The entropy compression technique

William Lochet, UiB

Plan of the lecture

1 Lovész Local Lemma and Moser’s Algorithm

Plan of the lecture

1 Lovész Local Lemma and Moser’s Algorithm

2 Examples of application

Plan of the lecture

1 Lovész Local Lemma and Moser’s Algorithm

2 Examples of application

e Square-free word

e Acyclic edge-colouring

Lovasz Local Lemma and Moser’s
Algorithm

The Lovasz Local Lemma (LLL) setting

e Probability space Q2 + Set of bad events B ={Bjy,...,Bn}.
e If {B;} are independent, Pr[NB;] = [[2,(1 — Pr[By]).

The Lovasz Local Lemma (LLL) setting

e Probability space Q2 + Set of bad events B ={Bjy,...,Bn}.
e If {B;} are independent, Pr[NB;] = [[2,(1 — Pr[By]).
e What happens when the {B;} are not independent?

The Lovasz Local Lemma (LLL) setting

e Probability space Q2 + Set of bad events B ={Bjy,...,Bn}.
e If {B;} are independent, Pr[NB;] = [[2,(1 — Pr[By]).
e What happens when the {B;} are not independent?

Lemma (Lovasz 1975)
e [f each B; is independent from all bul d events;

e Pr(B;] <p; and
ec-p-d<1.
Then Pr[NB;] >0

The Lovasz Local Lemma (LLL) setting

e Probability space Q2 + Set of bad events B ={Bjy,...,Bn}.
e If {B;} are independent, Pr[NB;] = [[2,(1 — Pr[By]).
e What happens when the {B;} are not independent?

Lemma (Lovasz 1975)
e [f each B; is independent from all bul d events;

e Pr(B;] <p; and
ec-p-d<1.
Then Pr[NB;] >0

The canonical example

Definition (k-CNF)

A k-CNF formula is a conjunction of m clauses (C1,...,Cp),

where a clause is a disjunction of k literals.

F:(331\/.%2\/.%73)/\($3Vf4\/.f5)/\<1'1\/f2\/x7)

The canonical example

Definition (k-CNF)

A k-CNF formula is a conjunction of m clauses (C1,...,Cp),

where a clause is a disjunction of k literals.
F = (331\/.%2\/.%73)/\ ($3Vf4\/.f5)/\ <$1\/f2\/x7)

Question (k-sat)
Given a k-CNF formula F, is F' satisfiable?

The canonical example

Definition (k-CNF)

A k-CNF formula is a conjunction of m clauses (C1,...,Cp),

where a clause is a disjunction of k literals.
F = ($1V$2\/f3)/\($3\/f4\/.f5)/\ <$1\/f2\/x7)

Question (k-sat)
Given a k-CNF formula F, is F' satisfiable?

Pick the x; uniformly at random, B; :="C} is not satisfied".

The canonical example

Definition (k-CNF)
A k-CNF formula is a conjunction of m clauses (C1,...,Cp),

where a clause is a disjunction of k literals.

F:($1V$2\/f3)/\($3\/f4\/.f5)/\(l’l\/fg\/x7)

Question (k-sat)
Given a k-CNF formula F, is F' satisfiable?

Pick the x; uniformly at random, B; :="C} is not satisfied".

Observation
If C; and C; do not share a variable, then B; and B; are

independent. Moreover, Pr[B;] = (3)k

Tight bound and breakthrough

Theorem
Every k-CNF formula where each clause shares variables with at

most d < 2F /e other clauses is satisfiable.

By applying LLL since e - Pr[B;]-d < e- (1)*- % <1.

Tight bound and breakthrough

Theorem
Every k-CNF formula where each clause shares variables with at

most d < 2F /e other clauses is satisfiable.
By applying LLL since e - Pr[B;]-d < e- (%)k : % <1.

Question
Can we find such an assignment efficiently?

e Pr[NB;] is exponentially small in the number of clauses.

Tight bound and breakthrough

Theorem
Every k-CNF formula where each clause shares variables with at

most d < 2F /e other clauses is satisfiable.
By applying LLL since e - Pr[B;]-d < e- (%)k : % <1.

Question
Can we find such an assignment efficiently?

e Pr[NB;] is exponentially small in the number of clauses.

e Beck, 1991 — existence of an algorithm when d < 2+/48,

Tight bound and breakthrough

Theorem
Every k-CNF formula where each clause shares variables with at

most d < 2F /e other clauses is satisfiable.
By applying LLL since e - Pr[B;]-d < e- (1)*- % <1.

Question
Can we find such an assignment efficiently?

e Pr[NB;] is exponentially small in the number of clauses.

e Beck, 1991 — existence of an algorithm when d < 2+/48,

Theorem (Moser 2009, Moser and Tardos 2010)
If d < 2 e, then a solution can be found in O(|V|+ |C|log|C|).

Tight bound and breakthrough

Theorem
Every k-CNF formula where each clause shares variables with at

most d < 2F /e other clauses is satisfiable.
By applying LLL since e - Pr[B;]-d < e- (1)*- % <1.

Question
Can we find such an assignment efficiently?

e Pr[NB;] is exponentially small in the number of clauses.

e Beck, 1991 — existence of an algorithm when d < 2+/48,

Theorem (Moser 2009, Moser and Tardos 2010)
If d < 2 e, then a solution can be found in O(|V|+ |C|log|C|).

e Best paper award STOC 20009.

Tight bound and breakthrough

Theorem
Every k-CNF formula where each clause shares variables with at

most d < 2F /e other clauses is satisfiable.
By applying LLL since e - Pr[B;]-d < e- (1)*- % <1.

Question
Can we find such an assignment efficiently?

e Pr[NB;] is exponentially small in the number of clauses.

e Beck, 1991 — existence of an algorithm when d < 2+/48,

Theorem (Moser 2009, Moser and Tardos 2010)
If d < 2 e, then a solution can be found in O(|V|+ |C|log|C|).

e Best paper award STOC 20009.
e Godel prize in 2020.

The algorithm

Suppose F'=Cy A--- ANC,, is a k-CNF and every clause C;
depends of variables z;, ..., z;,.

Algorithm 1 Moser’s Algorithm

1: Pick random values for z1,...,z,

2: while There exists a clause C; not satisfied do

3: pick new values for all variables z;,,...,z; in C;
4: end while

5. Return: Value of the variables z1,...,z,

The algorithm

Suppose F'=Cy A--- ANC,, is a k-CNF and every clause C;
depends of variables z;, ..., z;,.

Algorithm 1 Moser’s Algorithm

1: Pick random values for z1,...,z,

2: while There exists a clause C; not satisfied do

3: pick new values for all variables z;,,...,z; in C;
4: end while

5. Return: Value of the variables z1,...,z,

eCan we use the number of unsatisfied closes as loop

invariant?

The algorithm

Suppose F'=Cy A--- ANC,, is a k-CNF and every clause C;
depends of variables z;, ..., z;,.

Algorithm 1 Moser’s Algorithm

1: Pick random values for z1,...,z,

2: while There exists a clause C; not satisfied do

3: pick new values for all variables z;,,...,z; in C;
4: end while

5. Return: Value of the variables z1,...,z,

eCan we use the number of unsatisfied closes as loop
invariant?
eNo, changing the value x;, might change the status of some

clause C; neighbour of C;.

Entropy compression

e We focus on the first 7 steps of the algorithm.

e All the random choices can be described with n + ¢/ bits.

Entropy compression

e We focus on the first ¢ steps of the algorithm.

e All the random choices can be described with n + ¢/ bits.

Theorem (Moser and Tardos 2010)
Ift = Q(mlog(m)), then there is a way to describe the running

of t steps of the algorithm using o(n + tk) bits.

Entropy compression

e We focus on the first ¢ steps of the algorithm.

e All the random choices can be described with n + ¢/ bits.

Theorem (Moser and Tardos 2010)
Ift = Q(mlog(m)), then there is a way to describe the running

of t steps of the algorithm using o(n + tk) bits.
The algorithm can then be seen as:
e Take as input the n + tk random choices

e Assuming the algorithm runs for t steps, outputs an

encoding of these random choices using this description

Description of a run

Definition (Log)
A log is a description of:

e The sequence u = (uq, ..., us) of clauses treated at each step

e The values X; = (!,...,2%) of the variables after ¢ steps

Description of a run

Definition (Log)
A log is a description of:

e The sequence u = (uq, ..., us) of clauses treated at each step

e The values X; = (!,...,2%) of the variables after ¢ steps
Lemma ' ‘
Given u and X, we can recover the values X; = (xY,...,xz}) of

the variables after i steps for any i € [t]

Description of a run

Definition (Log)
A log is a description of:

e The sequence u = (uq, ..., us) of clauses treated at each step

e The values X; = (!,...,2%) of the variables after ¢ steps
Lemma ' ‘
Given u and X, we can recover the values X; = (xY,...,xz}) of

the variables after i steps for any i € [t]

e Between X; and X;_; only the variables in C,, change

Description of a run

Definition (Log)
A log is a description of:

e The sequence u = (uq, ..., us) of clauses treated at each step

e The values X; = (!,...,2%) of the variables after ¢ steps
Lemma ' ‘
Given u and X, we can recover the values X; = (xY,...,xz}) of

the variables after i steps for any i € [t]
e Between X; and X;_; only the variables in C,, change

e Because C,, was not satisfied, we know the value of those
variables.

Number of logs

Lemma
If Ry and Ry are two sets of n + tk bits for which the algorithm
does not terminate, then the logs associated to Ry and Ro are
different.

Number of logs

Lemma
If Ry and Ry are two sets of n + tk bits for which the algorithm

does not terminate, then the logs associated to Ry and Ro are
different.

It means that:

#random choices that do no terminate < #of possible logs

Number of logs

Lemma
If Ry and Ry are two sets of n + tk bits for which the algorithm

does not terminate, then the logs associated to Ry and Ro are
different.

It means that:
#random choices that do no terminate < #of possible logs

This implies that the probability that the algorithm does not
terminate after ¢ steps is at most:

#of possible logs

#of possible random choices

Efficient encoding

Question
How to encode u = (u1,...,u) and Xy efficiently?

(compared to n + tk bits)

10

Efficient encoding

Question
How to encode u = (u1,...,u) and Xy efficiently?

(compared to n + tk bits)

o Xy =(af,...,2).

10

Efficient encoding

Question
How to encode u = (u1,...,u) and Xy efficiently?

(compared to n + tk bits)

o Xy =(af,...,2).

e Naively, u; can be encoded using log(m) bits, Not good!

10

Efficient encoding

Question
How to encode u = (u1,...,u) and Xy efficiently?

(compared to n + tk bits)

o Xy =(af,...,2).

e Naively, u; can be encoded using log(m) bits, Not good!

Observation
If Cy,., is a neighbour of Cy,, it costs log(2¥/e) < k.

Lit1

10

Efficient encoding

Question
How to encode u = (u1,...,u) and Xy efficiently?

(compared to n + tk bits)

o Xy =(af,...,2).

e Naively, u; can be encoded using log(m) bits, Not good!

Observation
If Cy,., is a neighbour of Cy,, it costs log(2¥/e) < k.

Lit1

If the algorithm runs long enough, it will be the case for most u;.

10

Square-free words

Square-free words

Definition
A word w over some alphabet Y is said to be square-free if it

does not contain a word of type uu as a subword.

11

Square-free words

Definition
A word w over some alphabet Y is said to be square-free if it

does not contain a word of type uu as a subword.

e u = abcbea is not square-free.

e v = abcba is.

11

Square-free words

Definition
A word w over some alphabet Y is said to be square-free if it

does not contain a word of type uu as a subword.

e u = abcbea is not square-free.

e v = abcba is.

Theorem (Thue 1906)
There exists an infinite word without square when |X| > 3.

11

Square-free words

Definition
A word w over some alphabet Y is said to be square-free if it

does not contain a word of type uu as a subword.
e u = abcbea is not square-free.

e v = abcba is.

Theorem (Thue 1906)
There exists an infinite word without square when |X| > 3.

Question
Suppose Ly, ..., Ly, are n list of 3 elements of X, does there

exists a square-free word u = uius ... u, such that u; € L;?

11

Algorithm for |L;| =5

Theorem (Grytczuk, Kozik and Micek 2013)
Entropy compression works for |L;| > 4.

12

Algorithm for |L;| =5

Theorem (Grytczuk, Kozik and Micek 2013)
Entropy compression works for |L;| > 4.

Algorithm 2 Finding square-free words
u 4 empty word

while |u| < n do

a < random letter in Ly, 4
U ua
if u = wbb for some word b then
u < wb
end if
end while

12

Algorithm for |L;| =5

Theorem (Grytczuk, Kozik and Micek 2013)
Entropy compression works for |L;| > 4.

Algorithm 2 Finding square-free words
u 4 empty word

while |u| < n do

a < random letter in Ly, 4
U ua
if u = wbb for some word b then
u < wb
end if
end while

Lemma
This algorithm terminates in O(n) steps.
12

The log of a run consists of the value of u at the end and a
word [€ {0,1}* obtained by:

e Adding 1 each time the algorithm adds a letter.

e Adding 0 each time the algorithm removes a letter.

u .

0
[=10

13

The log of a run consists of the value of u at the end and a
word [€ {0,1}* obtained by:

e Adding 1 each time the algorithm adds a letter.

e Adding 0 each time the algorithm removes a letter.

U =a
[=1

13

The log of a run consists of the value of u at the end and a
word [€ {0,1}* obtained by:

e Adding 1 each time the algorithm adds a letter.

e Adding 0 each time the algorithm removes a letter.

u = ab
[=11

13

The log of a run consists of the value of u at the end and a
word [€ {0,1}* obtained by:

e Adding 1 each time the algorithm adds a letter.

e Adding 0 each time the algorithm removes a letter.

u = aba
[=111

13

The log of a run consists of the value of u at the end and a
word [€ {0,1}* obtained by:

e Adding 1 each time the algorithm adds a letter.

e Adding 0 each time the algorithm removes a letter.

u = abab
[=1111

13

The log of a run consists of the value of u at the end and a
word [€ {0,1}* obtained by:

e Adding 1 each time the algorithm adds a letter.

e Adding 0 each time the algorithm removes a letter.

u = abab
[=1111

13

The log of a run consists of the value of u at the end and a
word [€ {0,1}* obtained by:

e Adding 1 each time the algorithm adds a letter.

e Adding 0 each time the algorithm removes a letter.

u = ab
[:=111100

13

The log of a run consists of the value of u at the end and a
word [€ {0,1}* obtained by:

e Adding 1 each time the algorithm adds a letter.

e Adding 0 each time the algorithm removes a letter.

u = abc
[:=1111001

13

Lemma
Given a log : (u,l) it is possible to deduce the set of random

choices.
u = abc
[= 1111001

14

Lemma
Given a log : (u,l) it is possible to deduce the set of random

choices.
u = abc
[= 1111001

14

Lemma
Given a log : (u,l) it is possible to deduce the set of random

choices.
u = ab
[= 111100

14

Lemma
Given a log : (u,l) it is possible to deduce the set of random

choices.
u = ab
[= 111100

14

Lemma
Given a log : (u,l) it is possible to deduce the set of random

choices.
u := abab
[= 1111

14

Lemma
Given a log : (u,l) it is possible to deduce the set of random

choices.

e Two sets of random choices that do not terminate
produce different logs.

14

Lemma
Given a log : (u,l) it is possible to deduce the set of random

choices.

e Two sets of random choices that do not terminate

produce different logs.

e The number of possible logs of ¢ steps is 5™ - 2%

14

Lemma
Given a log : (u,l) it is possible to deduce the set of random

choices.

e Two sets of random choices that do not terminate

produce different logs.
e The number of possible logs of ¢ steps is 5™ - 2%

e The number of possible random choices is 5!

14

Lemma
Given a log : (u,l) it is possible to deduce the set of random

choices.

e Two sets of random choices that do not terminate

produce different logs.
e The number of possible logs of ¢ steps is 5™ - 2%

e The number of possible random choices is 5!

Theorem

The probability that the algorithm does not terminate after t
. ngt G

steps 1s at most 55§1 = 5t4_n.

for t = 11n, we have = < 1/2.

14

List of size 4, 37

With a better counting, we can prove:

Theorem (Grytczuk, Kozik and Micek 2013)
Entropy compression works for |L;| > 4.

15

List of size 4, 37

With a better counting, we can prove:

Theorem (Grytczuk, Kozik and Micek 2013)
Entropy compression works for |L;| > 4.

Conjecture
It works when |L;| > 3.

e If all the list are the same, then this is the result of Thue.

e Experimentally, the algorithm seems to work, but much

slower

15

Acyclic colouring

Proper Edge Colouring

Definition
An edge-colouring of a graph G is said to be proper if:

e No two adjacent edges have the same colour

16

Proper Edge Colouring

Definition
An edge-colouring of a graph G is said to be proper if:

e No two adjacent edges have the same colour

Theorem (Vizing 1964)
For any graph G, there exists a proper edge colouring using

A(G) + 1 colours.

Where A(G) is the maximal degree.
16

Acyclic Edge Colouring

Definition
An edge-colouring of a graph G is said to be acyclic if:

e [t is proper

e There is no bicoloured cycle.

17

Acyclic Edge Colouring

Definition
An edge-colouring of a graph G is said to be acyclic if:

e [t is proper

e There is no bicoloured cycle.

Theorem (Alon, McDiarmid and Reed 1991)

For any graph G, there exists an acyclic edge colouring using
at most 64A(G) colours.

e After a series of improvements the best bound is now 3.74A

e [t has been conjectured that A + 2 should be enough.

17

Using entropy compression

Theorem (Esperet and Parreau 2013)
For any graph G, there exists an acyclic edge colouring using
at most 4A(G) colours.

We will do the proof with 7A(G) colours.

18

Using entropy compression

Theorem (Esperet and Parreau 2013)
For any graph G, there exists an acyclic edge colouring using

at most 4A(G) colours.

We will do the proof with 7A(G) colours.

The algorithm will colour the edges one by one, ensuring:

e The colouring is proper

e The colouring is acyclic

18

Sampling a proper colouring

Suppose G is partially coloured and we are trying to colour (uv)

19

Sampling a proper colouring

Suppose G is partially coloured and we are trying to colour (uv)

u U

e v and u are both adjacent to at most A colours

e There is (7 —2)A = 5A colours available

19

Sampling a proper colouring

Suppose G is partially coloured and we are trying to colour (uv)

u U

e v and u are both adjacent to at most A colours

e There is (7 —2)A = 5A colours available

The algorithm will pick uniformly at random a color among the
5A available. The (partial) colouring throughout this process is

always proper.

19

Removing bi-coloured cycles

Lemma
If G has a proper edge colouring, then any bi-coloured cycle C' is

even and with alternating colors.

Removing bi-coloured cycles

Lemma
If G has a proper edge colouring, then any bi-coloured cycle C' is

even and with alternating colors.

If after colouring the edge (uv), there is a bi-coloured cycle C' of

size 2k containing uv:

Removing bi-coloured cycles

Lemma
If G has a proper edge colouring, then any bi-coloured cycle C' is

even and with alternating colors.

If after colouring the edge (uv), there is a bi-coloured cycle C' of

size 2k containing uv:

e Remove the colours all the edges of the cycle except 2

20

Removing bi-coloured cycles

Lemma
If G has a proper edge colouring, then any bi-coloured cycle C' is

even and with alternating colors.

If after colouring the edge (uv), there is a bi-coloured cycle C' of

size 2k containing uv:

e Remove the colours all the edges of the cycle except 2
e Knowing uv, we only need to know the cycle C' in order to

recover the colouring. There are A?*=2 possible choices.

20

Removing bi-coloured cycles

Lemma
If G has a proper edge colouring, then any bi-coloured cycle C' is

even and with alternating colors.

If after colouring the edge (uv), there is a bi-coloured cycle C' of

size 2k containing uv:

e Remove the colours all the edges of the cycle except 2
e Knowing uv, we only need to know the cycle C' in order to
recover the colouring. There are A?*=2 possible choices.

e To compare with the (5A)2%=2 possible choices of colour.
20

The algorithm

We will keep two logs: (L, R) and assume there is an arbitrary
order on the edges ey, ..., en.

21

The algorithm

We will keep two logs: (L, R) and assume there is an arbitrary
order on the edges ey, ..., en.

Algorithm 3 Finding an acyclic colouring

¢ < empty colouring.
while there is an non coloured edge e; do
c¢(e;) + random available colour.
L+L-1
if 9 bi-coloured cycle C' of size 2k containing e; then
un-colour all edges of C except 2
Add (2k —2) 0’s at the end of L
Add to R the 2k — 2 integers to recover C' from e;
end if
end while

21

Finishing the proof

Suppose the algorithm runs for ¢ steps (while loop). We need to

show the following two things:

1. (L, R) and the value of the colouring ¢ at the end of the

algorithm is enough to recover the set of random choices.

22

Finishing the proof

Suppose the algorithm runs for ¢ steps (while loop). We need to

show the following two things:

1. (L, R) and the value of the colouring ¢ at the end of the
algorithm is enough to recover the set of random choices.
2. If t is big enough, the number of possible (L, R) and ¢ is

much smaller (5A)¢.

22

Recovering the random choices.

Lemma
Given (L, R), we can recover the set of coloured edges after i

steps for any i € [t].

23

Recovering the random choices.

Lemma
Given (L, R), we can recover the set of coloured edges after i

steps for any i € [t].

Proof.
By induction on i (at ¢ = 0, no edge is coloured). Suppose we

know the set of coloured edges after ¢ — 1 steps.

e The algorithm starts the loop by colouring the
non-coloured edge with smallest index, e;.

23

Recovering the random choices.

Lemma
Given (L, R), we can recover the set of coloured edges after i

steps for any i € [t].

Proof.
By induction on i (at ¢ = 0, no edge is coloured). Suppose we

know the set of coloured edges after ¢ — 1 steps.

e The algorithm starts the loop by colouring the
non-coloured edge with smallest index, e;.

e If after the i-th 1 in L there is another 1: No bad event.

23

Recovering the random choices.

Lemma
Given (L, R), we can recover the set of coloured edges after i

steps for any i € [t].

Proof.
By induction on i (at ¢ = 0, no edge is coloured). Suppose we

know the set of coloured edges after ¢ — 1 steps.
e The algorithm starts the loop by colouring the
non-coloured edge with smallest index, e;.
e If after the i-th 1 in L there is another 1: No bad event.

e [f there is a 0, the number of consecutive 0’s tells us the
length of the bad cycle C

23

Recovering the random choices.

Lemma
Given (L, R), we can recover the set of coloured edges after i

steps for any i € [t].

Proof.
By induction on i (at ¢ = 0, no edge is coloured). Suppose we

know the set of coloured edges after ¢ — 1 steps.
e The algorithm starts the loop by colouring the
non-coloured edge with smallest index, e;.
e If after the i-th 1 in L there is another 1: No bad event.

e [f there is a 0, the number of consecutive 0’s tells us the
length of the bad cycle C

e By looking at R we are able to recover C' from e;

23

Recovering the random choices.

Lemma
Given (L, R) and the value of ¢ at the end, we can recover the

value of ¢ after i steps for any i € [t].

24

Recovering the random choices.

Lemma
Given (L, R) and the value of ¢ at the end, we can recover the

value of ¢ after i steps for any i € [t].

Proof.
By induction on t — i (at i = 0, we already know c). Suppose we

know the set of coloured edges after ¢t — 7 + 1 steps.

e By looking at L we know if there is a bad cycle at step t —i.

24

Recovering the random choices.

Lemma
Given (L, R) and the value of ¢ at the end, we can recover the

value of ¢ after i steps for any i € [t].

Proof.
By induction on t — i (at i = 0, we already know c). Suppose we

know the set of coloured edges after ¢t — 7 + 1 steps.

e By looking at L we know if there is a bad cycle at step t —i.

e [f there was not, we know by the previous lemma which
edge was coloured at that step.

24

Recovering the random choices.

Lemma
Given (L, R) and the value of ¢ at the end, we can recover the

value of ¢ after i steps for any i € [t].

Proof.
By induction on t — i (at i = 0, we already know c). Suppose we

know the set of coloured edges after ¢t — 7 + 1 steps.

e By looking at L we know if there is a bad cycle at step t —i.

e [f there was not, we know by the previous lemma which
edge was coloured at that step.

e [f there was a bad cycle, by looking at R we can recover

this cycle and thus the colouring.

24

Counting the number of logs

After ¢ steps:

e The number of possible L is smaller than 4

25

Counting the number of logs

After ¢ steps:

e The number of possible L is smaller than 4

e The number of possible R is A?

25

Counting the number of logs

After ¢ steps:

e The number of possible L is smaller than 4
e The number of possible R is A?
e The number of possible ¢ is (TA)™

25

Counting the number of logs

After ¢ steps:

e The number of possible L is smaller than 4
e The number of possible R is A?
e The number of possible ¢ is (TA)™

e The number of possible random choices is (5A).

25

Counting the number of logs

After ¢ steps:

e The number of possible L is smaller than 4
e The number of possible R is A?
e The number of possible ¢ is (TA)™

e The number of possible random choices is (5A).

Overall when t is large enough, we have 4! - At . (TA)™ < (5A).

25

Counting the number of logs

After ¢ steps:

e The number of possible L is smaller than 4
e The number of possible R is A?
e The number of possible ¢ is (TA)™

e The number of possible random choices is (5A).

Overall when t is large enough, we have 4! - At . (TA)™ < (5A).

Theorem
The algorithm terminates in linear time with constant

probability.

25

Concluding remarks

Conjecture (Alon et al. 2001)
A + 2 should be enough

26

Concluding remarks

Conjecture (Alon et al. 2001)
A + 2 should be enough

e Similar arguments can get the bound down to 3.74A

26

Concluding remarks

Conjecture %Alon et al. 2001)
A + 2 should be enough

e Similar arguments can get the bound down to 3.74A

e Cai et al. proved (1 + €)A when the girth is larger than

some constant g(e)

26

Concluding remarks

Conjecture %Alon et al. 2001)
A + 2 should be enough

e Similar arguments can get the bound down to 3.74A

e Cai et al. proved (1 + €)A when the girth is larger than

some constant g(e)

e [t seems like the “limit” of EC for this is 2A

26

Thank you!

	Lovász Local Lemma and Moser's Algorithm
	Square-free words
	Acyclic colouring

