C_i$  and  $C_j$  do not share a variable, then  $B_i$  and  $B_j$  are independent. Moreover,  $Pr[B_i] = (\frac{1}{2})^k$ 



Every k-CNF formula where each clause shares variables with at most  $d \leq 2^k/e$  other clauses is satisfiable.

By applying LLL since  $e \cdot Pr[B_i] \cdot d \leq e \cdot (\frac{1}{2})^k \cdot \frac{2^k}{e} \leq 1$ .

Every k-CNF formula where each clause shares variables with at most  $d \leq 2^k/e$  other clauses is satisfiable.

By applying LLL since  $e \cdot Pr[B_i] \cdot d \leq e \cdot (\frac{1}{2})^k \cdot \frac{2^k}{e} \leq 1$ .

**Question** Can we find such an assignment efficiently?

•  $Pr[\cap \overline{B}_i]$  is exponentially small in the **number of clauses**.

Every k-CNF formula where each clause shares variables with at most  $d \leq 2^k/e$  other clauses is satisfiable.

By applying LLL since  $e \cdot Pr[B_i] \cdot d \leq e \cdot (\frac{1}{2})^k \cdot \frac{2^k}{e} \leq 1$ .

**Question** Can we find such an assignment efficiently?

- $Pr[\cap \overline{B}_i]$  is exponentially small in the number of clauses.
- Beck, 1991  $\rightarrow$  existence of an algorithm when  $d \leq 2^{k/48}$ .

Every k-CNF formula where each clause shares variables with at most  $d \leq 2^k/e$  other clauses is satisfiable.

By applying LLL since  $e \cdot Pr[B_i] \cdot d \leq e \cdot (\frac{1}{2})^k \cdot \frac{2^k}{e} \leq 1$ .

**Question** Can we find such an assignment efficiently?

- $Pr[\cap \overline{B}_i]$  is exponentially small in the number of clauses.
- Beck, 1991  $\rightarrow$  existence of an algorithm when  $d \leq 2^{k/48}$ .

Theorem (Moser 2009, Moser and Tardos 2010) If  $d \leq 2^k/e$ , then a solution can be found in O(|V| + |C|log|C|).

Every k-CNF formula where each clause shares variables with at most  $d \leq 2^k/e$  other clauses is satisfiable.

By applying LLL since  $e \cdot Pr[B_i] \cdot d \leq e \cdot (\frac{1}{2})^k \cdot \frac{2^k}{e} \leq 1$ .

**Question** Can we find such an assignment efficiently?

- $Pr[\cap \overline{B}_i]$  is exponentially small in the number of clauses.
- Beck, 1991  $\rightarrow$  existence of an algorithm when  $d \leq 2^{k/48}$ .

Theorem (Moser 2009, Moser and Tardos 2010) If  $d \leq 2^k/e$ , then a solution can be found in O(|V| + |C|log|C|).

• Best paper award STOC 2009.

Every k-CNF formula where each clause shares variables with at most  $d \leq 2^k/e$  other clauses is satisfiable.

By applying LLL since  $e \cdot Pr[B_i] \cdot d \leq e \cdot (\frac{1}{2})^k \cdot \frac{2^k}{e} \leq 1$ .

**Question** Can we find such an assignment efficiently?

- $Pr[\cap \overline{B}_i]$  is exponentially small in the number of clauses.
- Beck, 1991  $\rightarrow$  existence of an algorithm when  $d \leq 2^{k/48}$ .

**Theorem (Moser 2009, Moser and Tardos 2010)** If  $d \leq 2^k/e$ , then a solution can be found in O(|V| + |C|log|C|).

- Best paper award STOC 2009.
- Gödel prize in 2020.

# The algorithm

Suppose  $F = C_1 \wedge \cdots \wedge C_m$  is a k-CNF and every clause  $C_i$  depends of variables  $x_{i_1}, \ldots, x_{i_k}$ .

Algorithm 1 Moser's Algorithm

- 1: Pick random values for  $x_1, \ldots, x_n$
- 2: while There exists a clause  $C_i$  not satisfied do
- 3: pick new values for all variables  $x_{i_1}, \ldots, x_{i_k}$  in  $C_i$
- 4: end while
- 5: **Return:** Value of the variables  $x_1, \ldots, x_n$

# The algorithm

Suppose  $F = C_1 \wedge \cdots \wedge C_m$  is a k-CNF and every clause  $C_i$  depends of variables  $x_{i_1}, \ldots, x_{i_k}$ .

Algorithm 1 Moser's Algorithm

- 1: Pick random values for  $x_1, \ldots, x_n$
- 2: while There exists a clause  $C_i$  not satisfied do
- 3: pick new values for all variables  $x_{i_1}, \ldots, x_{i_k}$  in  $C_i$
- 4: end while
- 5: **Return:** Value of the variables  $x_1, \ldots, x_n$ 
  - •Can we use the number of unsatisfied closes as **loop** invariant?

# The algorithm

Suppose  $F = C_1 \wedge \cdots \wedge C_m$  is a k-CNF and every clause  $C_i$  depends of variables  $x_{i_1}, \ldots, x_{i_k}$ .

Algorithm 1 Moser's Algorithm

- 1: Pick random values for  $x_1, \ldots, x_n$
- 2: while There exists a clause  $C_i$  not satisfied do
- 3: pick new values for all variables  $x_{i_1}, \ldots, x_{i_k}$  in  $C_i$
- 4: end while
- 5: **Return:** Value of the variables  $x_1, \ldots, x_n$ 
  - •Can we use the number of unsatisfied closes as **loop** invariant?
  - •No, changing the value  $x_{i_1}$  might change the status of some clause  $C_j$  neighbour of  $C_i$ .

- We focus on the first t steps of the algorithm.
- All the random choices can be described with n + tk bits.

- We focus on the first t steps of the algorithm.
- All the random choices can be described with n + tk bits.

#### Theorem (Moser and Tardos 2010) If $t = O(m \log(m))$ , then there is a way to decomp

If  $t = \Omega(m \log(m))$ , then there is a way to describe the running of t steps of the algorithm using o(n + tk) bits.

- We focus on the first t steps of the algorithm.
- All the random choices can be described with n + tk bits.

**Theorem (Moser and Tardos 2010)** If  $t = \Omega(m \log(m))$ , then there is a way to describe the running of t steps of the algorithm using o(n + tk) bits.

The algorithm can then be seen as:

- Take as input the n + tk random choices
- Assuming the algorithm runs for t steps, outputs an encoding of these random choices using this description

- The sequence  $u = (u_1, \ldots, u_t)$  of clauses treated at each step
- The values  $X_t = (x_1^t, \dots, x_n^t)$  of the variables after t steps

- The sequence  $u = (u_1, \ldots, u_t)$  of clauses treated at each step
- The values  $X_t = (x_1^t, \dots, x_n^t)$  of the variables after t steps

#### Lemma

Given u and  $X_t$ , we can recover the values  $X_i = (x_1^i, \ldots, x_n^i)$  of the variables after i steps for any  $i \in [t]$ 

- The sequence  $u = (u_1, \ldots, u_t)$  of clauses treated at each step
- The values  $X_t = (x_1^t, \ldots, x_n^t)$  of the variables after t steps

#### Lemma

Given u and  $X_t$ , we can recover the values  $X_i = (x_1^i, \ldots, x_n^i)$  of the variables after i steps for any  $i \in [t]$ 

• Between  $X_t$  and  $X_{t-1}$  only the variables in  $C_{u_t}$  change

- The sequence  $u = (u_1, \ldots, u_t)$  of clauses treated at each step
- The values  $X_t = (x_1^t, \dots, x_n^t)$  of the variables after t steps

#### Lemma

Given u and  $X_t$ , we can recover the values  $X_i = (x_1^i, \ldots, x_n^i)$  of the variables after i steps for any  $i \in [t]$ 

- Between  $X_t$  and  $X_{t-1}$  only the variables in  $C_{u_t}$  change
- Because  $C_{u_t}$  was not satisfied, we know the value of those variables.

#### Lemma

If  $R_1$  and  $R_2$  are two sets of n + tk bits for which the algorithm **does not terminate**, then the logs associated to  $R_1$  and  $R_2$  are different.

#### Lemma

If  $R_1$  and  $R_2$  are two sets of n + tk bits for which the algorithm **does not terminate**, then the logs associated to  $R_1$  and  $R_2$  are different.

It means that:

 $\# {\rm random}$  choices that do no terminate  $\leq \# {\rm of}$  possible logs

#### Lemma

If  $R_1$  and  $R_2$  are two sets of n + tk bits for which the algorithm **does not terminate**, then the logs associated to  $R_1$  and  $R_2$  are different.

It means that:

 $\# {\rm random}$  choices that do no terminate  $\leq \# {\rm of}$  possible logs

This implies that the probability that the algorithm does not terminate after t steps is at most:

 $\frac{\text{\#of possible logs}}{\text{\#of possible random choices}}$ 

• 
$$X_t = (x_1^t, \dots, x_n^t).$$

• 
$$X_t = (x_1^t, \dots, x_n^t).$$

• Naively,  $u_i$  can be encoded using  $\log(m)$  bits, Not good!

• 
$$X_t = (x_1^t, \dots, x_n^t).$$

• Naively,  $u_i$  can be encoded using  $\log(m)$  bits, Not good!

#### Observation

If  $C_{u_{i+1}}$  is a **neighbour** of  $C_{u_i}$ , it costs  $\log(2^k/e) < k$ .

**Question** How to encode  $u = (u_1, ..., u_t)$  and  $X_t$  efficiently? (compared to n + tk bits)

• 
$$X_t = (x_1^t, \dots, x_n^t).$$

• Naively,  $u_i$  can be encoded using  $\log(m)$  bits, Not good!

#### Observation

If  $C_{u_{i+1}}$  is a **neighbour** of  $C_{u_i}$ , it costs  $\log(2^k/e) < k$ .

If the algorithm runs long enough, it will be the case for most  $u_i$ .

## Square-free words

A word w over some alphabet  $\Sigma$  is said to be **square-free** if it does not contain a word of type uu as a subword.

A word w over some alphabet  $\Sigma$  is said to be **square-free** if it does not contain a word of type uu as a subword.

- u = abcbca is not square-free.
- v = abcba is.

A word w over some alphabet  $\Sigma$  is said to be **square-free** if it does not contain a word of type uu as a subword.

- u = abcbca is not square-free.
- v = abcba is.

#### **Theorem (Thue 1906)** There exists an infinite word without square when $|\Sigma| \ge 3$ .

A word w over some alphabet  $\Sigma$  is said to be **square-free** if it does not contain a word of type uu as a subword.

- u = abcbca is not square-free.
- v = abcba is.

**Theorem (Thue 1906)** There exists an infinite word without square when  $|\Sigma| \ge 3$ .

#### Question

Suppose  $L_1, \ldots, L_n$  are *n* list of 3 elements of  $\Sigma$ , does there exists a square-free word  $u = u_1 u_2 \ldots u_n$  such that  $u_i \in L_i$ ?

### Algorithm for $|L_i| = 5$

#### Theorem (Grytczuk, Kozik and Micek 2013) Entropy compression works for $|L_i| \ge 4$ .

### Algorithm for $|L_i| = 5$

**Theorem (Grytczuk, Kozik and Micek 2013)** Entropy compression works for  $|L_i| \ge 4$ .

Algorithm 2 Finding square-free words

 $u \leftarrow \text{empty word}$ while |u| < n do  $a \leftarrow \text{random letter in } L_{|u|+1}$   $u \leftarrow ua$ if u = wbb for some word b then  $u \leftarrow wb$ end if end while

### Algorithm for $|L_i| = 5$

**Theorem (Grytczuk, Kozik and Micek 2013)** Entropy compression works for  $|L_i| \ge 4$ .

Algorithm 2 Finding square-free words

 $u \leftarrow \text{empty word}$ while |u| < n do  $a \leftarrow \text{random letter in } L_{|u|+1}$   $u \leftarrow ua$ if u = wbb for some word b then  $u \leftarrow wb$ end if end while

#### **Lemma** This algorithm terminates in O(n) steps.

- Adding 1 each time the algorithm adds a letter.
- Adding 0 each time the algorithm removes a letter.
- $\begin{array}{l} u := \emptyset \\ l := \emptyset \end{array}$

- Adding 1 each time the algorithm adds a letter.
- Adding 0 each time the algorithm removes a letter.
- u := a
- l := 1

- Adding 1 each time the algorithm adds a letter.
- Adding 0 each time the algorithm removes a letter.
- u := abl := 11

- Adding 1 each time the algorithm adds a letter.
- Adding 0 each time the algorithm removes a letter.
- u := abal := 111

- Adding 1 each time the algorithm adds a letter.
- Adding 0 each time the algorithm removes a letter.
- u := ababl := 1111

- Adding 1 each time the algorithm adds a letter.
- Adding 0 each time the algorithm removes a letter.
- u := ab abl := 1111

- Adding 1 each time the algorithm adds a letter.
- Adding 0 each time the algorithm removes a letter.

 $\begin{aligned} u &:= ab \\ l &:= 111100 \end{aligned}$ 

- Adding 1 each time the algorithm adds a letter.
- Adding 0 each time the algorithm removes a letter.
- $\begin{aligned} u &:= abc \\ l &:= 1111001 \end{aligned}$

#### Lemma

Given a log : (u, l) it is possible to deduce the set of random choices.

u := abcl := 1111001

#### Lemma

Given a log : (u, l) it is possible to deduce the set of random choices.

- u := abc
- l := 1111001

#### Lemma

Given a log : (u, l) it is possible to deduce the set of random choices.

u := abl := 111100

#### Lemma

Given a log : (u, l) it is possible to deduce the set of random choices.

u := ab

l := 111100

#### Lemma

Given a log : (u, l) it is possible to deduce the set of random choices.

- u := abab
- l := 1111

#### Lemma

Given a log : (u, l) it is possible to deduce the set of random choices.

• Two sets of random choices that **do not terminate** produce different logs.

#### Lemma

Given a log : (u, l) it is possible to deduce the set of random choices.

- Two sets of random choices that **do not terminate** produce different logs.
- The number of possible logs of t steps is  $5^n \cdot 2^{2t}$

#### Lemma

Given a log : (u, l) it is possible to deduce the set of random choices.

- Two sets of random choices that **do not terminate** produce different logs.
- The number of possible logs of t steps is  $5^n \cdot 2^{2t}$
- The number of possible random choices is  $5^t$

#### Lemma

Given a log : (u, l) it is possible to deduce the set of random choices.

- Two sets of random choices that **do not terminate** produce different logs.
- The number of possible logs of t steps is  $5^n \cdot 2^{2t}$
- The number of possible random choices is  $5^t$

#### Theorem

The probability that the algorithm does not terminate after t steps is at most  $\frac{5^n 4^t}{5^t} = \frac{4^t}{5^{t-n}}$ .

for t = 11n, we have  $\frac{4^t}{5^{t-n}} \le 1/2$ .

### With a better counting, we can prove:

### Theorem (Grytczuk, Kozik and Micek 2013) Entropy compression works for $|L_i| \ge 4$ .

With a better counting, we can prove:

**Theorem (Grytczuk, Kozik and Micek 2013)** Entropy compression works for  $|L_i| \ge 4$ .

Conjecture It works when  $|L_i| \ge 3$ .

- If all the list are the same, then this is the result of Thue.
- Experimentally, the algorithm seems to work, but much slower

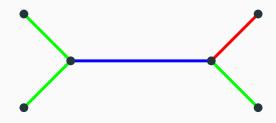
Acyclic colouring

### **Proper Edge Colouring**

### Definition

An edge-colouring of a graph G is said to be **proper** if:

• No two adjacent **edges** have the same colour

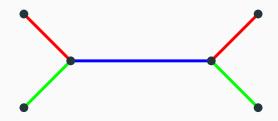


### **Proper Edge Colouring**

### Definition

An edge-colouring of a graph G is said to be **proper** if:

• No two adjacent **edges** have the same colour



# **Theorem (Vizing 1964)** For any graph G, there exists a **proper edge colouring** using $\Delta(G) + 1$ colours.

Where  $\Delta(G)$  is the maximal degree.

### Acyclic Edge Colouring

### Definition

An edge-colouring of a graph G is said to be **acyclic** if:

- It is proper
- There is no **bicoloured** cycle.



### Acyclic Edge Colouring

### Definition

An edge-colouring of a graph G is said to be **acyclic** if:

- It is proper
- There is no **bicoloured** cycle.



**Theorem (Alon, McDiarmid and Reed 1991)** For any graph G, there exists an acyclic edge colouring using at most  $64\Delta(G)$  colours.

- After a series of improvements the best bound is now  $3.74\Delta$
- It has been conjectured that  $\Delta + 2$  should be enough.

### **Theorem (Esperet and Parreau 2013)** For any graph G, there exists an acyclic edge colouring using at most $4\Delta(G)$ colours.

We will do the proof with  $7\Delta(G)$  colours.

### **Theorem (Esperet and Parreau 2013)** For any graph G, there exists an *acyclic edge colouring* using at most $4\Delta(G)$ colours.

We will do the proof with  $7\Delta(G)$  colours. The algorithm will colour the edges one by one, ensuring:

- The colouring is proper
- The colouring is acyclic

Suppose G is partially coloured and we are trying to colour (uv)



Suppose G is partially coloured and we are trying to colour (uv)



- v and u are both adjacent to at most  $\Delta$  colours
- There is  $(7-2)\Delta = 5\Delta$  colours available

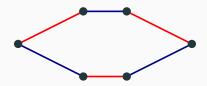
Suppose G is partially coloured and we are trying to colour (uv)



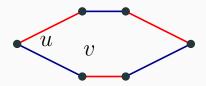
- v and u are both adjacent to at most  $\Delta$  colours
- There is  $(7-2)\Delta = 5\Delta$  colours available

The algorithm will pick uniformly at random a color among the  $5\Delta$  available. The (partial) colouring throughout this process is always **proper**.

If G has a proper edge colouring, then any bi-coloured cycle C is even and with alternating colors.

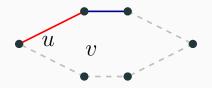


If G has a proper edge colouring, then any bi-coloured cycle C is even and with alternating colors.



If after colouring the edge (uv), there is a bi-coloured cycle C of size 2k containing uv:

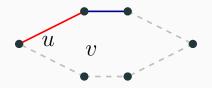
If G has a proper edge colouring, then any bi-coloured cycle C is even and with alternating colors.



If after colouring the edge (uv), there is a bi-coloured cycle C of size 2k containing uv:

• Remove the colours all the edges of the cycle except 2

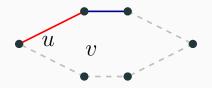
If G has a proper edge colouring, then any bi-coloured cycle C is **even** and with **alternating colors**.



If after colouring the edge (uv), there is a bi-coloured cycle C of size 2k containing uv:

- Remove the colours all the edges of the cycle except 2
- Knowing uv, we only need to know the cycle C in order to recover the colouring. There are  $\Delta^{2k-2}$  possible choices.

If G has a proper edge colouring, then any bi-coloured cycle C is even and with alternating colors.



If after colouring the edge (uv), there is a bi-coloured cycle C of size 2k containing uv:

- Remove the colours all the edges of the cycle except 2
- Knowing uv, we only need to know the cycle C in order to recover the colouring. There are  $\Delta^{2k-2}$  possible choices.
- To compare with the  $(5\Delta)^{2k-2}$  possible choices of colour.

### The algorithm

We will keep two logs: (L, R) and assume there is an arbitrary order on the edges  $e_1, \ldots, e_m$ .

### The algorithm

We will keep two logs: (L, R) and assume there is an arbitrary order on the edges  $e_1, \ldots, e_m$ .

Algorithm 3 Finding an acyclic colouring

 $c \leftarrow \text{empty colouring.}$ 

while there is an non coloured edge  $e_i$  do

$$c(e_i) \leftarrow$$
 random available colour.

 $L \leftarrow L \cdot 1$ 

if  $\exists$  bi-coloured cycle C of size 2k containing  $e_i$  then un-colour all edges of C except 2 Add (2k - 2) 0's at the end of LAdd to R the 2k - 2 integers to recover C from  $e_i$ end if end while Suppose the algorithm runs for t steps (while loop). We need to show the following two things:

1. (L, R) and the value of the colouring c at the end of the algorithm is enough to recover the set of random choices.

Suppose the algorithm runs for t steps (while loop). We need to show the following two things:

- 1. (L, R) and the value of the colouring c at the end of the algorithm is enough to recover the set of random choices.
- 2. If t is big enough, the number of possible (L, R) and c is much smaller  $(5\Delta)^t$ .

### Recovering the random choices.

#### Lemma

Given (L, R), we can recover the set of coloured edges after i steps for any  $i \in [t]$ .

Given (L, R), we can recover the set of coloured edges after i steps for any  $i \in [t]$ .

#### Proof.

By induction on i (at i = 0, no edge is coloured). Suppose we know the set of coloured edges after i - 1 steps.

• The algorithm starts the loop by colouring the non-coloured edge with smallest index,  $e_j$ .

Given (L, R), we can recover the set of coloured edges after i steps for any  $i \in [t]$ .

#### Proof.

By induction on i (at i = 0, no edge is coloured). Suppose we know the set of coloured edges after i - 1 steps.

- The algorithm starts the loop by colouring the non-coloured edge with smallest index,  $e_j$ .
- If after the i-th 1 in L there is another 1: No bad event.

Given (L, R), we can recover the set of coloured edges after i steps for any  $i \in [t]$ .

#### Proof.

By induction on i (at i = 0, no edge is coloured). Suppose we know the set of coloured edges after i - 1 steps.

- The algorithm starts the loop by colouring the non-coloured edge with smallest index,  $e_j$ .
- If after the i-th 1 in L there is another 1: No bad event.
- If there is a 0, the number of consecutive 0's tells us the length of the bad cycle  ${\cal C}$

Given (L, R), we can recover the set of coloured edges after i steps for any  $i \in [t]$ .

#### Proof.

By induction on i (at i = 0, no edge is coloured). Suppose we know the set of coloured edges after i - 1 steps.

- The algorithm starts the loop by colouring the non-coloured edge with smallest index,  $e_j$ .
- If after the i-th 1 in L there is another 1: No bad event.
- If there is a 0, the number of consecutive 0's tells us the length of the bad cycle C
- By looking at R we are able to recover C from  $e_j$

Given (L, R) and the value of c at the end, we can recover the value of c after i steps for any  $i \in [t]$ .

Given (L, R) and the value of c at the end, we can recover the value of c after i steps for any  $i \in [t]$ .

#### Proof.

By induction on t - i (at i = 0, we already know c). Suppose we know the set of coloured edges after t - i + 1 steps.

• By looking at L we know if there is a bad cycle at step t - i.

Given (L, R) and the value of c at the end, we can recover the value of c after i steps for any  $i \in [t]$ .

#### Proof.

By induction on t - i (at i = 0, we already know c). Suppose we know the set of coloured edges after t - i + 1 steps.

- By looking at L we know if there is a bad cycle at step t i.
- If there was not, we know by the previous lemma which edge was coloured at that step.

Given (L, R) and the value of c at the end, we can recover the value of c after i steps for any  $i \in [t]$ .

#### Proof.

By induction on t - i (at i = 0, we already know c). Suppose we know the set of coloured edges after t - i + 1 steps.

- By looking at L we know if there is a bad cycle at step t i.
- If there was not, we know by the previous lemma which edge was coloured at that step.
- If there was a bad cycle, by looking at *R* we can recover this cycle and thus the colouring.

• The number of possible L is smaller than  $4^t$ 

- The number of possible L is smaller than  $4^t$
- The number of possible R is  $\Delta^t$

- The number of possible L is smaller than  $4^t$
- The number of possible R is  $\Delta^t$
- The number of possible c is  $(7\Delta)^m$

- The number of possible L is smaller than  $4^t$
- The number of possible R is  $\Delta^t$
- The number of possible c is  $(7\Delta)^m$
- The number of possible random choices is  $(5\Delta)^t$ .

- The number of possible L is smaller than  $4^t$
- The number of possible R is  $\Delta^t$
- The number of possible c is  $(7\Delta)^m$
- The number of possible random choices is  $(5\Delta)^t$ .

Overall when t is large enough, we have  $4^t \cdot \Delta^t \cdot (7\Delta)^m < (5\Delta)^t$ .

- The number of possible L is smaller than  $4^t$
- The number of possible R is  $\Delta^t$
- The number of possible c is  $(7\Delta)^m$
- The number of possible random choices is  $(5\Delta)^t$ .

Overall when t is large enough, we have  $4^t \cdot \Delta^t \cdot (7\Delta)^m < (5\Delta)^t$ .

#### Theorem

The algorithm terminates in linear time with constant probability.

• Similar arguments can get the bound down to  $3.74\Delta$ 

- Similar arguments can get the bound down to  $3.74\Delta$
- Cai et al. proved  $(1 + \epsilon)\Delta$  when the girth is larger than some constant  $g(\epsilon)$

- Similar arguments can get the bound down to  $3.74\Delta$
- Cai et al. proved  $(1 + \epsilon)\Delta$  when the girth is larger than some constant  $g(\epsilon)$
- It seems like the "limit" of EC for this is  $2\Delta$

### Thank you!