
The entropy compression technique

William Lochet, UiB

1

Plan of the lecture

1 Lovász Local Lemma and Moser’s Algorithm

2 Examples of application

• Square-free word

• Acyclic edge-colouring

2

Plan of the lecture

1 Lovász Local Lemma and Moser’s Algorithm

2 Examples of application

• Square-free word

• Acyclic edge-colouring

2

Plan of the lecture

1 Lovász Local Lemma and Moser’s Algorithm

2 Examples of application

• Square-free word

• Acyclic edge-colouring

2

Lovász Local Lemma and Moser’s
Algorithm

The Lovász Local Lemma (LLL) setting

• Probability space Ω + Set of bad events B = {B1, . . . , Bm}.
• If {Bi} are independent, Pr[∩B̄i] =

∏m
i=1(1− Pr[Bi]).

• What happens when the {Bi} are not independent?

Lemma (Lovász 1975)
• If each Bi is independent from all but d events;

• Pr[Bi] ≤ p; and
• e · p · d ≤ 1.

Then Pr[∩B̄i] > 0

≤ d

3

The Lovász Local Lemma (LLL) setting

• Probability space Ω + Set of bad events B = {B1, . . . , Bm}.
• If {Bi} are independent, Pr[∩B̄i] =

∏m
i=1(1− Pr[Bi]).

• What happens when the {Bi} are not independent?

Lemma (Lovász 1975)
• If each Bi is independent from all but d events;

• Pr[Bi] ≤ p; and
• e · p · d ≤ 1.

Then Pr[∩B̄i] > 0

≤ d

3

The Lovász Local Lemma (LLL) setting

• Probability space Ω + Set of bad events B = {B1, . . . , Bm}.
• If {Bi} are independent, Pr[∩B̄i] =

∏m
i=1(1− Pr[Bi]).

• What happens when the {Bi} are not independent?

Lemma (Lovász 1975)
• If each Bi is independent from all but d events;

• Pr[Bi] ≤ p; and
• e · p · d ≤ 1.

Then Pr[∩B̄i] > 0

≤ d

3

The Lovász Local Lemma (LLL) setting

• Probability space Ω + Set of bad events B = {B1, . . . , Bm}.
• If {Bi} are independent, Pr[∩B̄i] =

∏m
i=1(1− Pr[Bi]).

• What happens when the {Bi} are not independent?

Lemma (Lovász 1975)
• If each Bi is independent from all but d events;

• Pr[Bi] ≤ p; and
• e · p · d ≤ 1.

Then Pr[∩B̄i] > 0

≤ d

3

The canonical example

Definition (k-CNF)
A k-CNF formula is a conjunction of m clauses (C1, . . . , Cm),
where a clause is a disjunction of k literals.

F = (x1 ∨ x2 ∨ x̄3) ∧ (x3 ∨ x̄4 ∨ x̄5) ∧ (x1 ∨ x̄2 ∨ x7)

Question (k-sat)
Given a k-CNF formula F , is F satisfiable?

Pick the xi uniformly at random, Bi :="Ci is not satisfied".

Observation
If Ci and Cj do not share a variable, then Bi and Bj are
independent. Moreover, Pr[Bi] = (12)k

x1 ∨ x2 ∨ x̄3 x1 ∨ x̄2 ∨ x7x3 ∨ x̄4 ∨ x̄5
x3 x1

4

The canonical example

Definition (k-CNF)
A k-CNF formula is a conjunction of m clauses (C1, . . . , Cm),
where a clause is a disjunction of k literals.

F = (x1 ∨ x2 ∨ x̄3) ∧ (x3 ∨ x̄4 ∨ x̄5) ∧ (x1 ∨ x̄2 ∨ x7)

Question (k-sat)
Given a k-CNF formula F , is F satisfiable?

Pick the xi uniformly at random, Bi :="Ci is not satisfied".

Observation
If Ci and Cj do not share a variable, then Bi and Bj are
independent. Moreover, Pr[Bi] = (12)k

x1 ∨ x2 ∨ x̄3 x1 ∨ x̄2 ∨ x7x3 ∨ x̄4 ∨ x̄5
x3 x1

4

The canonical example

Definition (k-CNF)
A k-CNF formula is a conjunction of m clauses (C1, . . . , Cm),
where a clause is a disjunction of k literals.

F = (x1 ∨ x2 ∨ x̄3) ∧ (x3 ∨ x̄4 ∨ x̄5) ∧ (x1 ∨ x̄2 ∨ x7)

Question (k-sat)
Given a k-CNF formula F , is F satisfiable?

Pick the xi uniformly at random, Bi :="Ci is not satisfied".

Observation
If Ci and Cj do not share a variable, then Bi and Bj are
independent. Moreover, Pr[Bi] = (12)k

x1 ∨ x2 ∨ x̄3 x1 ∨ x̄2 ∨ x7x3 ∨ x̄4 ∨ x̄5
x3 x1

4

The canonical example

Definition (k-CNF)
A k-CNF formula is a conjunction of m clauses (C1, . . . , Cm),
where a clause is a disjunction of k literals.

F = (x1 ∨ x2 ∨ x̄3) ∧ (x3 ∨ x̄4 ∨ x̄5) ∧ (x1 ∨ x̄2 ∨ x7)

Question (k-sat)
Given a k-CNF formula F , is F satisfiable?

Pick the xi uniformly at random, Bi :="Ci is not satisfied".

Observation
If Ci and Cj do not share a variable, then Bi and Bj are
independent. Moreover, Pr[Bi] = (12)k

x1 ∨ x2 ∨ x̄3 x1 ∨ x̄2 ∨ x7x3 ∨ x̄4 ∨ x̄5
x3 x1

4

Tight bound and breakthrough

Theorem
Every k-CNF formula where each clause shares variables with at
most d ≤ 2k/e other clauses is satisfiable.

By applying LLL since e · Pr[Bi] · d ≤ e · (12)k · 2ke ≤ 1.

Question
Can we find such an assignment efficiently?

• Pr[∩B̄i] is exponentially small in the number of clauses.
• Beck, 1991 → existence of an algorithm when d ≤ 2k/48.

Theorem (Moser 2009, Moser and Tardos 2010)
If d ≤ 2k/e, then a solution can be found in O(|V |+ |C|log|C|).

• Best paper award STOC 2009.
• Gödel prize in 2020.

5

Tight bound and breakthrough

Theorem
Every k-CNF formula where each clause shares variables with at
most d ≤ 2k/e other clauses is satisfiable.

By applying LLL since e · Pr[Bi] · d ≤ e · (12)k · 2ke ≤ 1.

Question
Can we find such an assignment efficiently?

• Pr[∩B̄i] is exponentially small in the number of clauses.

• Beck, 1991 → existence of an algorithm when d ≤ 2k/48.

Theorem (Moser 2009, Moser and Tardos 2010)
If d ≤ 2k/e, then a solution can be found in O(|V |+ |C|log|C|).

• Best paper award STOC 2009.
• Gödel prize in 2020.

5

Tight bound and breakthrough

Theorem
Every k-CNF formula where each clause shares variables with at
most d ≤ 2k/e other clauses is satisfiable.

By applying LLL since e · Pr[Bi] · d ≤ e · (12)k · 2ke ≤ 1.

Question
Can we find such an assignment efficiently?

• Pr[∩B̄i] is exponentially small in the number of clauses.
• Beck, 1991 → existence of an algorithm when d ≤ 2k/48.

Theorem (Moser 2009, Moser and Tardos 2010)
If d ≤ 2k/e, then a solution can be found in O(|V |+ |C|log|C|).

• Best paper award STOC 2009.
• Gödel prize in 2020.

5

Tight bound and breakthrough

Theorem
Every k-CNF formula where each clause shares variables with at
most d ≤ 2k/e other clauses is satisfiable.

By applying LLL since e · Pr[Bi] · d ≤ e · (12)k · 2ke ≤ 1.

Question
Can we find such an assignment efficiently?

• Pr[∩B̄i] is exponentially small in the number of clauses.
• Beck, 1991 → existence of an algorithm when d ≤ 2k/48.

Theorem (Moser 2009, Moser and Tardos 2010)
If d ≤ 2k/e, then a solution can be found in O(|V |+ |C|log|C|).

• Best paper award STOC 2009.
• Gödel prize in 2020.

5

Tight bound and breakthrough

Theorem
Every k-CNF formula where each clause shares variables with at
most d ≤ 2k/e other clauses is satisfiable.

By applying LLL since e · Pr[Bi] · d ≤ e · (12)k · 2ke ≤ 1.

Question
Can we find such an assignment efficiently?

• Pr[∩B̄i] is exponentially small in the number of clauses.
• Beck, 1991 → existence of an algorithm when d ≤ 2k/48.

Theorem (Moser 2009, Moser and Tardos 2010)
If d ≤ 2k/e, then a solution can be found in O(|V |+ |C|log|C|).

• Best paper award STOC 2009.

• Gödel prize in 2020.

5

Tight bound and breakthrough

Theorem
Every k-CNF formula where each clause shares variables with at
most d ≤ 2k/e other clauses is satisfiable.

By applying LLL since e · Pr[Bi] · d ≤ e · (12)k · 2ke ≤ 1.

Question
Can we find such an assignment efficiently?

• Pr[∩B̄i] is exponentially small in the number of clauses.
• Beck, 1991 → existence of an algorithm when d ≤ 2k/48.

Theorem (Moser 2009, Moser and Tardos 2010)
If d ≤ 2k/e, then a solution can be found in O(|V |+ |C|log|C|).

• Best paper award STOC 2009.
• Gödel prize in 2020.

5

The algorithm

Suppose F = C1 ∧ · · · ∧ Cm is a k-CNF and every clause Ci

depends of variables xi1 , . . . , xik .

Algorithm 1 Moser’s Algorithm
1: Pick random values for x1, . . . , xn
2: while There exists a clause Ci not satisfied do
3: pick new values for all variables xi1 , . . . , xik in Ci

4: end while
5: Return: Value of the variables x1, . . . , xn

•Can we use the number of unsatisfied closes as loop
invariant?
•No, changing the value xi1 might change the status of some

clause Cj neighbour of Ci.

6

The algorithm

Suppose F = C1 ∧ · · · ∧ Cm is a k-CNF and every clause Ci

depends of variables xi1 , . . . , xik .

Algorithm 1 Moser’s Algorithm
1: Pick random values for x1, . . . , xn
2: while There exists a clause Ci not satisfied do
3: pick new values for all variables xi1 , . . . , xik in Ci

4: end while
5: Return: Value of the variables x1, . . . , xn

•Can we use the number of unsatisfied closes as loop
invariant?

•No, changing the value xi1 might change the status of some
clause Cj neighbour of Ci.

6

The algorithm

Suppose F = C1 ∧ · · · ∧ Cm is a k-CNF and every clause Ci

depends of variables xi1 , . . . , xik .

Algorithm 1 Moser’s Algorithm
1: Pick random values for x1, . . . , xn
2: while There exists a clause Ci not satisfied do
3: pick new values for all variables xi1 , . . . , xik in Ci

4: end while
5: Return: Value of the variables x1, . . . , xn

•Can we use the number of unsatisfied closes as loop
invariant?
•No, changing the value xi1 might change the status of some

clause Cj neighbour of Ci.
6

Entropy compression

• We focus on the first t steps of the algorithm.

• All the random choices can be described with n+ tk bits.

Theorem (Moser and Tardos 2010)
If t = Ω(m log(m)), then there is a way to describe the running
of t steps of the algorithm using o(n+ tk) bits.

The algorithm can then be seen as:

• Take as input the n+ tk random choices

• Assuming the algorithm runs for t steps, outputs an
encoding of these random choices using this description

7

Entropy compression

• We focus on the first t steps of the algorithm.

• All the random choices can be described with n+ tk bits.

Theorem (Moser and Tardos 2010)
If t = Ω(m log(m)), then there is a way to describe the running
of t steps of the algorithm using o(n+ tk) bits.

The algorithm can then be seen as:

• Take as input the n+ tk random choices

• Assuming the algorithm runs for t steps, outputs an
encoding of these random choices using this description

7

Entropy compression

• We focus on the first t steps of the algorithm.

• All the random choices can be described with n+ tk bits.

Theorem (Moser and Tardos 2010)
If t = Ω(m log(m)), then there is a way to describe the running
of t steps of the algorithm using o(n+ tk) bits.

The algorithm can then be seen as:

• Take as input the n+ tk random choices

• Assuming the algorithm runs for t steps, outputs an
encoding of these random choices using this description

7

Description of a run

Definition (Log)
A log is a description of:

• The sequence u = (u1, . . . , ut) of clauses treated at each step

• The values Xt = (xt1, . . . , x
t
n) of the variables after t steps

Lemma
Given u and Xt, we can recover the values Xi = (xi1, . . . , x

i
n) of

the variables after i steps for any i ∈ [t]

• Between Xt and Xt−1 only the variables in Cut change

• Because Cut was not satisfied, we know the value of those
variables.

8

Description of a run

Definition (Log)
A log is a description of:

• The sequence u = (u1, . . . , ut) of clauses treated at each step

• The values Xt = (xt1, . . . , x
t
n) of the variables after t steps

Lemma
Given u and Xt, we can recover the values Xi = (xi1, . . . , x

i
n) of

the variables after i steps for any i ∈ [t]

• Between Xt and Xt−1 only the variables in Cut change

• Because Cut was not satisfied, we know the value of those
variables.

8

Description of a run

Definition (Log)
A log is a description of:

• The sequence u = (u1, . . . , ut) of clauses treated at each step

• The values Xt = (xt1, . . . , x
t
n) of the variables after t steps

Lemma
Given u and Xt, we can recover the values Xi = (xi1, . . . , x

i
n) of

the variables after i steps for any i ∈ [t]

• Between Xt and Xt−1 only the variables in Cut change

• Because Cut was not satisfied, we know the value of those
variables.

8

Description of a run

Definition (Log)
A log is a description of:

• The sequence u = (u1, . . . , ut) of clauses treated at each step

• The values Xt = (xt1, . . . , x
t
n) of the variables after t steps

Lemma
Given u and Xt, we can recover the values Xi = (xi1, . . . , x

i
n) of

the variables after i steps for any i ∈ [t]

• Between Xt and Xt−1 only the variables in Cut change

• Because Cut was not satisfied, we know the value of those
variables.

8

Number of logs

Lemma
If R1 and R2 are two sets of n+ tk bits for which the algorithm
does not terminate, then the logs associated to R1 and R2 are
different.

It means that:

#random choices that do no terminate ≤ #of possible logs

This implies that the probability that the algorithm does not
terminate after t steps is at most:

#of possible logs
#of possible random choices

9

Number of logs

Lemma
If R1 and R2 are two sets of n+ tk bits for which the algorithm
does not terminate, then the logs associated to R1 and R2 are
different.

It means that:

#random choices that do no terminate ≤ #of possible logs

This implies that the probability that the algorithm does not
terminate after t steps is at most:

#of possible logs
#of possible random choices

9

Number of logs

Lemma
If R1 and R2 are two sets of n+ tk bits for which the algorithm
does not terminate, then the logs associated to R1 and R2 are
different.

It means that:

#random choices that do no terminate ≤ #of possible logs

This implies that the probability that the algorithm does not
terminate after t steps is at most:

#of possible logs
#of possible random choices

9

Efficient encoding

Question
How to encode u = (u1, . . . , ut) and Xt efficiently?
(compared to n+ tk bits)

• Xt = (xt1, . . . , x
t
n).

• Naively, ui can be encoded using log(m) bits, Not good!

Observation
If Cui+1 is a neighbour of Cui, it costs log(2k/e) < k.

If the algorithm runs long enough, it will be the case for most ui.

10

Efficient encoding

Question
How to encode u = (u1, . . . , ut) and Xt efficiently?
(compared to n+ tk bits)

• Xt = (xt1, . . . , x
t
n).

• Naively, ui can be encoded using log(m) bits, Not good!

Observation
If Cui+1 is a neighbour of Cui, it costs log(2k/e) < k.

If the algorithm runs long enough, it will be the case for most ui.

10

Efficient encoding

Question
How to encode u = (u1, . . . , ut) and Xt efficiently?
(compared to n+ tk bits)

• Xt = (xt1, . . . , x
t
n).

• Naively, ui can be encoded using log(m) bits, Not good!

Observation
If Cui+1 is a neighbour of Cui, it costs log(2k/e) < k.

If the algorithm runs long enough, it will be the case for most ui.

10

Efficient encoding

Question
How to encode u = (u1, . . . , ut) and Xt efficiently?
(compared to n+ tk bits)

• Xt = (xt1, . . . , x
t
n).

• Naively, ui can be encoded using log(m) bits, Not good!

Observation
If Cui+1 is a neighbour of Cui, it costs log(2k/e) < k.

If the algorithm runs long enough, it will be the case for most ui.

10

Efficient encoding

Question
How to encode u = (u1, . . . , ut) and Xt efficiently?
(compared to n+ tk bits)

• Xt = (xt1, . . . , x
t
n).

• Naively, ui can be encoded using log(m) bits, Not good!

Observation
If Cui+1 is a neighbour of Cui, it costs log(2k/e) < k.

If the algorithm runs long enough, it will be the case for most ui.

10

Square-free words

Square-free words

Definition
A word w over some alphabet Σ is said to be square-free if it
does not contain a word of type uu as a subword.

• u = abcbca is not square-free.

• v = abcba is.

Theorem (Thue 1906)
There exists an infinite word without square when |Σ| ≥ 3.

Question
Suppose L1, . . . , Ln are n list of 3 elements of Σ, does there
exists a square-free word u = u1u2 . . . un such that ui ∈ Li?

11

Square-free words

Definition
A word w over some alphabet Σ is said to be square-free if it
does not contain a word of type uu as a subword.

• u = abcbca is not square-free.

• v = abcba is.

Theorem (Thue 1906)
There exists an infinite word without square when |Σ| ≥ 3.

Question
Suppose L1, . . . , Ln are n list of 3 elements of Σ, does there
exists a square-free word u = u1u2 . . . un such that ui ∈ Li?

11

Square-free words

Definition
A word w over some alphabet Σ is said to be square-free if it
does not contain a word of type uu as a subword.

• u = abcbca is not square-free.

• v = abcba is.

Theorem (Thue 1906)
There exists an infinite word without square when |Σ| ≥ 3.

Question
Suppose L1, . . . , Ln are n list of 3 elements of Σ, does there
exists a square-free word u = u1u2 . . . un such that ui ∈ Li?

11

Square-free words

Definition
A word w over some alphabet Σ is said to be square-free if it
does not contain a word of type uu as a subword.

• u = abcbca is not square-free.

• v = abcba is.

Theorem (Thue 1906)
There exists an infinite word without square when |Σ| ≥ 3.

Question
Suppose L1, . . . , Ln are n list of 3 elements of Σ, does there
exists a square-free word u = u1u2 . . . un such that ui ∈ Li?

11

Algorithm for |Li| = 5

Theorem (Grytczuk, Kozik and Micek 2013)
Entropy compression works for |Li| ≥ 4.

Algorithm 2 Finding square-free words
u ← empty word
while |u| < n do
a ← random letter in L|u|+1

u← ua

if u = wbb for some word b then
u← wb

end if
end while

Lemma
This algorithm terminates in O(n) steps.

12

Algorithm for |Li| = 5

Theorem (Grytczuk, Kozik and Micek 2013)
Entropy compression works for |Li| ≥ 4.

Algorithm 2 Finding square-free words
u ← empty word
while |u| < n do
a ← random letter in L|u|+1

u← ua

if u = wbb for some word b then
u← wb

end if
end while

Lemma
This algorithm terminates in O(n) steps.

12

Algorithm for |Li| = 5

Theorem (Grytczuk, Kozik and Micek 2013)
Entropy compression works for |Li| ≥ 4.

Algorithm 2 Finding square-free words
u ← empty word
while |u| < n do
a ← random letter in L|u|+1

u← ua

if u = wbb for some word b then
u← wb

end if
end while

Lemma
This algorithm terminates in O(n) steps.

12

Encoding

The log of a run consists of the value of u at the end and a
word l ∈ {0, 1}∗ obtained by:

• Adding 1 each time the algorithm adds a letter.

• Adding 0 each time the algorithm removes a letter.

u := ∅
l := ∅

13

Encoding

The log of a run consists of the value of u at the end and a
word l ∈ {0, 1}∗ obtained by:

• Adding 1 each time the algorithm adds a letter.

• Adding 0 each time the algorithm removes a letter.

u := a
l := 1

13

Encoding

The log of a run consists of the value of u at the end and a
word l ∈ {0, 1}∗ obtained by:

• Adding 1 each time the algorithm adds a letter.

• Adding 0 each time the algorithm removes a letter.

u := ab
l := 11

13

Encoding

The log of a run consists of the value of u at the end and a
word l ∈ {0, 1}∗ obtained by:

• Adding 1 each time the algorithm adds a letter.

• Adding 0 each time the algorithm removes a letter.

u := aba
l := 111

13

Encoding

The log of a run consists of the value of u at the end and a
word l ∈ {0, 1}∗ obtained by:

• Adding 1 each time the algorithm adds a letter.

• Adding 0 each time the algorithm removes a letter.

u := abab
l := 1111

13

Encoding

The log of a run consists of the value of u at the end and a
word l ∈ {0, 1}∗ obtained by:

• Adding 1 each time the algorithm adds a letter.

• Adding 0 each time the algorithm removes a letter.

u := abab
l := 1111

13

Encoding

The log of a run consists of the value of u at the end and a
word l ∈ {0, 1}∗ obtained by:

• Adding 1 each time the algorithm adds a letter.

• Adding 0 each time the algorithm removes a letter.

u := ab
l := 111100

13

Encoding

The log of a run consists of the value of u at the end and a
word l ∈ {0, 1}∗ obtained by:

• Adding 1 each time the algorithm adds a letter.

• Adding 0 each time the algorithm removes a letter.

u := abc
l := 1111001

13

Counting

Lemma
Given a log : (u, l) it is possible to deduce the set of random
choices.

u := abc
l := 1111001

• Two sets of random choices that do not terminate
produce different logs.
• The number of possible logs of t steps is 5n · 22t

• The number of possible random choices is 5t

Theorem
The probability that the algorithm does not terminate after t
steps is at most 5n4t

5t = 4t

5t−n .

for t = 11n, we have 4t

5t−n ≤ 1/2.

14

Counting

Lemma
Given a log : (u, l) it is possible to deduce the set of random
choices.

u := abc
l := 1111001

• Two sets of random choices that do not terminate
produce different logs.
• The number of possible logs of t steps is 5n · 22t

• The number of possible random choices is 5t

Theorem
The probability that the algorithm does not terminate after t
steps is at most 5n4t

5t = 4t

5t−n .

for t = 11n, we have 4t

5t−n ≤ 1/2.

14

Counting

Lemma
Given a log : (u, l) it is possible to deduce the set of random
choices.

u := ab
l := 111100

• Two sets of random choices that do not terminate
produce different logs.
• The number of possible logs of t steps is 5n · 22t

• The number of possible random choices is 5t

Theorem
The probability that the algorithm does not terminate after t
steps is at most 5n4t

5t = 4t

5t−n .

for t = 11n, we have 4t

5t−n ≤ 1/2.

14

Counting

Lemma
Given a log : (u, l) it is possible to deduce the set of random
choices.

u := ab
l := 111100

• Two sets of random choices that do not terminate
produce different logs.
• The number of possible logs of t steps is 5n · 22t

• The number of possible random choices is 5t

Theorem
The probability that the algorithm does not terminate after t
steps is at most 5n4t

5t = 4t

5t−n .

for t = 11n, we have 4t

5t−n ≤ 1/2.

14

Counting

Lemma
Given a log : (u, l) it is possible to deduce the set of random
choices.

u := abab
l := 1111

• Two sets of random choices that do not terminate
produce different logs.
• The number of possible logs of t steps is 5n · 22t

• The number of possible random choices is 5t

Theorem
The probability that the algorithm does not terminate after t
steps is at most 5n4t

5t = 4t

5t−n .

for t = 11n, we have 4t

5t−n ≤ 1/2.

14

Counting

Lemma
Given a log : (u, l) it is possible to deduce the set of random
choices.

• Two sets of random choices that do not terminate
produce different logs.

• The number of possible logs of t steps is 5n · 22t

• The number of possible random choices is 5t

Theorem
The probability that the algorithm does not terminate after t
steps is at most 5n4t

5t = 4t

5t−n .

for t = 11n, we have 4t

5t−n ≤ 1/2.

14

Counting

Lemma
Given a log : (u, l) it is possible to deduce the set of random
choices.

• Two sets of random choices that do not terminate
produce different logs.

• The number of possible logs of t steps is 5n · 22t

• The number of possible random choices is 5t

Theorem
The probability that the algorithm does not terminate after t
steps is at most 5n4t

5t = 4t

5t−n .

for t = 11n, we have 4t

5t−n ≤ 1/2.

14

Counting

Lemma
Given a log : (u, l) it is possible to deduce the set of random
choices.

• Two sets of random choices that do not terminate
produce different logs.

• The number of possible logs of t steps is 5n · 22t

• The number of possible random choices is 5t

Theorem
The probability that the algorithm does not terminate after t
steps is at most 5n4t

5t = 4t

5t−n .

for t = 11n, we have 4t

5t−n ≤ 1/2.

14

Counting

Lemma
Given a log : (u, l) it is possible to deduce the set of random
choices.

• Two sets of random choices that do not terminate
produce different logs.

• The number of possible logs of t steps is 5n · 22t

• The number of possible random choices is 5t

Theorem
The probability that the algorithm does not terminate after t
steps is at most 5n4t

5t = 4t

5t−n .

for t = 11n, we have 4t

5t−n ≤ 1/2.

14

List of size 4, 3?

With a better counting, we can prove:

Theorem (Grytczuk, Kozik and Micek 2013)
Entropy compression works for |Li| ≥ 4.

Conjecture
It works when |Li| ≥ 3.

• If all the list are the same, then this is the result of Thue.

• Experimentally, the algorithm seems to work, but much
slower

15

List of size 4, 3?

With a better counting, we can prove:

Theorem (Grytczuk, Kozik and Micek 2013)
Entropy compression works for |Li| ≥ 4.

Conjecture
It works when |Li| ≥ 3.

• If all the list are the same, then this is the result of Thue.

• Experimentally, the algorithm seems to work, but much
slower

15

Acyclic colouring

Proper Edge Colouring

Definition
An edge-colouring of a graph G is said to be proper if:

• No two adjacent edges have the same colour

Theorem (Vizing 1964)
For any graph G, there exists a proper edge colouring using
∆(G) + 1 colours.

Where ∆(G) is the maximal degree.

16

Proper Edge Colouring

Definition
An edge-colouring of a graph G is said to be proper if:

• No two adjacent edges have the same colour

Theorem (Vizing 1964)
For any graph G, there exists a proper edge colouring using
∆(G) + 1 colours.

Where ∆(G) is the maximal degree.
16

Acyclic Edge Colouring

Definition
An edge-colouring of a graph G is said to be acyclic if:

• It is proper

• There is no bicoloured cycle.

Theorem (Alon, McDiarmid and Reed 1991)
For any graph G, there exists an acyclic edge colouring using
at most 64∆(G) colours.

• After a series of improvements the best bound is now 3.74∆

• It has been conjectured that ∆ + 2 should be enough.

17

Acyclic Edge Colouring

Definition
An edge-colouring of a graph G is said to be acyclic if:

• It is proper

• There is no bicoloured cycle.

Theorem (Alon, McDiarmid and Reed 1991)
For any graph G, there exists an acyclic edge colouring using
at most 64∆(G) colours.

• After a series of improvements the best bound is now 3.74∆

• It has been conjectured that ∆ + 2 should be enough.

17

Using entropy compression

Theorem (Esperet and Parreau 2013)
For any graph G, there exists an acyclic edge colouring using
at most 4∆(G) colours.

We will do the proof with 7∆(G) colours.

The algorithm will colour the edges one by one, ensuring:

• The colouring is proper

• The colouring is acyclic

18

Using entropy compression

Theorem (Esperet and Parreau 2013)
For any graph G, there exists an acyclic edge colouring using
at most 4∆(G) colours.

We will do the proof with 7∆(G) colours.
The algorithm will colour the edges one by one, ensuring:

• The colouring is proper

• The colouring is acyclic

18

Sampling a proper colouring

Suppose G is partially coloured and we are trying to colour (uv)

u v

• v and u are both adjacent to at most ∆ colours

• There is (7− 2)∆ = 5∆ colours available

The algorithm will pick uniformly at random a color among the
5∆ available. The (partial) colouring throughout this process is
always proper.

19

Sampling a proper colouring

Suppose G is partially coloured and we are trying to colour (uv)

u v

• v and u are both adjacent to at most ∆ colours

• There is (7− 2)∆ = 5∆ colours available

The algorithm will pick uniformly at random a color among the
5∆ available. The (partial) colouring throughout this process is
always proper.

19

Sampling a proper colouring

Suppose G is partially coloured and we are trying to colour (uv)

u v

• v and u are both adjacent to at most ∆ colours

• There is (7− 2)∆ = 5∆ colours available

The algorithm will pick uniformly at random a color among the
5∆ available. The (partial) colouring throughout this process is
always proper.

19

Removing bi-coloured cycles

Lemma
If G has a proper edge colouring, then any bi-coloured cycle C is
even and with alternating colors.

If after colouring the edge (uv), there is a bi-coloured cycle C of
size 2k containing uv:

• Remove the colours all the edges of the cycle except 2

• Knowing uv, we only need to know the cycle C in order to
recover the colouring. There are ∆2k−2 possible choices.
• To compare with the (5∆)2k−2 possible choices of colour.

20

Removing bi-coloured cycles

Lemma
If G has a proper edge colouring, then any bi-coloured cycle C is
even and with alternating colors.

u v

If after colouring the edge (uv), there is a bi-coloured cycle C of
size 2k containing uv:

• Remove the colours all the edges of the cycle except 2

• Knowing uv, we only need to know the cycle C in order to
recover the colouring. There are ∆2k−2 possible choices.
• To compare with the (5∆)2k−2 possible choices of colour.

20

Removing bi-coloured cycles

Lemma
If G has a proper edge colouring, then any bi-coloured cycle C is
even and with alternating colors.

u v

If after colouring the edge (uv), there is a bi-coloured cycle C of
size 2k containing uv:

• Remove the colours all the edges of the cycle except 2

• Knowing uv, we only need to know the cycle C in order to
recover the colouring. There are ∆2k−2 possible choices.
• To compare with the (5∆)2k−2 possible choices of colour.

20

Removing bi-coloured cycles

Lemma
If G has a proper edge colouring, then any bi-coloured cycle C is
even and with alternating colors.

u v

If after colouring the edge (uv), there is a bi-coloured cycle C of
size 2k containing uv:

• Remove the colours all the edges of the cycle except 2

• Knowing uv, we only need to know the cycle C in order to
recover the colouring. There are ∆2k−2 possible choices.

• To compare with the (5∆)2k−2 possible choices of colour.

20

Removing bi-coloured cycles

Lemma
If G has a proper edge colouring, then any bi-coloured cycle C is
even and with alternating colors.

u v

If after colouring the edge (uv), there is a bi-coloured cycle C of
size 2k containing uv:

• Remove the colours all the edges of the cycle except 2

• Knowing uv, we only need to know the cycle C in order to
recover the colouring. There are ∆2k−2 possible choices.
• To compare with the (5∆)2k−2 possible choices of colour.

20

The algorithm

We will keep two logs: (L,R) and assume there is an arbitrary
order on the edges e1, . . . , em.

Algorithm 3 Finding an acyclic colouring
c ← empty colouring.
while there is an non coloured edge ei do
c(ei) ← random available colour.
L← L · 1
if ∃ bi-coloured cycle C of size 2k containing ei then
un-colour all edges of C except 2
Add (2k − 2) 0’s at the end of L
Add to R the 2k − 2 integers to recover C from ei

end if
end while

21

The algorithm

We will keep two logs: (L,R) and assume there is an arbitrary
order on the edges e1, . . . , em.

Algorithm 3 Finding an acyclic colouring
c ← empty colouring.
while there is an non coloured edge ei do
c(ei) ← random available colour.
L← L · 1
if ∃ bi-coloured cycle C of size 2k containing ei then
un-colour all edges of C except 2
Add (2k − 2) 0’s at the end of L
Add to R the 2k − 2 integers to recover C from ei

end if
end while

21

Finishing the proof

Suppose the algorithm runs for t steps (while loop). We need to
show the following two things:

1. (L,R) and the value of the colouring c at the end of the
algorithm is enough to recover the set of random choices.

2. If t is big enough, the number of possible (L,R) and c is
much smaller (5∆)t.

22

Finishing the proof

Suppose the algorithm runs for t steps (while loop). We need to
show the following two things:

1. (L,R) and the value of the colouring c at the end of the
algorithm is enough to recover the set of random choices.

2. If t is big enough, the number of possible (L,R) and c is
much smaller (5∆)t.

22

Recovering the random choices.

Lemma
Given (L,R), we can recover the set of coloured edges after i
steps for any i ∈ [t].

Proof.
By induction on i (at i = 0, no edge is coloured). Suppose we
know the set of coloured edges after i− 1 steps.

• The algorithm starts the loop by colouring the
non-coloured edge with smallest index, ej .

• If after the i-th 1 in L there is another 1: No bad event.

• If there is a 0, the number of consecutive 0’s tells us the
length of the bad cycle C

• By looking at R we are able to recover C from ej

23

Recovering the random choices.

Lemma
Given (L,R), we can recover the set of coloured edges after i
steps for any i ∈ [t].

Proof.
By induction on i (at i = 0, no edge is coloured). Suppose we
know the set of coloured edges after i− 1 steps.

• The algorithm starts the loop by colouring the
non-coloured edge with smallest index, ej .

• If after the i-th 1 in L there is another 1: No bad event.

• If there is a 0, the number of consecutive 0’s tells us the
length of the bad cycle C

• By looking at R we are able to recover C from ej

23

Recovering the random choices.

Lemma
Given (L,R), we can recover the set of coloured edges after i
steps for any i ∈ [t].

Proof.
By induction on i (at i = 0, no edge is coloured). Suppose we
know the set of coloured edges after i− 1 steps.

• The algorithm starts the loop by colouring the
non-coloured edge with smallest index, ej .

• If after the i-th 1 in L there is another 1: No bad event.

• If there is a 0, the number of consecutive 0’s tells us the
length of the bad cycle C

• By looking at R we are able to recover C from ej

23

Recovering the random choices.

Lemma
Given (L,R), we can recover the set of coloured edges after i
steps for any i ∈ [t].

Proof.
By induction on i (at i = 0, no edge is coloured). Suppose we
know the set of coloured edges after i− 1 steps.

• The algorithm starts the loop by colouring the
non-coloured edge with smallest index, ej .

• If after the i-th 1 in L there is another 1: No bad event.

• If there is a 0, the number of consecutive 0’s tells us the
length of the bad cycle C

• By looking at R we are able to recover C from ej

23

Recovering the random choices.

Lemma
Given (L,R), we can recover the set of coloured edges after i
steps for any i ∈ [t].

Proof.
By induction on i (at i = 0, no edge is coloured). Suppose we
know the set of coloured edges after i− 1 steps.

• The algorithm starts the loop by colouring the
non-coloured edge with smallest index, ej .

• If after the i-th 1 in L there is another 1: No bad event.

• If there is a 0, the number of consecutive 0’s tells us the
length of the bad cycle C

• By looking at R we are able to recover C from ej

23

Recovering the random choices.

Lemma
Given (L,R) and the value of c at the end, we can recover the
value of c after i steps for any i ∈ [t].

Proof.
By induction on t− i (at i = 0, we already know c). Suppose we
know the set of coloured edges after t− i+ 1 steps.

• By looking at L we know if there is a bad cycle at step t− i.
• If there was not, we know by the previous lemma which

edge was coloured at that step.

• If there was a bad cycle, by looking at R we can recover
this cycle and thus the colouring.

24

Recovering the random choices.

Lemma
Given (L,R) and the value of c at the end, we can recover the
value of c after i steps for any i ∈ [t].

Proof.
By induction on t− i (at i = 0, we already know c). Suppose we
know the set of coloured edges after t− i+ 1 steps.

• By looking at L we know if there is a bad cycle at step t− i.

• If there was not, we know by the previous lemma which
edge was coloured at that step.

• If there was a bad cycle, by looking at R we can recover
this cycle and thus the colouring.

24

Recovering the random choices.

Lemma
Given (L,R) and the value of c at the end, we can recover the
value of c after i steps for any i ∈ [t].

Proof.
By induction on t− i (at i = 0, we already know c). Suppose we
know the set of coloured edges after t− i+ 1 steps.

• By looking at L we know if there is a bad cycle at step t− i.
• If there was not, we know by the previous lemma which

edge was coloured at that step.

• If there was a bad cycle, by looking at R we can recover
this cycle and thus the colouring.

24

Recovering the random choices.

Lemma
Given (L,R) and the value of c at the end, we can recover the
value of c after i steps for any i ∈ [t].

Proof.
By induction on t− i (at i = 0, we already know c). Suppose we
know the set of coloured edges after t− i+ 1 steps.

• By looking at L we know if there is a bad cycle at step t− i.
• If there was not, we know by the previous lemma which

edge was coloured at that step.

• If there was a bad cycle, by looking at R we can recover
this cycle and thus the colouring.

24

Counting the number of logs

After t steps:

• The number of possible L is smaller than 4t

• The number of possible R is ∆t

• The number of possible c is (7∆)m

• The number of possible random choices is (5∆)t.

Overall when t is large enough, we have 4t ·∆t · (7∆)m < (5∆)t.

Theorem
The algorithm terminates in linear time with constant
probability.

25

Counting the number of logs

After t steps:

• The number of possible L is smaller than 4t

• The number of possible R is ∆t

• The number of possible c is (7∆)m

• The number of possible random choices is (5∆)t.

Overall when t is large enough, we have 4t ·∆t · (7∆)m < (5∆)t.

Theorem
The algorithm terminates in linear time with constant
probability.

25

Counting the number of logs

After t steps:

• The number of possible L is smaller than 4t

• The number of possible R is ∆t

• The number of possible c is (7∆)m

• The number of possible random choices is (5∆)t.

Overall when t is large enough, we have 4t ·∆t · (7∆)m < (5∆)t.

Theorem
The algorithm terminates in linear time with constant
probability.

25

Counting the number of logs

After t steps:

• The number of possible L is smaller than 4t

• The number of possible R is ∆t

• The number of possible c is (7∆)m

• The number of possible random choices is (5∆)t.

Overall when t is large enough, we have 4t ·∆t · (7∆)m < (5∆)t.

Theorem
The algorithm terminates in linear time with constant
probability.

25

Counting the number of logs

After t steps:

• The number of possible L is smaller than 4t

• The number of possible R is ∆t

• The number of possible c is (7∆)m

• The number of possible random choices is (5∆)t.

Overall when t is large enough, we have 4t ·∆t · (7∆)m < (5∆)t.

Theorem
The algorithm terminates in linear time with constant
probability.

25

Counting the number of logs

After t steps:

• The number of possible L is smaller than 4t

• The number of possible R is ∆t

• The number of possible c is (7∆)m

• The number of possible random choices is (5∆)t.

Overall when t is large enough, we have 4t ·∆t · (7∆)m < (5∆)t.

Theorem
The algorithm terminates in linear time with constant
probability.

25

Concluding remarks

Conjecture (Alon et al. 2001)
∆ + 2 should be enough

• Similar arguments can get the bound down to 3.74∆

• Cai et al. proved (1 + ε)∆ when the girth is larger than
some constant g(ε)

• It seems like the “limit” of EC for this is 2∆

26

Concluding remarks

Conjecture (Alon et al. 2001)
∆ + 2 should be enough

• Similar arguments can get the bound down to 3.74∆

• Cai et al. proved (1 + ε)∆ when the girth is larger than
some constant g(ε)

• It seems like the “limit” of EC for this is 2∆

26

Concluding remarks

Conjecture (Alon et al. 2001)
∆ + 2 should be enough

• Similar arguments can get the bound down to 3.74∆

• Cai et al. proved (1 + ε)∆ when the girth is larger than
some constant g(ε)

• It seems like the “limit” of EC for this is 2∆

26

Concluding remarks

Conjecture (Alon et al. 2001)
∆ + 2 should be enough

• Similar arguments can get the bound down to 3.74∆

• Cai et al. proved (1 + ε)∆ when the girth is larger than
some constant g(ε)

• It seems like the “limit” of EC for this is 2∆

26

Thank you!

26

	Lovász Local Lemma and Moser's Algorithm
	Square-free words
	Acyclic colouring

