
A polynomial time algorithm for the
k-disjoint shortest paths problem.

William Lochet

University of Bergen, Norway

1

Disjoint paths problem and
optimization version

Disjoint paths problem

Let G be a graph, S = (s1, . . . , sk) and T = (t1, . . . , tk) two sets
of vertices.

Question
Does there exist k disjoint paths P1, . . . , Pk linking S and T?

s1

s2

s3

t1

t2

t3

• Without constraints on the extremity: flow.

• If each Pi must link si to ti: k-disjoint paths problem.

2

Disjoint paths problem

Let G be a graph, S = (s1, . . . , sk) and T = (t1, . . . , tk) two sets
of vertices.

Question
Does there exist k disjoint paths P1, . . . , Pk linking S and T?

s1

s2

s3

t1

t2

t3

• Without constraints on the extremity: flow.
• If each Pi must link si to ti: k-disjoint paths problem.

2

Result and hardness

Theorem (Robertson and Seymour 1995)
The k-disjoint paths problem admits an algorithm in f(k)n3.

• Allows to decide the existence of a minor.

• Has been extensively studied since then.

Theorem (Fortune et al. 1980)
The 2-disjoint paths problem in directed graphs in NP-hard.

• There exists an nO(k) algorithm on DAGs (Fortune et al.) .

• W[1]-hard on DAGs (Slivkins. 2010)

3

Result and hardness

Theorem (Robertson and Seymour 1995)
The k-disjoint paths problem admits an algorithm in f(k)n3.

• Allows to decide the existence of a minor.

• Has been extensively studied since then.

Theorem (Fortune et al. 1980)
The 2-disjoint paths problem in directed graphs in NP-hard.

• There exists an nO(k) algorithm on DAGs (Fortune et al.) .

• W[1]-hard on DAGs (Slivkins. 2010)

3

Optimal version

Question
Can we find a solution which minimises the size of the paths?

• Random algorithm for k = 2 (Björklund, Husfeldt 2015).

• Some results in the planar case.

• The case k = 3 is open.

Problem (k-disjoint shortest path problem)
Can we find a solution where each path Pi between si and ti is a
shortest path?

• Problem posed by Eilam-Tzoreff in 1998.

• She proved the case k = 2 has a polynomial algorithm.

• The case k ≥ 3 was open until now.

4

Optimal version

Question
Can we find a solution which minimises the size of the paths?

• Random algorithm for k = 2 (Björklund, Husfeldt 2015).

• Some results in the planar case.

• The case k = 3 is open.

Problem (k-disjoint shortest path problem)
Can we find a solution where each path Pi between si and ti is a
shortest path?

• Problem posed by Eilam-Tzoreff in 1998.

• She proved the case k = 2 has a polynomial algorithm.

• The case k ≥ 3 was open until now.

4

Optimal version

Question
Can we find a solution which minimises the size of the paths?

• Random algorithm for k = 2 (Björklund, Husfeldt 2015).

• Some results in the planar case.

• The case k = 3 is open.

Problem (k-disjoint shortest path problem)
Can we find a solution where each path Pi between si and ti is a
shortest path?

• Problem posed by Eilam-Tzoreff in 1998.

• She proved the case k = 2 has a polynomial algorithm.

• The case k ≥ 3 was open until now.

4

Optimal version

Question
Can we find a solution which minimises the size of the paths?

• Random algorithm for k = 2 (Björklund, Husfeldt 2015).

• Some results in the planar case.

• The case k = 3 is open.

Problem (k-disjoint shortest path problem)
Can we find a solution where each path Pi between si and ti is a
shortest path?

• Problem posed by Eilam-Tzoreff in 1998.

• She proved the case k = 2 has a polynomial algorithm.

• The case k ≥ 3 was open until now.

4

Recent interest and results

Theorem (Bérczi, Kobayashi 2017)
The directed 2 disjoint shortest paths problem admits a
polynomial time algorithm.

• Also show that it exists for planar graphs.

• A lot of extensions of this result (non negative weights,
slightly longer than shortest etc.)

Theorem (L. 2021)
The k disjoint shortest path problem admits an nf(k) algorithm.

Works for both edge and vertex-disjoint version. The talk focus
on edge-disjoint.

5

Recent interest and results

Theorem (Bérczi, Kobayashi 2017)
The directed 2 disjoint shortest paths problem admits a
polynomial time algorithm.

• Also show that it exists for planar graphs.

• A lot of extensions of this result (non negative weights,
slightly longer than shortest etc.)

Theorem (L. 2021)
The k disjoint shortest path problem admits an nf(k) algorithm.

Works for both edge and vertex-disjoint version. The talk focus
on edge-disjoint.

5

Recent interest and results

Theorem (Bérczi, Kobayashi 2017)
The directed 2 disjoint shortest paths problem admits a
polynomial time algorithm.

• Also show that it exists for planar graphs.

• A lot of extensions of this result (non negative weights,
slightly longer than shortest etc.)

Theorem (L. 2021)
The k disjoint shortest path problem admits an nf(k) algorithm.

Works for both edge and vertex-disjoint version. The talk focus
on edge-disjoint.

5

W[1]-hardness

Theorem
The k-DSP (directed or not) is W[1]-hard (no f(k)nO(1)

algorithm).

• Let (D, (si, ti)i∈[k]) be an instance of k-DP on DAGs and
v1, . . . vn the topological order of D.

• By subdividing each arc (vi, vj) j − i− 1 times, every
directed path is a shortest path.

v1 v2 v3

6

W[1]-hardness

Theorem
The k-DSP (directed or not) is W[1]-hard (no f(k)nO(1)

algorithm).

• Let (D, (si, ti)i∈[k]) be an instance of k-DP on DAGs and
v1, . . . vn the topological order of D.

• By subdividing each arc (vi, vj) j − i− 1 times, every
directed path is a shortest path.

v1 v2 v3

6

General ideas

BFS and shortest path

Consider a BFS starting from s1:

s1
t1

• It defines levels L1, . . . , Lr

• The shortest paths from s1 “follow” the levels

• We will call the edges between levels blue

• It defines also an orientation on these edges

• Paths in this digraph will be called blue paths

7

BFS and shortest path

Consider a BFS starting from s1:

s1
t1

• It defines levels L1, . . . , Lr

• The shortest paths from s1 “follow” the levels

• We will call the edges between levels blue

• It defines also an orientation on these edges

• Paths in this digraph will be called blue paths

7

BFS and shortest path

Consider a BFS starting from s1:

s1
t1

• It defines levels L1, . . . , Lr

• The shortest paths from s1 “follow” the levels

• We will call the edges between levels blue

• It defines also an orientation on these edges

• Paths in this digraph will be called blue paths

7

BFS and shortest path

Consider a BFS starting from s1:

s1
t1

• It defines levels L1, . . . , Lr

• The shortest paths from s1 “follow” the levels

• We will call the edges between levels blue

• It defines also an orientation on these edges

• Paths in this digraph will be called blue paths

7

Coloured disjoint paths

We can define red edges similarly by doing a BFS from s2:

s2

One edge can be of both colours (and oriented differently)

Definition (k-coloured Graph)

A k-coloured graph is a graph G as well as k colours on some
edges obtained by doing k BFS.

8

Coloured disjoint paths

We can define red edges similarly by doing a BFS from s2:

s2

One edge can be of both colours (and oriented differently)

Definition (k-coloured Graph)

A k-coloured graph is a graph G as well as k colours on some
edges obtained by doing k BFS.

8

Multi-coloured graph

Problem ((k, l)-DSP)
Let G be a k-coloured graph, (s1, t1), . . . (sl, tl) l pairs of vertices
of G and c : [l]→ [k]. Does there exists a set of disjoint paths
P1, . . . , Pl such that for every i:

• Pi is a path of colour c(i) from si to ti

s1 t1

s2 t2

s3 t3

We show by induction on k that (k, l)-DSP admits a
algorithm in nf(k,l)

9

Multi-coloured graph

Problem ((k, l)-DSP)
Let G be a k-coloured graph, (s1, t1), . . . (sl, tl) l pairs of vertices
of G and c : [l]→ [k]. Does there exists a set of disjoint paths
P1, . . . , Pl such that for every i:

• Pi is a path of colour c(i) from si to ti

s1 t1

s2 t2

s3 t3

We show by induction on k that (k, l)-DSP admits a
algorithm in nf(k,l)

9

Multi-coloured graph

Problem ((k, l)-DSP)
Let G be a k-coloured graph, (s1, t1), . . . (sl, tl) l pairs of vertices
of G and c : [l]→ [k]. Does there exists a set of disjoint paths
P1, . . . , Pl such that for every i:

• Pi is a path of colour c(i) from si to ti

s1 t1

s2 t2

s3 t3

We show by induction on k that (k, l)-DSP admits a
algorithm in nf(k,l)

9

Case k = 1

The case k = 1 corresponds to the disjoint-paths problem in
directed acyclic graphs.

t2

s1

s2

t1

Theorem (Fortune et al. 1980)
`-disjoint-paths on DAGs admits an nO(`) algorithm.

10

Algorithm

The algorithm is then a generalization of Fortune et al.
algorithm for DAGs.

Main Idea

Guess some intermediate points on the solution paths such that
paths of different colours cannot intersect.

s1 t1

s2 t2

s3 t3

11

Algorithm

The algorithm is then a generalization of Fortune et al.
algorithm for DAGs.

Main Idea

Guess some intermediate points on the solution paths such that
paths of different colours cannot intersect.

s1 t1

s2 t2

s3 t3

11

Bi-coloured components

Definition

• G+: graph of red/blue edges with the same orientation.
G−: opposit one.

• A set of vertices is said to be a bi-colored component if it
is a connected component of either G+ or G−.

12

Some remarks

• It is the main ingredient in Bérczi and Kobayashi’s proof

• As the role of si and ti are symmetrical, G+ and G− have
the same properties

Lemma
If P is a blue path and Ci a bi-coloured component, P ∩ Ci is a
sub-path of P .

13

Some remarks

• It is the main ingredient in Bérczi and Kobayashi’s proof

• As the role of si and ti are symmetrical, G+ and G− have
the same properties

Lemma
If P is a blue path and Ci a bi-coloured component, P ∩ Ci is a
sub-path of P .

13

Main lemma

Lemma
Let P1 and P2 be two shortest paths. There exists a finite
number of bi-coloured components such that P1 and P2

cannot intersect outside these components.

s1 t1

s2 t2

s′1 t′1

s′2 t′2

• One is enough (Bentert et al. 2020+)

14

Main lemma

Lemma
Let P1 and P2 be two shortest paths. There exists a finite
number of bi-coloured components such that P1 and P2

cannot intersect outside these components.

s1 t1

s2 t2

s′1 t′1

s′2 t′2

• One is enough (Bentert et al. 2020+)

14

Case k = ` = 2

• Let G, (s1, t1), (s2, t2) be an instance of (2, 2)-DSP

s1 t1

s2 t2

The algorithm then:

• Guess (s′i, t
′
i) for i ∈ [2]. (n4 possible choices)

• Consider s′1, t′1 as red.

• Solve this new instance where paths of different colours
cannot intersect.

15

Case k = ` = 2

• Let G, (s1, t1), (s2, t2) be an instance of (2, 2)-DSP

s1 t1

s2 t2

s′1 t′1

s′2 t′2

The algorithm then:

• Guess (s′i, t
′
i) for i ∈ [2]. (n4 possible choices)

• Consider s′1, t′1 as red.

• Solve this new instance where paths of different colours
cannot intersect.

15

Case k = ` = 2

• Let G, (s1, t1), (s2, t2) be an instance of (2, 2)-DSP

s1 t1

s2 t2

s′1 t′1

s′2 t′2

The algorithm then:

• Guess (s′i, t
′
i) for i ∈ [2]. (n4 possible choices)

• Consider s′1, t′1 as red.

• Solve this new instance where paths of different colours
cannot intersect.

15

Case k = ` = 2

• Let G, (s1, t1), (s2, t2) be an instance of (2, 2)-DSP

s1 t1

s2 t2

s′1 t′1

s′2 t′2

The algorithm then:

• Guess (s′i, t
′
i) for i ∈ [2]. (n4 possible choices)

• Consider s′1, t′1 as red.

• Solve this new instance where paths of different colours
cannot intersect.

15

Induction step

In the case with 3 colours:

• Guess the components for blue/ red and blue/ green

• Take the intersections and change the colour of the blue
paths on the bi-colored components

• The blue paths remaining do not intersect with paths of
other colours.

16

Induction step

In the case with 3 colours:

• Guess the components for blue/ red and blue/ green

• Take the intersections and change the colour of the blue
paths on the bi-colored components

• The blue paths remaining do not intersect with paths of
other colours.

16

Induction step

In the case with 3 colours:

• Guess the components for blue/ red and blue/ green

• Take the intersections and change the colour of the blue
paths on the bi-colored components

• The blue paths remaining do not intersect with paths of
other colours.

16

Induction step

In the case with 3 colours:

• Guess the components for blue/ red and blue/ green

• Take the intersections and change the colour of the blue
paths on the bi-colored components

• The blue paths remaining do not intersect with paths of
other colours.

16

Induction step

In the case with 3 colours:

• Guess the components for blue/ red and blue/ green

• Take the intersections and change the colour of the blue
paths on the bi-colored components

• The blue paths remaining do not intersect with paths of
other colours.

16

Final step

There is a decomposition of each path into f(k, l) paths (with
changes of colour) s.t each pair of paths of different colours
cannot intersect.

The algorithm consists then of:

1. Try all decompositions and colours (nf(k,l) tries)

2. Solve each colour using Fortune’s type algorithm in nf(k,l)

17

Final step

There is a decomposition of each path into f(k, l) paths (with
changes of colour) s.t each pair of paths of different colours
cannot intersect.

The algorithm consists then of:

1. Try all decompositions and colours (nf(k,l) tries)

2. Solve each colour using Fortune’s type algorithm in nf(k,l)

17

Proof of the main lemma

Role of bi-coloured components

Lemma
Let P1 and P2 be two shortest paths. There exists a finite
number of bi-coloured components such that P1 and P2

cannot intersect outside these components.

• We will start with the following lemma:

Lemma
If P is a blue path and Ci a bi-coloured component, P ∩ Ci is a
sub-path of P .

Remember that G+ and G− are symmetrical, so we assume that
C is a component of G+.

18

Role of bi-coloured components

Lemma
Let P1 and P2 be two shortest paths. There exists a finite
number of bi-coloured components such that P1 and P2

cannot intersect outside these components.

• We will start with the following lemma:

Lemma
If P is a blue path and Ci a bi-coloured component, P ∩ Ci is a
sub-path of P .

Remember that G+ and G− are symmetrical, so we assume that
C is a component of G+.

18

Properties of bi-coloured components

Lemma
Let C be a component of G+, then the two BFS induce an
identical partition on C.

For u, v ∈ C, the difference of levels are the same in both colour.

u

v

19

Properties of bi-coloured components

Lemma
Let C be a component of G+, then the two BFS induce an
identical partition on C.

For u, v ∈ C, the difference of levels are the same in both colour.

u

v

19

Some properties of blue paths

Lemma
If x ∈ Li, y ∈ Li+t and there is a path P of length t between x

and y in G, then P is a blue path.

Li Li+2

P

s1

Pi

• Consider Pi of length i from s1 to x.
• P ′ = Pi � P is a path of length i+ t from s1 to t and so is a

blue path.

20

Some properties of blue paths

Lemma
If x ∈ Li, y ∈ Li+t and there is a path P of length t between x

and y in G, then P is a blue path.

Li Li+2

P

s1

Pi

• Consider Pi of length i from s1 to x.

• P ′ = Pi � P is a path of length i+ t from s1 to t and so is a
blue path.

20

Some properties of blue paths

Lemma
If x ∈ Li, y ∈ Li+t and there is a path P of length t between x

and y in G, then P is a blue path.

Li Li+2

P

s1

Pi

• Consider Pi of length i from s1 to x.
• P ′ = Pi � P is a path of length i+ t from s1 to t and so is a

blue path.

20

Shortest path and components

Lemma
If P is a blue path and Ci a bi-coloured component, P ∩ Ci is a
sub-path of P .

Suppose this is not true:

21

Shortest path and components

Lemma
If P is a blue path and Ci a bi-coloured component, P ∩ Ci is a
sub-path of P .

Suppose this is not true:

21

Shortest path and components

Lemma
If P is a blue path and Ci a bi-coloured component, P ∩ Ci is a
sub-path of P .

Suppose this is not true:

21

Shortest path and components

Lemma
If P is a blue path and Ci a bi-coloured component, P ∩ Ci is a
sub-path of P .

Suppose this is not true:

21

Some properties of bi-coloured paths

Lemma
If P1 is a red (x, y)-path and P2 is a blue (x, y)-path, then P1

and P2 are both red and blue paths.

• By definition of blue/red paths: |P1| = |P2|.

• If x ∈ Li and y ∈ Li+t, then |P2| = t

• |P1| is equal to the difference of blue levels between x and y.

• P1 is blue by previous lemma.

22

Some properties of bi-coloured paths

Lemma
If P1 is a red (x, y)-path and P2 is a blue (x, y)-path, then P1

and P2 are both red and blue paths.

• By definition of blue/red paths: |P1| = |P2|.
• If x ∈ Li and y ∈ Li+t, then |P2| = t

• |P1| is equal to the difference of blue levels between x and y.

• P1 is blue by previous lemma.

22

Some properties of bi-coloured paths

Lemma
If P1 is a red (x, y)-path and P2 is a blue (x, y)-path, then P1

and P2 are both red and blue paths.

• By definition of blue/red paths: |P1| = |P2|.
• If x ∈ Li and y ∈ Li+t, then |P2| = t

• |P1| is equal to the difference of blue levels between x and y.

• P1 is blue by previous lemma.

22

Conflict component

Definition
Let P1, P2 be two (possibly intersecting) paths and C a
bi-coloured component. We say that P1 and P2 are in conflict
on C if C ∩P1 and C ∩P2 can be replaced by intersecting paths.

23

Conflict component

Definition
Let P1, P2 be two (possibly intersecting) paths and C a
bi-coloured component. We say that P1 and P2 are in conflict
on C if C ∩P1 and C ∩P2 can be replaced by intersecting paths.

23

Conflict component and intersection

Lemma
Let P1 and P2 be two paths such that C is a conflicting
component, then P1 ∩ P2 is empty outside of C.

• Both paths between x and y are red/blue path.

• y belongs to the component.

24

Conflict component and intersection

Lemma
Let P1 and P2 be two paths such that C is a conflicting
component, then P1 ∩ P2 is empty outside of C.

x y

• Both paths between x and y are red/blue path.

• y belongs to the component.

24

Conflict component and intersection

Lemma
Let P1 and P2 be two paths such that C is a conflicting
component, then P1 ∩ P2 is empty outside of C.

x y

s1

t1

• Both paths between x and y are red/blue path.

• y belongs to the component.

24

Conflict component and intersection

Lemma
Let P1 and P2 be two paths such that C is a conflicting
component, then P1 ∩ P2 is empty outside of C.

x y

s1

t1

• Both paths between x and y are red/blue path.

• y belongs to the component.

24

conflicting case

If P1 and P2 are conflicting, then the conflicting component
has the properties we want.

s1 t1

s2 t2

s′1 t′1

s′2 t′2

Unfortunately, this is not always the case and we have to look
for something weaker.

25

conflicting case

If P1 and P2 are conflicting, then the conflicting component
has the properties we want.

s1 t1

s2 t2

s′1 t′1

s′2 t′2

Unfortunately, this is not always the case and we have to look
for something weaker.

25

Intersection between red/blue paths

Definition
Let P1 be a blue (s1, t1)-path and P2 a red (s2, t2)-path. We say
that P1 does not see P2 if:

• No blue (s1, t1)-path can intersect P2

s1 t1

s2 t2

26

Intersection between red/blue paths

Definition
Let P1 be a blue (s1, t1)-path and P2 a red (s2, t2)-path. We say
that P1 does not see P2 if:

• No blue (s1, t1)-path can intersect P2

s1 t1

s2 t2

26

Blind paths

Definition
Let P1 be a blue (s1, t1)-path and P2 a red (s2, t2)-path. We say
that P1 and P2 are blind if:

• P1 does not see P2

• P2 does not see P1

s1 t1

s2 t2

• Goal: reduce to an instance where pairs of paths of
different colours are blind.
• Fortune’s algorithm can be adapted in that case. 27

Blind paths

Definition
Let P1 be a blue (s1, t1)-path and P2 a red (s2, t2)-path. We say
that P1 and P2 are blind if:

• P1 does not see P2

• P2 does not see P1

s1 t1

s2 t2

• Goal: reduce to an instance where pairs of paths of
different colours are blind.
• Fortune’s algorithm can be adapted in that case. 27

Blind paths

Definition
Let P1 be a blue (s1, t1)-path and P2 a red (s2, t2)-path. We say
that P1 and P2 are blind if:

• P1 does not see P2

• P2 does not see P1

s1 t1

s2 t2

• Goal: reduce to an instance where pairs of paths of
different colours are blind.
• Fortune’s algorithm can be adapted in that case. 27

Finding a blind decomposition

Let P1 and P2 be two disjoint paths such that P1 sees P2:

s1 t1

s2 t2

• Consider the last vertex x on P1 s.t ∃ a blue (x, t1)-path
intersecting P2. (x 6= t1).

• This defines P ′1 intersecting P2.

• ∃ C such that P ′1 and P2 cannot intersect outside.

28

Finding a blind decomposition

Let P1 and P2 be two disjoint paths such that P1 sees P2:

s1 t1

s2 t2

• Consider the last vertex x on P1 s.t ∃ a blue (x, t1)-path
intersecting P2. (x 6= t1).

• This defines P ′1 intersecting P2.

• ∃ C such that P ′1 and P2 cannot intersect outside.

28

Finding a blind decomposition

Let P1 and P2 be two disjoint paths such that P1 sees P2:

s1 t1

s2 t2

C

• Consider the last vertex x on P1 s.t ∃ a blue (x, t1)-path
intersecting P2. (x 6= t1).

• This defines P ′1 intersecting P2.

• ∃ C such that P ′1 and P2 cannot intersect outside.

28

Finding a blind decomposition

Let P1 and P2 be two disjoint paths such that P1 sees P2:

s1 t1

s2 t2

• Consider the last vertex x on P1 s.t ∃ a blue (x, t1)-path
intersecting P2. (x 6= t1).

• This defines P ′1 intersecting P2.

• ∃ C such that P ′1 and P2 cannot intersect outside.

28

Finding a blind decomposition

Lemma
There exists a decomposition of P1 into a finite set H1 of blue
paths and decomposition of P2 into a finite set H2 of red paths
s.t for any pair L1 ∈ H1 and L2 ∈ H2:

• Either L1 does not see L2; or

• They belong to the same bi-coloured component C1.

s1 t1

s2 t2

C1

29

Intersection of path-decomposition

Definition
Let H and Q be two path-partitions of P . The intersection
H ∩Q is the minimal path partition L of P such that for every
L ∈ L:

• L is a subpath of some H ∈ H
• L is a subpath of some Q ∈ Q

• |H ∩ Q| ≤ |H|+ |Q|

30

Intersection of path-decomposition

Definition
Let H and Q be two path-partitions of P . The intersection
H ∩Q is the minimal path partition L of P such that for every
L ∈ L:

• L is a subpath of some H ∈ H
• L is a subpath of some Q ∈ Q

• |H ∩ Q| ≤ |H|+ |Q|

30

Intersection of path-decomposition

Definition
Let H and Q be two path-partitions of P . The intersection
H ∩Q is the minimal path partition L of P such that for every
L ∈ L:

• L is a subpath of some H ∈ H
• L is a subpath of some Q ∈ Q

• |H ∩ Q| ≤ |H|+ |Q|

30

Main Lemma

Lemma
There exists a decomposition of P1 into a finite set H1 of blue
paths and decomposition of P2 into a finite set H2 of red paths as
well as two components s.t, for any pair L1 ∈ H1 and L2 ∈ H2:

• Either L1 and L2 are blind; or

• They belong to the same bi-coloured component.

s1 t1

s2 t2

31

Proof of the main lemma

s1 t1

s2 t2

C1

• We can find H1 and H2 such that elements of H1 do not see
elements of H2 outside of C1.

• We can find Q1 and Q2 such that elements of Q2 do not see
elements of Q1 outside of C2

Taking H1 ∩Q1 and H2 ∩Q2 works for the previous lemma.

32

Proof of the main lemma

s1 t1

s2 t2

C2

• We can find H1 and H2 such that elements of H1 do not see
elements of H2 outside of C1.

• We can find Q1 and Q2 such that elements of Q2 do not see
elements of Q1 outside of C2

Taking H1 ∩Q1 and H2 ∩Q2 works for the previous lemma.

32

Proof of the main lemma

s1 t1

s2 t2

• We can find H1 and H2 such that elements of H1 do not see
elements of H2 outside of C1.

• We can find Q1 and Q2 such that elements of Q2 do not see
elements of Q1 outside of C2

Taking H1 ∩Q1 and H2 ∩Q2 works for the previous lemma.

32

Conclusion

Result

Theorem
The (k, l)-DSP problem admits an algorithm in nf(k,l)

We can extend it to |Pi| ≤ d(si, ti) + t for all i ∈ t (ng(k,l,t))

s1
t1

There is at most t edge which are not between levels/not used
with the correct orientation.

33

Result

Theorem
The (k, l)-DSP problem admits an algorithm in nf(k,l)

We can extend it to |Pi| ≤ d(si, ti) + t for all i ∈ t (ng(k,l,t))

s1
t1

There is at most t edge which are not between levels/not used
with the correct orientation.

33

Open question

Question
Can we find a polynomial algorithm for the optimal-disjoint
paths problem?

Even finding an approximation would be interesting.

Question (Directed version)
Is the directed k-DSP in XP?

• Open for k = 3

• Seems much harder!

34

Open question

Question
Can we find a polynomial algorithm for the optimal-disjoint
paths problem?

Even finding an approximation would be interesting.

Question (Directed version)
Is the directed k-DSP in XP?

• Open for k = 3

• Seems much harder!

34

Thank you!

34

	Disjoint paths problem and optimization version
	General ideas
	Proof of the main lemma
	Conclusion

