A polynomial time algorithm for the k-disjoint shortest paths problem.

William Lochet

University of Bergen, Norway

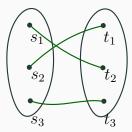
Disjoint paths problem and optimization version

Disjoint paths problem

Let G be a graph, $S = (s_1, \ldots, s_k)$ and $T = (t_1, \ldots, t_k)$ two sets of vertices.

Question

Does there exist k disjoint paths P_1, \ldots, P_k linking S and T?



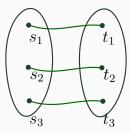
• Without constraints on the extremity: flow.

Disjoint paths problem

Let G be a graph, $S = (s_1, \ldots, s_k)$ and $T = (t_1, \ldots, t_k)$ two sets of vertices.

Question

Does there exist k disjoint paths P_1, \ldots, P_k linking S and T?



- Without constraints on the extremity: flow.
- If each P_i must link s_i to t_i : k-disjoint paths problem.

Theorem (Robertson and Seymour 1995) The k-disjoint paths problem admits an algorithm in $f(k)n^3$.

- Allows to decide the existence of a **minor**.
- Has been extensively studied since then.

Theorem (Robertson and Seymour 1995) The k-disjoint paths problem admits an algorithm in $f(k)n^3$.

- Allows to decide the existence of a **minor**.
- Has been extensively studied since then.

Theorem (Fortune et al. 1980) The 2-disjoint paths problem in directed graphs in NP-hard.

- There exists an $n^{O(k)}$ algorithm on DAGs (Fortune et al.) .
- W[1]-hard on DAGs (Slivkins. 2010)

Question

Can we find a solution which minimises the size of the paths?

Optimal version

Question

Can we find a solution which minimises the size of the paths?

- Random algorithm for k = 2 (Björklund, Husfeldt 2015).
- Some results in the planar case.
- The case k = 3 is open.

Optimal version

Question

Can we find a solution which minimises the size of the paths?

- Random algorithm for k = 2 (Björklund, Husfeldt 2015).
- Some results in the planar case.
- The case k = 3 is open.

Problem (k-disjoint shortest path problem) Can we find a solution where each path P_i between s_i and t_i is a shortest path?

Optimal version

Question

Can we find a solution which minimises the size of the paths?

- Random algorithm for k = 2 (Björklund, Husfeldt 2015).
- Some results in the planar case.
- The case k = 3 is open.

Problem (k-disjoint shortest path problem) Can we find a solution where each path P_i between s_i and t_i is a shortest path?

- Problem posed by Eilam-Tzoreff in 1998.
- She proved the case k = 2 has a polynomial algorithm.
- The case $k \ge 3$ was open until now.

Theorem (Bérczi, Kobayashi 2017)

The directed 2 disjoint shortest paths problem admits a polynomial time algorithm.

Theorem (Bérczi, Kobayashi 2017) The directed 2 disjoint shortest paths problem admits a polynomial time algorithm.

- Also show that it exists for planar graphs.
- A lot of extensions of this result (non negative weights, slightly longer than shortest etc.)

Theorem (Bérczi, Kobayashi 2017) The directed 2 disjoint shortest paths problem admits a polynomial time algorithm.

- Also show that it exists for planar graphs.
- A lot of extensions of this result (non negative weights, slightly longer than shortest etc.)

Theorem (L. 2021)

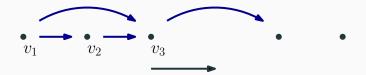
The k disjoint shortest path problem admits an $n^{f(k)}$ algorithm.

Works for both edge and vertex-disjoint version. The talk focus on **edge-disjoint**.

Theorem

The k-DSP (directed or not) is W[1]-hard (no $f(k)n^{O(1)}$ algorithm).

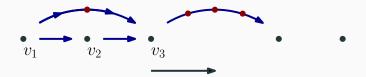
- Let $(D, (s_i, t_i)_{i \in [k]})$ be an instance of k-DP on DAGs and $v_1, \ldots v_n$ the topological order of D.
- By subdividing each arc (v_i, v_j) j − i − 1 times, every directed path is a shortest path.



Theorem

The k-DSP (directed or not) is W[1]-hard (no $f(k)n^{O(1)}$ algorithm).

- Let $(D, (s_i, t_i)_{i \in [k]})$ be an instance of k-DP on DAGs and $v_1, \ldots v_n$ the topological order of D.
- By subdividing each arc (v_i, v_j) j − i − 1 times, every directed path is a shortest path.



General ideas

Consider a BFS starting from s_1 :

• It defines levels L_1, \ldots, L_r

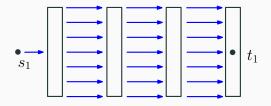
Consider a BFS starting from s_1 :

- It defines levels L_1, \ldots, L_r
- The shortest paths from s_1 "follow" the levels

Consider a BFS starting from s_1 :

- It defines levels L_1, \ldots, L_r
- The shortest paths from s_1 "follow" the levels
- We will call the edges between levels blue

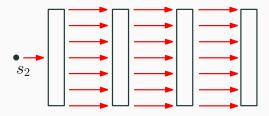
Consider a BFS starting from s_1 :



- It defines levels L_1, \ldots, L_r
- The shortest paths from s_1 "follow" the levels
- We will call the edges between levels blue
- It defines also an **orientation** on these edges
- Paths in this digraph will be called blue paths

Coloured disjoint paths

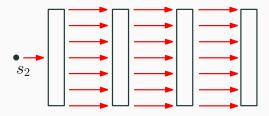
We can define red edges similarly by doing a BFS from s_2 :



One edge can be of **both colours** (and oriented differently)

Coloured disjoint paths

We can define **red** edges similarly by doing a BFS from s_2 :



One edge can be of **both colours** (and oriented differently)

Definition (k-coloured Graph)

A k-coloured graph is a graph G as well as k colours on some edges obtained by doing k BFS.

Multi-coloured graph

Problem ((k, l)-DSP)

Let G be a k-coloured graph, $(s_1, t_1), \ldots, (s_l, t_l)$ l pairs of vertices of G and $c : [l] \to [k]$. Does there exists a set of disjoint paths P_1, \ldots, P_l such that for every i:

• P_i is a path of colour c(i) from s_i to t_i

Multi-coloured graph

Problem ((k, l)-DSP)

Let G be a k-coloured graph, $(s_1, t_1), \ldots, (s_l, t_l)$ l pairs of vertices of G and $c : [l] \to [k]$. Does there exists a set of disjoint paths P_1, \ldots, P_l such that for every i:

• P_i is a path of colour c(i) from s_i to t_i



Problem ((k, l)-DSP)

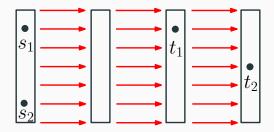
Let G be a k-coloured graph, $(s_1, t_1), \ldots, (s_l, t_l)$ l pairs of vertices of G and $c : [l] \to [k]$. Does there exists a set of disjoint paths P_1, \ldots, P_l such that for every i:

• P_i is a path of colour c(i) from s_i to t_i



We show by **induction on** k that (k, l)-DSP admits a algorithm in $n^{f(k,l)}$

The case k = 1 corresponds to the disjoint-paths problem in **directed acyclic graphs**.



Theorem (Fortune et al. 1980) ℓ -disjoint-paths on **DAGs** admits an $n^{O(\ell)}$ algorithm. The algorithm is then a generalization of Fortune et al. algorithm for DAGs.

Main Idea

Guess some intermediate points on the solution paths such that paths of different colours **cannot intersect**.

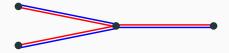
The algorithm is then a generalization of Fortune et al. algorithm for DAGs.

Main Idea

Guess some intermediate points on the solution paths such that paths of different colours **cannot intersect**.

Definition

- G^+ : graph of red/blue edges with the same orientation. G^- : opposit one.
- A set of vertices is said to be a **bi-colored** component if it is a connected component of either G^+ or G^- .



- It is the main ingredient in Bérczi and Kobayashi's proof
- As the role of s_i and t_i are symmetrical, G^+ and G^- have the same properties

- It is the main ingredient in Bérczi and Kobayashi's proof
- As the role of s_i and t_i are symmetrical, G^+ and G^- have the same properties

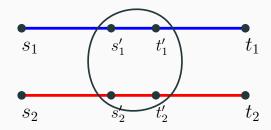
Lemma

If P is a blue path and C_i a bi-coloured component, $P \cap C_i$ is a sub-path of P.

Main lemma

Lemma

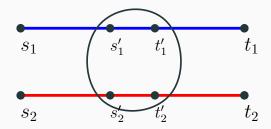
Let P_1 and P_2 be two shortest paths. There exists a finite number of **bi-coloured components** such that P_1 and P_2 cannot intersect outside these components.



Main lemma

Lemma

Let P_1 and P_2 be two shortest paths. There exists a finite number of **bi-coloured components** such that P_1 and P_2 cannot intersect outside these components.



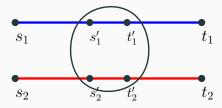
• One is enough (Bentert et al. 2020+)

• Let G, (s_1, t_1) , (s_2, t_2) be an instance of (2, 2)-DSP

The algorithm then:

• Guess (s'_i, t'_i) for $i \in [2]$. $(n^4$ possible choices)

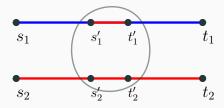
• Let G, (s_1, t_1) , (s_2, t_2) be an instance of (2, 2)-DSP



The algorithm then:

- Guess (s'_i, t'_i) for $i \in [2]$. $(n^4$ possible choices)
- Consider s'_1, t'_1 as red.

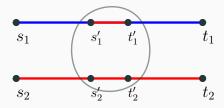
• Let G, (s_1, t_1) , (s_2, t_2) be an instance of (2, 2)-DSP



The algorithm then:

- Guess (s'_i, t'_i) for $i \in [2]$. $(n^4$ possible choices)
- Consider s'_1, t'_1 as red.
- Solve this new instance where paths of different colours **cannot** intersect.

• Let G, (s_1, t_1) , (s_2, t_2) be an instance of (2, 2)-DSP

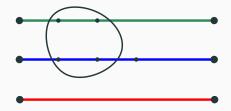


The algorithm then:

- Guess (s'_i, t'_i) for $i \in [2]$. $(n^4$ possible choices)
- Consider s'_1, t'_1 as red.
- Solve this new instance where paths of different colours **cannot** intersect.

In the case with 3 colours:

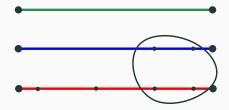
Induction step



In the case with 3 colours:

• Guess the components for blue/ red and blue/ green

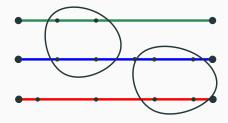
Induction step



In the case with 3 colours:

• Guess the components for blue/ red and blue/ green

Induction step



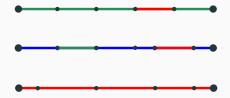
In the case with 3 colours:

- Guess the components for blue/ red and blue/ green
- Take the intersections and change the colour of the blue paths on the bi-colored components

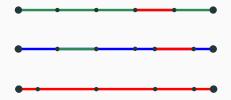
In the case with 3 colours:

- Guess the components for blue/ red and blue/ green
- Take the intersections and change the colour of the blue paths on the bi-colored components
- The blue paths remaining do not **intersect** with paths of other colours.

There is a **decomposition** of each path into f(k, l) paths (with changes of colour) s.t each pair of paths of different colours cannot intersect.



There is a **decomposition** of each path into f(k, l) paths (with changes of colour) s.t each pair of paths of different colours cannot intersect.



The algorithm consists then of:

- 1. Try all decompositions and colours $(n^{f(k,l)} \text{ tries})$
- 2. Solve each colour using Fortune's type algorithm in $n^{f(k,l)}$

Proof of the main lemma

Let P_1 and P_2 be two shortest paths. There exists a finite number of **bi-coloured components** such that P_1 and P_2 cannot intersect outside these components.

Let P_1 and P_2 be two shortest paths. There exists a finite number of **bi-coloured components** such that P_1 and P_2 cannot intersect outside these components.

• We will start with the following lemma:

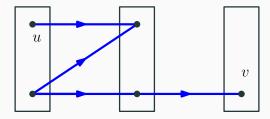
Lemma

If P is a blue path and C_i a bi-coloured component, $P \cap C_i$ is a sub-path of P.

Remember that G^+ and G^- are symmetrical, so we assume that C is a component of G^+ .

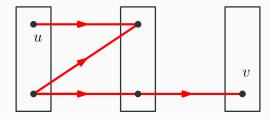
Let C be a component of G^+ , then the two BFS induce an identical partition on C.

For $u, v \in C$, the difference of levels are the same in both colour.



Let C be a component of G^+ , then the two BFS induce an identical partition on C.

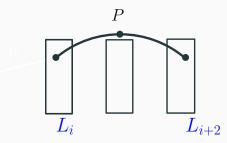
For $u, v \in C$, the difference of levels are the same in both colour.



Some properties of blue paths

Lemma

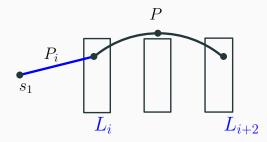
If $x \in L_i$, $y \in L_{i+t}$ and there is a path P of length t between x and y in G, then P is a blue path.



Some properties of blue paths

Lemma

If $x \in L_i$, $y \in L_{i+t}$ and there is a path P of length t between x and y in G, then P is a blue path.

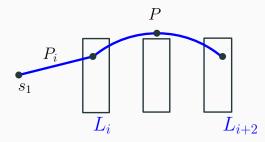


• Consider P_i of length *i* from s_1 to x.

Some properties of blue paths

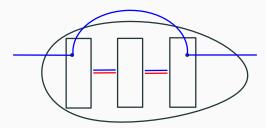
Lemma

If $x \in L_i$, $y \in L_{i+t}$ and there is a path P of length t between x and y in G, then P is a blue path.

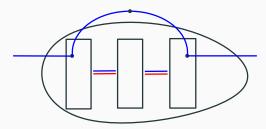


- Consider P_i of length *i* from s_1 to x.
- $P' = P_i \odot P$ is a path of length i + t from s_1 to t and so is a blue path.

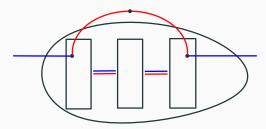
If P is a blue path and C_i a bi-coloured component, $P \cap C_i$ is a sub-path of P.



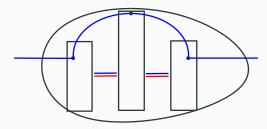
If P is a blue path and C_i a bi-coloured component, $P \cap C_i$ is a sub-path of P.



If P is a blue path and C_i a bi-coloured component, $P \cap C_i$ is a sub-path of P.



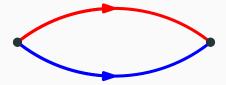
If P is a blue path and C_i a bi-coloured component, $P \cap C_i$ is a sub-path of P.



Some properties of bi-coloured paths

Lemma

If P_1 is a red (x, y)-path and P_2 is a blue (x, y)-path, then P_1 and P_2 are both red and blue paths.

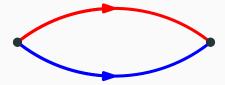


• By definition of blue/red paths: $|P_1| = |P_2|$.

Some properties of bi-coloured paths

Lemma

If P_1 is a red (x, y)-path and P_2 is a blue (x, y)-path, then P_1 and P_2 are both red and blue paths.



- By definition of blue/red paths: $|P_1| = |P_2|$.
- If $x \in L_i$ and $y \in L_{i+t}$, then $|P_2| = t$
- $|P_1|$ is equal to the difference of blue levels between x and y.

Some properties of bi-coloured paths

Lemma

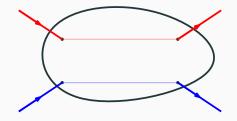
If P_1 is a red (x, y)-path and P_2 is a blue (x, y)-path, then P_1 and P_2 are both red and blue paths.



- By definition of blue/red paths: $|P_1| = |P_2|$.
- If $x \in L_i$ and $y \in L_{i+t}$, then $|P_2| = t$
- $|P_1|$ is equal to the difference of blue levels between x and y.
- P_1 is blue by previous lemma.

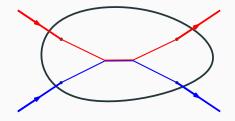
Definition

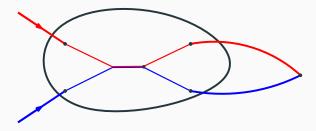
Let P_1 , P_2 be two (possibly intersecting) paths and C a bi-coloured component. We say that P_1 and P_2 are in **conflict** on C if $C \cap P_1$ and $C \cap P_2$ can be replaced by intersecting paths.

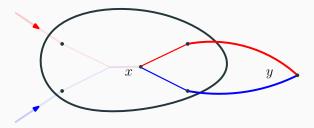


Definition

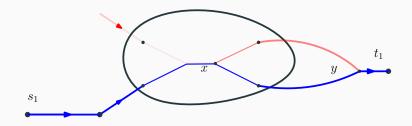
Let P_1 , P_2 be two (possibly intersecting) paths and C a bi-coloured component. We say that P_1 and P_2 are in **conflict** on C if $C \cap P_1$ and $C \cap P_2$ can be replaced by intersecting paths.



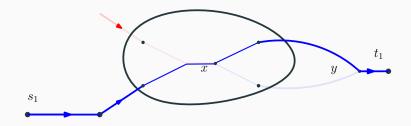




- Both paths between x and y are red/blue path.
- y belongs to the component.

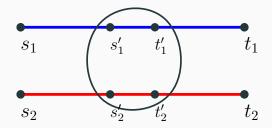


- Both paths between x and y are red/blue path.
- y belongs to the component.

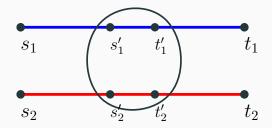


- Both paths between x and y are red/blue path.
- y belongs to the component.

If P_1 and P_2 are **conflicting**, then the conflicting component has the properties we want.



If P_1 and P_2 are **conflicting**, then the conflicting component has the properties we want.

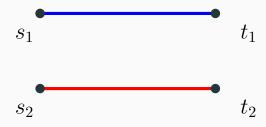


Unfortunately, this is not always the case and we have to look for something **weaker**.

Definition

Let P_1 be a blue (s_1, t_1) -path and P_2 a red (s_2, t_2) -path. We say that P_1 does not see P_2 if:

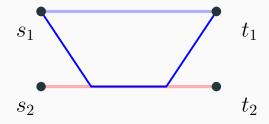
• No blue (s_1, t_1) -path can intersect P_2



Definition

Let P_1 be a blue (s_1, t_1) -path and P_2 a red (s_2, t_2) -path. We say that P_1 does not see P_2 if:

• No blue (s_1, t_1) -path can intersect P_2

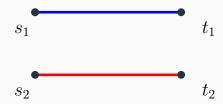


Blind paths

Definition

Let P_1 be a blue (s_1, t_1) -path and P_2 a red (s_2, t_2) -path. We say that P_1 and P_2 are blind if:

- P_1 does not see P_2
- P_2 does not see P_1



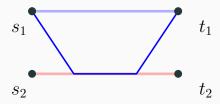
- Goal: reduce to an instance where pairs of paths of different colours are blind.
- Fortune's algorithm can be adapted in that case.

Blind paths

Definition

Let P_1 be a blue (s_1, t_1) -path and P_2 a red (s_2, t_2) -path. We say that P_1 and P_2 are blind if:

- P_1 does not see P_2
- P_2 does not see P_1



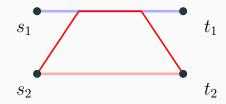
- Goal: reduce to an instance where pairs of paths of different colours are blind.
- Fortune's algorithm can be adapted in that case.

Blind paths

Definition

Let P_1 be a blue (s_1, t_1) -path and P_2 a red (s_2, t_2) -path. We say that P_1 and P_2 are blind if:

- P_1 does not see P_2
- P_2 does not see P_1

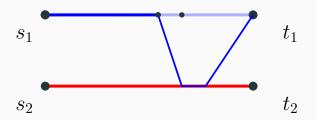


- Goal: reduce to an instance where pairs of paths of different colours are blind.
- Fortune's algorithm can be adapted in that case.

Let P_1 and P_2 be two disjoint paths such that P_1 sees P_2 :

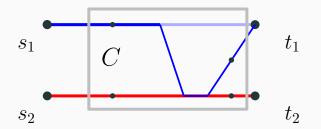
• Consider the last vertex x on P_1 s.t \exists a blue (x, t_1) -path intersecting P_2 . $(x \neq t_1)$.

Let P_1 and P_2 be two disjoint paths such that P_1 sees P_2 :



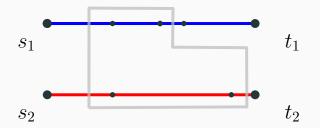
- Consider the last vertex x on P_1 s.t \exists a blue (x, t_1) -path intersecting P_2 . $(x \neq t_1)$.
- This defines P'_1 intersecting P_2 .

Let P_1 and P_2 be two disjoint paths such that P_1 sees P_2 :



- Consider the last vertex x on P_1 s.t \exists a blue (x, t_1) -path intersecting P_2 . $(x \neq t_1)$.
- This defines P'_1 intersecting P_2 .
- $\exists C$ such that P'_1 and P_2 cannot intersect outside.

Let P_1 and P_2 be two disjoint paths such that P_1 sees P_2 :

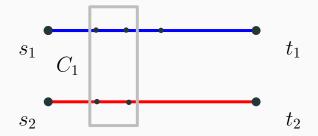


- Consider the last vertex x on P_1 s.t \exists a blue (x, t_1) -path intersecting P_2 . $(x \neq t_1)$.
- This defines P'_1 intersecting P_2 .
- $\exists C$ such that P'_1 and P_2 cannot intersect outside.

Lemma

There exists a decomposition of P_1 into a finite set \mathcal{H}_1 of blue paths and decomposition of P_2 into a finite set \mathcal{H}_2 of red paths s.t for any pair $L_1 \in \mathcal{H}_1$ and $L_2 \in \mathcal{H}_2$:

- Either L_1 does not see L_2 ; or
- They belong to the same bi-coloured component C_1 .



Definition

Let \mathcal{H} and \mathcal{Q} be two path-partitions of P. The intersection $\mathcal{H} \cap \mathcal{Q}$ is the minimal path partition \mathcal{L} of P such that for every $L \in \mathcal{L}$:

- L is a subpath of some $H \in \mathcal{H}$
- L is a subpath of some $Q \in \mathcal{Q}$

Definition

Let \mathcal{H} and \mathcal{Q} be two path-partitions of P. The intersection $\mathcal{H} \cap \mathcal{Q}$ is the minimal path partition \mathcal{L} of P such that for every $L \in \mathcal{L}$:

- L is a subpath of some $H \in \mathcal{H}$
- L is a subpath of some $Q \in \mathcal{Q}$

• $|\mathcal{H} \cap \mathcal{Q}| \le |\mathcal{H}| + |\mathcal{Q}|$

Definition

Let \mathcal{H} and \mathcal{Q} be two path-partitions of P. The intersection $\mathcal{H} \cap \mathcal{Q}$ is the minimal path partition \mathcal{L} of P such that for every $L \in \mathcal{L}$:

- L is a subpath of some $H \in \mathcal{H}$
- L is a subpath of some $Q \in \mathcal{Q}$

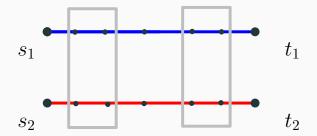
• $|\mathcal{H} \cap \mathcal{Q}| \le |\mathcal{H}| + |\mathcal{Q}|$

Main Lemma

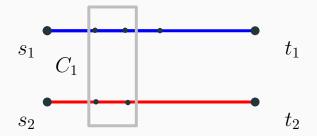
Lemma

There exists a decomposition of P_1 into a finite set \mathcal{H}_1 of blue paths and decomposition of P_2 into a finite set \mathcal{H}_2 of red paths as well as two components s.t, for any pair $L_1 \in \mathcal{H}_1$ and $L_2 \in \mathcal{H}_2$:

- Either L_1 and L_2 are **blind**; or
- They belong to the *same* bi-coloured component.

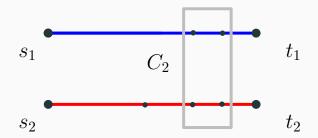


Proof of the main lemma



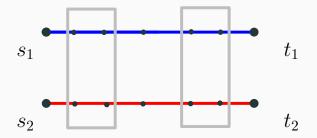
• We can find \mathcal{H}_1 and \mathcal{H}_2 such that elements of \mathcal{H}_1 do not see elements of \mathcal{H}_2 outside of C_1 .

Proof of the main lemma



- We can find \mathcal{H}_1 and \mathcal{H}_2 such that elements of \mathcal{H}_1 do not see elements of \mathcal{H}_2 outside of C_1 .
- We can find Q_1 and Q_2 such that elements of Q_2 do not see elements of Q_1 outside of C_2

Proof of the main lemma



- We can find \mathcal{H}_1 and \mathcal{H}_2 such that elements of \mathcal{H}_1 do not see elements of \mathcal{H}_2 outside of C_1 .
- We can find Q_1 and Q_2 such that elements of Q_2 do not see elements of Q_1 outside of C_2

Taking $\mathcal{H}_1 \cap \mathcal{Q}_1$ and $\mathcal{H}_2 \cap \mathcal{Q}_2$ works for the previous lemma.

Conclusion

Result

Theorem

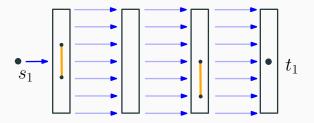
The (k, l)-DSP problem admits an algorithm in $n^{f(k, l)}$

Result

Theorem

The (k, l)-DSP problem admits an algorithm in $n^{f(k,l)}$

We can extend it to $|P_i| \le d(s_i, t_i) + t$ for all $i \in t$ $(n^{g(k,l,t)})$



There is at most t edge which are not between levels/not used with the correct orientation.

Question Can we find a polynomial algorithm for the optimal-disjoint paths problem?

Even finding an approximation would be interesting.

Question Can we find a polynomial algorithm for the optimal-disjoint paths problem?

Even finding an approximation would be interesting.

Question (Directed version) *Is the directed k-DSP in XP?*

- Open for k = 3
- Seems much harder!

Thank you!