
PROGRESS ON THE ADJACENT VERTEX DISTINGUISHING
EDGE COLOURING CONJECTURE

GWENAËL JORET AND WILLIAM LOCHET

Abstract. A proper edge colouring of a graph is adjacent vertex distinguishing if no
two adjacent vertices see the same set of colours. Using a clever application of the
Local Lemma, Hatami (2005) proved that every graph with maximum degree ∆ and
no isolated edge has an adjacent vertex distinguishing edge colouring with ∆ + 300
colours, provided ∆ is large enough. We show that this bound can be reduced to
∆ + 19. This is motivated by the conjecture of Zhang, Liu, and Wang (2002) that
∆ + 2 colours are enough for ∆ > 3.

1. Introduction

We use the notation [n] := {1, 2, . . . , n}. By ‘graph’ we mean a finite, undirected, and
loopless graph. Graphs are assumed to have no parallel edges, unless otherwise stated.
We generally follow the terminology of Diestel [4] for graphs, and refer the reader to
this textbook for undefined terms and notations. Given a graph G, we let NG(u) denote
the neighbourhood of vertex u in G, and let dG(u) denote the degree of u. We omit the
subscript G when the graph is clear from the context.

In this paper, a colouring of a graph G always means an edge colouring of G, defined as
a mapping c : E(G) → N associating integers (colours) to the edges of G. A colouring
is proper if no two adjacent vertices receive the same colour. Given a proper colouring
c of G and a vertex u ∈ V (G), we let Sc(u) denote the set of colours appearing on edges
incident to u. A proper colouring c is adjacent vertex distinguishing (AVD for short) if
Sc(u) 6= Sc(v) for every edge uv ∈ E(G).

Using a clever application of the Local Lemma, Hatami [10] proved that every graph
with maximum degree ∆ > 1020 and no isolated edge has an AVD-colouring with at
most ∆ + 300 colours. Our main result is that this bound can be reduced to ∆ + 19
(for large enough ∆):

Theorem 1. There exists an integer ∆0 > 0 such that every graph G with maximum
degree ∆ > ∆0 and no isolated edge has an AVD-colouring with at most ∆ + 19 colours.

(G. Joret) Computer Science Department, Université Libre de Bruxelles, Brussels,
Belgium

(W. Lochet) Université Côte d’Azur, CNRS, I3S, INRIA, Sophia Antipolis and ENS
Lyon, LIP, Lyon, France

E-mail addresses: gjoret@ulb.ac.be, william.lochet@gmail.com.
Date: April 17, 2018.
G. Joret is supported by an ARC grant from the Wallonia-Brussels Federation of Belgium.

1

2 G. JORET AND W. LOCHET

This is motivated by the following conjecture of Zhang, Liu, and Wang [20].

Conjecture 2 ([20]). Every graph with maximum degree ∆ > 3 and no isolated edge
has an AVD-colouring with ∆ + 2 colours.

(∆ > 3 is required because C5 needs five colours, it is the only connected graph known
to require more than ∆ + 2 colours.) This conjecture captured the attention of several
researchers over the years. It is known to be true e.g. if G is bipartite [1]; if ∆ = 3 [1]; if
G is planar and ∆ > 12 [2, 11]; if G is 2-degenerate [19]. The conjecture is also known
to hold asymptotically almost surely for random 4-regular graphs [9].

Various variants and strengthenings of the conjecture have been proposed in the liter-
ature. A natural one is a list version of the problem, where each edge of G has a list
of colours it can use. Recall that for proper edge colourings, the famous list colouring
conjecture states that the minimum list size such that G has a proper edge colouring
where each edge receives a colour from its list is equal to its chromatic index; in par-
ticular, it is at most ∆ + 1. Kahn [13] was the first to establish an upper bound of the
form ∆ + o(∆) on the required list size, and the best asymptotic bound known to this

day is ∆ + O(
√

∆(log ∆)4) due to Molloy and Reed [15]. Kwaśny and Przyby lo [14]
recently strenghened the latter result by showing that the resulting list edge colouring
can moreover be guaranteed to be an AVD-colouring. Horňák and Woźniak [12] conjec-
tured that the list edge colouring conjecture also holds in the AVD setting, and thus in
particular that a ∆ +O(1) bound on the list size should be enough.

Another strengthening of the AVD-colouring conjecture, due to Flandrin et al. [8], states
that every graph with no isolated edge and maximum degree ∆ > 3 has a proper edge
colouring c with colours in [∆+2] such that, for every edge uv, the sum of colours of edges
incident to u and that of v are distinct. This is called a neighbour sum distinguishing
colouring. The best asympotic bound is due to Przyby lo [17, 18], who obtained an upper
bound of ∆ + O(∆1/2) on the number of required colours in such a colouring. It is an
intriguing open problem whether a ∆ + O(1) bound holds; neither Hatami’s proof [10]
for AVD-colourings nor ours seem to be adaptable to this setting. We refer the reader
to [3, 18] and the references therein for further pointers to the relevant literature.

The paper is organised as follows. In Section 2 we set up the plan for the proof of
Theorem 1. In particular, vertices with big degrees (at least ∆/2, roughly) and those
with small degrees are treated independently, and differently. Then, Section 3 and
Section 4 are devoted to handling big and small degree vertices, respectively.

2. Initial colouring

Fix some ε with 0 < ε < 1/2, which will be assumed small enough later in the proof.
Let G be a graph with maximum degree ∆ and no isolated edge. We assume ∆ is large
enough for various inequalities appearing in the proof to hold.

PROGRESS ON THE ADJACENT VERTEX DISTINGUISHING EDGE COLOURING CONJECTURE3

The beginning of our proof of Theorem 1 follows closely that of Hatami [10]. In particu-
lar, we reuse his approach of treating differently vertices with ‘small’ degrees and those
with ‘big’ degrees, except we use (1/2 − ε)∆ as the threshold instead of ∆/3 in [10].
This larger threshold helps a little bit in reducing the additive constant in the main
theorem; however, the bulk of the reduction from 300 to 19 comes from treating big
degree vertices differently.

Let d := d(1/2 − ε)∆e. Taking ∆ large enough, we may assume that d < ∆/2. We
begin as in [10] by modifying the graph G as follows. Let G′ be the multigraph obtained
from G by contracting each edge uv ∈ E(G) such that dG(u) < d and dG(v) < d but
neither u nor v has any other neighbour w with dG(w) < d. Then G′ has maximum
degree ∆ and maximum edge multiplicity at most 2. Every proper colouring c′ of G′

can be extended to a proper colouring c of G with the same set of colours as follows:
For each edge e ∈ E(G) appearing in G′, set c(e) := c′(e). For each edge uv ∈ E(G)
that was contracted, we know that dG(u) + dG(v) < ∆. Thus some colour α of c′ is not
used on any of the edges incident to u and v, set then c(uv) := α.

In [10], the author points out that if moreover c′ is an AVD-colouring of G′ then c is an
AVD-colouring of G. Using this observation, the proof in [10] then focuses on finding
an AVD-colouring of G′. This is done by starting with a proper colouring c′ with ∆ + 2
colours, which exists by Vizing’s theorem, and then recolouring some edges of G′ with
new colours to obtain an AVD-colouring of G′. The advantage of working in G′ instead
of G is that the subgraph of G′ induced by the vertices with degree strictly less than d
has no isolated edge, which is important in that proof.

In our proof, we follow a similar approach but we keep the focus on G: We start with a
proper colouring c′ of G′ with ∆ + 2 colours obtained from Vizing’s theorem and extend
it to a colouring c of G as in the above remark. Thus, the colouring c uses ∆+2 colours
and satisfies the following property:

Sc(u)∩Sc(v) = {c(uv)} ∀uv ∈ E(G) s.t.{w ∈ N(u)∪N(v) : dG(w) < d} = {u, v}. (1)

Then, we modify c to obtain an AVD-colouring of G. Thus G′ is only used to produce
the initial colouring c of G. One advantage of working in G is that we avoid having to
deal with parallel edges, which would introduce (trivial but annoying) technicalities in
our approach. On the other hand, a small price to pay compared to [10] is that we will
have to watch out for these edges uv such that {w ∈ N(u)∪N(v) : dG(w) < d} = {u, v}
in our proof.

Say that a vertex u ∈ V (G) is small if dG(u) < d, and big otherwise. Let A and B be the
sets of small and big vertices of G, respectively. Our goal is to transform the colouring
c into an AVD-colouring of G. The plan for doing so is roughly as follows. First we
show that we can uncolour a bounded number of edges per big vertex in such a way
that edges uv with Sc(u) = Sc(v) and u, v ∈ B that remain form a matching satisfying
some specific properties. Then we show how we can recolour these uncoloured edges,
plus a few other edges of G, to obtain a colouring where every edge uv with u, v ∈ B
satisfies Sc(u) 6= Sc(v). Finally, we recolour edges with both endpoints in A in such a
way that the resulting colouring is an AVD-colouring of G.

4 G. JORET AND W. LOCHET

3. Big vertices

For each vertex u ∈ B, choose an arbitrary subset N+(u) of N(u) of size d. We use
a randomised algorithm, Algorithm 1, to select a subset U+(u) ⊆ N+(u) of size 2 for
each vertex u ∈ B. For each vertex v ∈ V (G), we let U−(v) := {u ∈ B : v ∈ U+(u)}.
Algorithm 1 chooses the subsets U+(u) iteratively, one big vertex u at a time. Hence,
we see the sets U+(u) as variables, and the sets U−(v) (v ∈ V (G)) as being determined
by these variables. (For definiteness, we set U+(u) := ∅ for every small vertex u.)
Just after choosing the subset U+(u) of a big vertex u, the algorithm checks whether
this choice triggered any ‘bad event’. If so, the bad event is handled, which involves
resetting the variable U+(u), which means setting U+(u) := ∅, and possibly resetting
other variables U+(v) for some well-chosen big vertices v close to u in G.

Thanks to these bad events, the selected subsets satisfy a number of properties. A key
property is that |U−(v)| 6 q for every v ∈ V (G), with q := 13 being the constant that
is optimised in this proof.

At any time during the execution of the algorithm, we say that an edge uv ∈ E(G)
is selected if v ∈ U+(u) or u ∈ U+(v). In the algorithm, we will make sure that if
v ∈ U+(u) then u /∈ U+(v) (that is, an edge can be selected ‘at most once’).

After the algorithm terminates, selected edges will be used to fix locally the colouring c
for big vertices: The plan is to recolour them using q+3 new colours, and then recolour
a well-chosen matching of G with yet another new colour, in such a way that at the end
Sc(u) 6= Sc(v) holds for all edges uv ∈ E(G) with u, v ∈ B. The resulting colouring of
G will use ∆ + q + 6 colours in total.

Let us explain the conventions and terminology used in Algorithm 1. First, we assume
that the vertices of G are ordered according to some fixed arbitrary ordering. This
naturally induces an ordering of each subset of V (G) as well, of each set of pairs of
vertices (say using lexicographic ordering), and more generally of any set of structures
built using vertices of G. This is used implicitly in what follows.

We say that an edge uv linking two big vertices is finished if U+(w) 6= ∅ for each big
vertex w in N(u) ∪ N(v) (note that this set includes u and v). For u ∈ V (G), define
S ′(u) as the set Sc(u) minus colours of edges incident to u that are selected. That is,

S ′(u) := {c(uv) : v ∈ N(u), v /∈ U+(u) ∪ U−(u)}.
In the algorithm, we check whether S ′(u) = S ′(v) for two big vertices u, v with dG(u) =
dG(v) only when uv is finished, the idea being that if there are still big vertices adjacent
to u or v waiting to be treated then this could potentially impact the sets S ′(u) and
S ′(v). We say that an edge uv ∈ E(G) is bad if u, v ∈ B, uv is finished, dG(u) = dG(v),
and S ′(u) = S ′(v).

As mentioned earlier, we need to watch out for edges uv such that dG(u) = dG(v) < d
and dG(w) > d for all w ∈ (N(u) ∪N(v))− {u, v}. This is because every edge incident
to u or v distinct from uv is incident to a big vertex, and all these edges will have a

PROGRESS ON THE ADJACENT VERTEX DISTINGUISHING EDGE COLOURING CONJECTURE5

fixed colour when we are done dealing with big vertices. Indeed, in the next section we
only recolour edges in the subgraph induced by small vertices. Thus, if u and v were
to see the same set of colours at the end of this step, we would have no way to fix this
later. Note that at the beginning u and v see disjoint sets of colours in colouring c
except for colour c(uv). Once the algorithm terminates, we will recolour at most q + 2
edges incident to each big vertex w (with new colours). Thus, if dG(u) = dG(v) > q+ 4,
we know that there will be at least one edge e incident to u distinct from uv that kept
its original colour c(e). Since v does not see the colour c(e), we are then assured that u
and v see different sets of colours after the recolouring step. Therefore, it is only when
dG(u) = dG(v) 6 q+3 that we need to be careful when selecting edges incident to u or v
to recolour. Let us call such edges fragile edges, i.e. uv is fragile if dG(u) = dG(v) 6 q+3
and dG(w) > d for all w ∈ (N(u)∪N(v))−{u, v}. Fragile edges will be carefully handled
in the algorithm.

As mentioned, the algorithm considers remaining big vertices u with U+(u) = ∅ one by
one, selects the subset U+(u) randomly each time, and deals with any bad event that
may occur. Let us explain how the random choices are made. Given a big vertex u with
U+(u) = ∅, an unordered pair {v, w} ⊆ N+(u) is admissible for u if the following three
conditions are satisfied:

• v, w /∈ U−(u);
• if vw ∈ E(G) then vw is not fragile, and
• setting U+(u) := {v, w} does not create any bad edge incident to u.

At the beginning of the while loop, the algorithm chooses an admissible pair for the
vertex u ∈ B under consideration uniformly at random among the first s :=

(
d−q

2

)
− 3d

admissible pairs. Lemma 3 below shows that there are always at least s such pairs, thus
this random choice can always be made.

Five types of bad events are considered in the algorithm. They correspond to the five
conditions tested by the if / else if statements; we refer to them as Bad Event 1,
Bad Event 2, etc. in order. These events state the existence of certain structures in the
graph. We remark that there could be more than one instance of the structure under
consideration in the graph. (For instance, there could be two vertices v ∈ N(u) with
|U−(v)| = q + 1 in Bad Event 1.) In this case, we assume that the algorithm chooses
one according to some deterministic rule. For the convenience of the reader, the five
types of bad events considered are illustrated in Figure 1. Let us emphasise that if
any bad event is triggered, then the current vertex u is always reset (i.e. the algorithm
sets U+(u) := ∅). This will ensures that no other bad event remains in the graph after
dealing with the bad event under consideration.

The following lemma establishes some key properties of Algorithm 1. Note that by an
invariant of the while loop, we mean a property that is true every time the condition
of the loop is being tested. Thus, such a property holds when a new iteration of the
loop starts, and also when the loop (and thus the algorithm) stops.

6 G. JORET AND W. LOCHET

q

u v

Bad Event 1 Bad Event 2 Bad Event 3

Bad Event 4 Bad Event 5

xwv

xwv y x

or

wv y

u u z

u

or

≥ 1

wv

u x

fragile

Figure 1. The five types of bad events in Algorithm 1. Bad edges are
drawn in bold. (Note that possibly z = u in Bad Event 5.)

Algorithm 1: Uncolouring some edges incident to big vertices.

U+(u)← ∅ ∀u ∈ B
while ∃v ∈ B with U+(v) = ∅ do

u← first such vertex
U+(u)← admissible pair chosen uniformly at random among first s ones
if ∃v ∈ N(u) with |U−(v)| = q + 1 then

U+(w)← ∅ ∀w ∈ U−(v)
else if ∃ fragile edge vw and x ∈ V (G)− {u, v, w} s.t. u ∈ U−(v) and
x ∈ U−(w) then
U+(a)← ∅ ∀a ∈ {u, x}

else if ∃ distinct bad edges vw,wx with u ∈ N(v) ∪N(w) then
U+(a)← ∅ ∀a ∈ {u, v, x}

else if ∃ two independent bad edges vw, xy with
u ∈ N(v) ∪N(w) ∪N(x) ∪N(y) and x ∈ U+(w) then
U+(a)← ∅ ∀a ∈ {u, v, w, y}

else if ∃ two independent bad edges vw, xy with u ∈ N(v) ∪N(w), and
∃z ∈ V (G)− {v, w, x, y} with w, x ∈ U−(z) then
U+(a)← ∅ ∀a ∈ {u, v, w, x, y}

Lemma 3. The following properties are invariants of the while loop in Algorithm 1:

(1) |U−(v)| 6 q for every v ∈ V (G).
(2) At least one of U−(v), U−(w) is empty for each fragile edge vw.
(3) Bad edges form a matching.
(4) If w, x ∈ B belong to distinct bad edges, then ({w}∪U+(w))∩({x}∪U+(x)) = ∅.

PROGRESS ON THE ADJACENT VERTEX DISTINGUISHING EDGE COLOURING CONJECTURE7

(5) Every u ∈ B with U+(u) = ∅ has at least s admissible pairs.

Proof. Let us start with property (1). Clearly, |U−(v)| 6 q for every v ∈ V (G) the
first time the condition of the while loop is being tested. This remains true for every
subsequent test of the condition, thanks to Bad Event 1: Selecting the subset U+(u)
for a vertex u ∈ B could create up to two vertices v with |U−(v)| = q + 1 but these get
fixed immediately when u is reset. Hence, (1) is an invariant of the loop.

Similarly, it is clear that property (2) is an invariant of the while loop, thanks to Bad
Event 2.

Let us consider property (3). The property is true at the beginning of the algorithm,
since there are no bad edges. Next, suppose that property (3) held true at the beginning
of the loop but that there are two incident bad edges e, f just after selecting the admis-
sible pair U+(u) for a big vertex u. Then at least one of e, f , say e, became bad just
after treating u. Note that e cannot be incident to u, by definition of admissible pairs.
Thus e is at distance 1 from u. It suffices to show that some bad event is triggered, since
then u is reset and e is no longer bad (since e is not finished). This is clearly true, since
either Bad Event 1 or Bad Event 2 is triggered, and if not then Bad Event 3 is triggered
for sure (because of the existence of the pair e, f). Thus we see that property (3) is an
invariant of the loop.

The proof for property (4) is similar. The property clearly holds at the beginning of
the algorithm. Next, suppose that it held true at the beginning of the loop but that
just after selecting the subset U+(u) for a big vertex u, there are two independent bad
edges vw, xy s.t. {w} ∪ U+(w) and {x} ∪ U+(x) intersect. Then at least one of the
two edges, say vw, is at distance exactly 1 from u. (Recall that u cannot be incident
to either of the two edges, by definition of admissible pairs.) As before, it suffices to
show that some bad event occurs, since then u is reset and vw is no longer bad. Let
z ∈ ({w} ∪ U+(w)) ∩ ({x} ∪ U+(x)) and say none of the first four bad events happens.
Then z /∈ {v, w, x, y}, since otherwise Bad Event 4 would have been triggered. But this
shows that Bad Event 5 occurs. We deduce that property (4) is maintained.

Finally, it remains to show that property (5) is an invariant of the loop. Consider thus
any vertex u ∈ B with U+(u) = ∅ when the condition of the loop is being tested. (Thus,
a new iteration of the loop is about to start.) From invariant (1), we know that there
are at least

(
d−q

2

)
unordered pairs of distinct vertices in N+(u) − U−(u). Next, a key

observation is that for every x ∈ N(u), if there exists {v, w} ⊆ N+(u)−U−(u) s.t. setting
U+(u) := {v, w} makes the edge ux bad, then the set {v, w} is uniquely determined.
Hence, potential bad edges forbid at most |N(u)| 6 ∆ pairs of vertices inN+(u)−U−(u).
Finally, among the remaining pairs {v, w}, at most bd/2c of them are s.t. vw is a fragile
edge. Therefore, we conclude that there are at least

(
d−q

2

)
−∆−bd/2c >

(
d−q

2

)
− 3d = s

admissible pairs for u. �

The properties listed in Lemma 3 hold in particular when Algorithm 1 stops. However,
it is not clear at first sight that the algorithm should ever stop. Our next result shows

8 G. JORET AND W. LOCHET

that it does so with high probability. For simplicity, we sometimes call one iteration of
the while loop a step.

Theorem 4. The probability that Algorithm 1 stops in at most t steps tends to 1 as
t→∞.

We use an ‘entropy compression’ argument to prove this theorem, a proof method
introduced by Moser and Tardós [16] in their celebrated algorithmic proof of the Lovász
Local Lemma. In a nutshell, the main idea of the proof is to look at sequences of t
random choices such that the algorithm does not stop in at most t steps. Exploiting
the fact that the algorithm did not stop, we show how one can get an implicit lossless
encoding of these sequences, by writing down a concise log of the execution of the
algorithm. Then, looking at the structure of the algorithm, we prove that there are
only o (st) such logs. Since in total there are st random sequences of length t, we deduce
that only a o(1)-fraction of these make the algorithm run for at least t steps. Theorem 4
follows.

To describe the log of an execution of the algorithm, we need the following definitions.
First, recall that a Dyck word of semilength k is a binary word w1w2 . . . w2k with exactly
k 0s and k 1s such that the number of 0s is at least the number of 1s in every prefix of
the word. A descent in a Dyck word is a maximal sequence of consecutive 1s, its length
is the number of 1s.

For our purposes, it will be more convenient to drop the requirement that a Dyck word
has the same number of 0s and 1s. Let us define a partial Dyck word of semilength k
as a binary word w1w2 . . . wp with exactly k 0s and at most k 1s such that the number
of 0s is at least the number of 1s in every prefix of the word. Descents are defined in
the same way as for normal Dyck words.

Let us consider a sequence (r1, . . . , rt) of t random choices such that Algorithm 1 does
not stop in at most t steps when run with these random choices. In other words, the
algorithm is about to start its (t+ 1)-th iteration of the while loop, at which point we
freeze its execution. Each random choice ri consisted in choosing an admissible pair for
some big vertex u among its first s admissible pairs, thus we see ri as a number in [s].

For each i ∈ [t + 1], let U+
i and U−i denote the functions U+ and U−, respectively, at

the beginning of the i-th iteration, and let Bi denote the subset of vertices u ∈ B with
U+
i (u) = ∅. We associate to the sequence (r1, . . . , rt) a corresponding log (W, γ, δ, U+

t+1),
where W is a partial Dyck word of semilength t such that the length of each descent is
in the set {2, 3, 4, 5, q + 1}, and γ = (γ1, . . . , γt) and δ = (δ1, . . . , δt) are two sequences
of integers.

The partial Dyck word W is built as follows during the execution of the algorithm:
Starting with the empty word, we add a 0 at the end of the word each time a big vertex
is treated. If the corresponding random choice triggers a bad event, we moreover add
` 1s at the end of the word, where ` is the number of big vertices that are reset (so
` = q + 1, 2, 3, 4, 5 for bad events of types 1, 2, 3, 4, 5, respectively). Thus descents in

PROGRESS ON THE ADJACENT VERTEX DISTINGUISHING EDGE COLOURING CONJECTURE9

W are in bijection with bad events treated during the execution, and the length of a
descent tells us the type of the corresponding bad event.

The two sequences γ and δ are defined as follows. For i ∈ [t], the integers γi and δi
encode information about the bad event handled during iteration i. If there was none,
we simply set γi := δi := −1. Otherwise, γi is a nonnegative integer encoding the set of
big vertices that are reset when the bad event is handled, and δi is a nonnegative integer
encoding extra information which will help us recover the random choice ri from the
log. The precise definitions of γi and δi depend on the type of the bad event (see the
list below); however, before giving these definitions we must explain the assumptions
we make.

The definition of γi assumes that the set Bi is known. In turn, γi will encode enough
information to determine completely Bi+1 from Bi. Since B1 = B, it then follows that
we can read off all the sets B1, B2, . . . , Bt+1 from the sequence γ: For i = 1, . . . , t, either
γi > 0, in which case Bi+1 is determined by Bi and γi. Or γi = −1, in which case no
bad event occurred during iteration i, and thus Bi+1 := Bi − {u} where u is the first
vertex in Bi.

As already mentioned, the purpose of the log is to encode all t random choices r1, . . . , rt
that have been made during the execution. To encode ri (i ∈ [t]), we work backwards:
We assume that the function U+

i+1 is known, and we show that one can then deduce ri
and U+

i using the log. Since U+
t+1 is part of the log, this implies that the log uniquely

determines rt, rt−1, . . . , r1, as desired. Let us remark that if no bad event occurred
during the i-th iteration, then we can already deduce ri and U+

i from U+
i+1 using the

sets Bi and Bi+1. Indeed, in this case Bi = Bi+1 ∪ {u} where u is the vertex treated
during the i-th iteration. Thus, for v ∈ B,

U+
i (v) =

{
U+
i+1(v) if v 6= u
∅ if v = u

Furthermore, U+
i+1(u) tells us what was the random choice ri that was made for u during

iteration i. Indeed, using U+
i we can deduce what was the set of admissible pairs for

u at the beginning of iteration i. Then, ri is the position of the pair U+
i+1(u) in the

ordering of these admissible pairs. Therefore, it is only when a bad event happens that
we need extra information to determine ri and U+

i . This is precisely the role of δi.

Definitions of γ and δ. Let i ∈ [t]. If no bad event occurred during iteration i, set
γi := −1 and δi := −1. Otherwise, say that a bad event β of type j was handled. The
definition of γi assumes that Bi is known, while that of δi assumes that Bi and U+

i+1

are both known. In particular, we know the vertex u treated at the beginning of the
iteration, since it is the first vertex in Bi. With these remarks in mind, γi and δi are
defined as follows:

j = 1 The bad event β was triggered because the admissible pair chosen for u con-
tained a vertex v with |U−i (v)| = q. Vertex u and the q vertices in U−i (v) were
subsequently reset. There are at most d choices for vertex v and at most

(
∆
q

)

10 G. JORET AND W. LOCHET

choices for U−i (v). We may thus encode v and U−i (v) with a number γi ∈
[
d
(

∆
q

)]
.

Observe that Bi+1 = Bi ∪ U−i (v).

Now that v and U−i (v) are identified, we want to encode the admissible pair
{v, x} that was chosen for u at the beginning of the iteration, and the sets
U+
i (w) for each vertex w ∈ U−i (v). There are at most d choices for x, and sim-

ilarly for each w ∈ U−i (v) there are at most d choices for the vertex in U+
i (w)

which is distinct from v. We let δi ∈ [dq+1] encode these choices. Since U+
i only

differs from U+
i+1 on vertices w ∈ U−i (v), with the encoded information we can

deduce U+
i from U+

i+1. Note also that ri is determined by the admissible pair
{v, x} that was chosen for u.

j = 2 The bad event β was triggered because the admissible pair chosen for u contained
a vertex v incident to a fragile edge vw with U−i (w) 6= ∅. Then two vertices were
reset, namely u and some vertex x in U−i (w). There are at most d choices for
vertex v. Once v is identified, we know vertex w since fragile edges form a
matching. Finally, there are at most q+ 2 choices for x, since dG(w) 6 q+ 3 and
x 6= v. We let γi ∈ [(q + 2)d] encode v, w, and x. Observe that Bi+1 = Bi∪{x}.

Next, to encode ri we only need to specify the vertex in the admissible pair
chosen for u that is distinct from v (d choices). Similarly, there are at most
d possibilities for the set U+

i (x) since we know that it includes w. Hence, we
can encode this information with a number δi ∈ [d2]. Note that, knowing x
and U+

i (x), we can directly infer U+
i from U+

i+1, since U+
i (y) = U+

i+1(y) for all
y ∈ B − {x}.

j = 3 After selecting the admissible pair for u, we had S ′(v) = S ′(w) = S ′(x) for three
distinct vertices v, w, x ∈ B − {u} with vw,wx ∈ E(G) and u ∈ N(v) ∪ N(w).
Then u, v, x were reset. There are at most 2∆3 choices for the triple v, w, x (the
factor 2 is due to the fact that u can be adjacent to v or w). We let γi ∈ [2∆3]
encode v, w, x. Observe that Bi+1 = Bi ∪ {v, x}.

Knowing v, w, x and U+
i+1, our next aim is to encode U+

i and ri using δi. First,
we simply encode the admissible pair {u1, u2} that was chosen for u during the
i-th iteration explicitly, thus there are

(
d
2

)
possibilities.1 Next, we observe that

U+
i (y) = U+

i+1(y) for every y ∈ B − {u, v, x}, and U+
i (u) = ∅. Thus it only

remains to encode U+
i (v) and U+

i (x). Here the idea is that, since at this point
we know the set U+

i (w) and the admissible pair {u1, u2} chosen for u, there
are only O(1) possibilities for the sets U+

i (v) and U+
i (x) in order to have that

S ′(v) = S ′(w) = S ′(x) just before u, v, x were reset.

1A reader familiar with these types of encoding arguments might wonder why we bother resetting
u in the algorithm if we end up writing down {u1, u2} explicitly in the encoding. It is indeed true that
in this case we only ‘win’ something thanks to the implicit encoding of the choices made for v and x.
Nevertheless, we still need to reset u as well, to keep the property that the current vertex is always
reset whenever a bad event happens.

PROGRESS ON THE ADJACENT VERTEX DISTINGUISHING EDGE COLOURING CONJECTURE11

Let us focus on the set U+
i (v), the argument for U+

i (x) will be symmetric. First,
let us write down the following local information: (1) Is w ∈ U+

i (v)? (2) Is
w ∈ U+

i (x)? (3) Is v ∈ U+
i (x)? Thus there are 8 possibilities. (1)–(2) gives

enough information to reconstruct the set S ′(w) just before the resets, since
we already know U+

i (w) and whether w ∈ {u1, u2} or not. From (3) we also
know the set S ′′(v) := S ′(v)− {c(vv′) : v′ ∈ U+

i (v)} just before the resets, since
we know whether v ∈ {u1, u2} or not, and whether v ∈ U+

i (z) or not for every
z ∈ N(v)−{u}. Now, it only remains to observe that U+

i (v) is determined by the
two sets S ′′(v) and S ′(w), namely U+

i (v) = {v′ ∈ N(v) : c(vv′) ∈ S ′′(v)−S ′(w)}.

Proceeding similary for the set U+
i (x) (8 possibilities again), this fully deter-

mines U+
i . Now, given U+

i we know exactly the set of admissible pairs for u at
the beginning of the i-th iteration. Since we know that the pair {u1, u2} was
chosen, we can deduce the value of ri. Hence, this shows that U+

i and ri can be
encoded using a number δi ∈ [64

(
d
2

)
]. (The constant 64 could be reduced with a

more careful analysis but this would not make a difference later on.)

j = 4 Here we let γi ∈ [4∆4] encode the four vertices v, w, x, y as seen from u (the
factor 4 comes from the fact that u is adjacent to at least one of them but we
do not know which one). Since u, v, w, y are reset during this iteration, we have
Bi+1 = Bi ∪ {v, w, y}.

Next, we set up δi to encode U+
i and ri knowing U+

i+1. As in the previous case,
we encode the admissible pair {u1, u2} that was chosen for u during the i-th
iteration explicitly (

(
d
2

)
choices). Once we know U+

i , we know which are the
admissible pairs for u at the beginning of the i-th iteration, and thus we can
determine ri, exactly as before. Thus, it only remains to encode U+

i (v), U+
i (w),

and U+
i (y).

Let us start with U+
i (w). We already know that x ∈ U+

i (w), and we encode the
other vertex in U+

i (w) explicitly (d choices).

Next, consider U+
i (v). Here, the idea is the same as for Bad Event 3, namely

once U+
i (w) is known there are only O(1) possibilities for U+

i (v) to have that
S ′(v) = S ′(w) just before the resets. To be precise, we write down the following
local information: (1) Is w ∈ U+

i (v)? (2) Is w ∈ U+
i (x)? (3) Is w ∈ U+

i (y)? (4)
Is v ∈ U+

i (x)? (5) Is v ∈ U+
i (y)? Thus there are 32 possibilities. (1)–(3) gives

us enough information to reconstruct the set S ′(w) just before the resets, since
we already know U+

i (w) and whether w ∈ {u1, u2} or not. Similarly, (4)–(5)
allow us to determine the set S ′′(v) := S ′(v)− {c(vv′) : v′ ∈ U+

i (v)} just before
the resets, which in turn determines U+

i (v) since U+
i (v) = {v′ ∈ N(v) : c(vv′) ∈

S ′′(v)− S ′(w)}.

12 G. JORET AND W. LOCHET

For U+
i (y), we proceed exactly as for U+

i (v), exchanging v with y and w with x.
The only difference here is that x is not reset, thus U+

i (x) = U+
i+1(x). We simi-

larly conclude that there are at most 32 possibilities for the set U+
i (y). In sum-

mary, we may encode all the necessary information with a number δi ∈
[
210d

(
d
2

)]
.

j = 5: We let γi ∈ [2∆5] encode the vertices v, w, x, y, z. (Recall that possibly z = u.)
Since u, v, w, x, y are reset during this iteration, we have Bi+1 = Bi∪{v, w, x, y}.

Next, we encode U+
i and ri based on U+

i+1. Again, we encode the admissible pair

{u1, u2} chosen for u explicitly (
(
d
2

)
choices), which will determine ri once we

know U+
i . It only remains to encode U+

i (v), U+
i (w), U+

i (x), U+
i (y).

Similarly as for Bad Event 4, there are most d possibilities for the set U+
i (w),

since we already know that z ∈ U+
i (w). The same is true U+

i (x).

For U+
i (v) we proceed exactly as in the previous case, exploiting the fact that

U+
i (w) is already encoded: Writing down which sets among U+

i (v), U+
i (x), U+

i (y)
include vertex w, and similarly which of U+

i (x), U+
i (y) include v, is enough to

determine U+
i (v). Thus there are 32 choices. This is also true for U+

i (y) since
the situation is completely symmetric (swapping v, w with y, x, respectively).
Hence, we can record the desired information with a number δi ∈

[
210d2

(
d
2

)]
.

Let Rt denote the set of sequences (r1, . . . , rt) with each ri ∈ [s] such that Algorithm 1
does not stop in at most t steps when using r1, . . . , rt for the random choices. Also, let
Lt denote the set of logs defined by the algorithm on these sequences. The following
lemma follows from the discussion above.

Lemma 5. For each t > 1, there is a bijection between the two sets Rt and Lt.

Next, we bound |Lt| from above when t is large. To do so we need to count some
specific Dyck words where each descent is weighted with some integer: Given a set
E = {(l1, w1), . . . , (lk, wk)} of couples of positive integers with all lj’s distinct, we let
Ct,E be the number of Dyck words of semilength t where each descent has length in the
set {l1, . . . , lk}, and each descent of length lj is weighted with an integer in [wj].

For our purposes, we take E := {(l1, w1), . . . , (l5, w5)}, where (lj, wj) is determined by
the characteristics of Bad Event j: lj is the number of vertices that are reset, and wj
is an upper bound on the number of values the corresponding pair (γi, δi) can take in
the log during the corresponding i-th iteration of the algorithm. Thus, following the
discussion of bad events above, we take:

• l1 = q + 1 and w1 =
(

∆
q

)
dq+2

• l2 = 2 and w2 = (q + 2)d3

• l3 = 3 and w3 = 27∆3
(
d
2

)
• l4 = 4 and w4 = 212∆4d

(
d
2

)
• l5 = 5 and w5 = 211∆4d2

(
d
2

)

PROGRESS ON THE ADJACENT VERTEX DISTINGUISHING EDGE COLOURING CONJECTURE13

In our logs we deal with partial Dyck words that are weighted as above. The difference
between the number of 0s and 1s in the partial Dyck word corresponds to the number of
big vertices u ∈ B for which U+(u) is currently not set; we call this quantity its defect.
Observe that partial weighted Dyck words of semilength t and defect k can be mapped
injectively to weighted Dyck words of semilength t + k by adding k occurrences of 011
at the end, where each of the k new descents of length 2 are weighted with, say, the
number 1. Since k 6 n = |V (G)|, we obtain the following lemma.

Lemma 6. |Lt| 6
∑n

k=0 Ct+k,E.

In our setting, n and s are fixed while t varies; thus, to prove that |Lt| ∈ o (st), it is
enough by the above lemma to show that Ct,E ∈ o (st). In order to bound Ct,E from
above, we follow [6] and use a bijection between Dyck words and rooted plane trees.

Lemma 7. The number Ct,E is equal to the number of weighted rooted plane trees on
t+1 vertices, where each vertex has a number of children in E∪{0}, and for each i ∈ [5]
each vertex with li children is weighted with an integer in [wi] (leaves are not weighted).

The proof of this lemma is essentially that of Lemma 7 in [6].

Now we use generating functions and the analytic method described e.g. in [5, Section
1.2]. Let

y(x) :=
∑
t>1

Ct,Ex
t

denote the generating function associated to our objects, and let

φ(x) := 1 +
5∑
i=1

wix
li .

Then y(x) satisfies y(x) = xφ(y(x)). As noted in [5, Theorem 5] (see also [7, p.278,
Proposition IV.5]), the following asymptotic bound holds for Ct,E.

Theorem 8. Let R denote the radius of convergence of φ and suppose that limx→R−
xφ′(x)
φ(x)

>

1. Then there exists a unique solution τ ∈ (0, R) of the equation τφ′(τ) = φ(τ), and
Ct,E = O(γt), where γ := φ(τ)/τ .

The radius of convergence of our function φ is R =∞, and limx→∞
xφ′(x)
φ(x)

> 1, thus the

theorem applies. For our purposes, it is not necessary to compute exactly τ , a good
upper bound on γ = φ(τ)/τ will be enough. To obtain such an upper bound we use the
following lemma.

Lemma 9. For every x ∈ (0, R), if xφ′(x)/φ(x) < 1 then φ(τ)/τ < φ(x)/x.

Proof. As noted in [7, Note IV.46] the function xφ′(x)/φ(x) is increasing on (0, R). Thus,
xφ′(x)/φ(x) < 1 if and only if x < τ . Consider the function xφ′(x)/φ(x) on (0, τ). Since

xφ′(x)/φ(x) < 1, we have xφ′(x)− φ(x) < 0. Moreover, since ∂
∂x

(φ(x)
x

) = xφ′(x)−φ(x)
x2

, we

see that φ(x)
x

is decreasing on (0, τ). Hence, φ(x)
x
> φ(τ)

τ
. �

14 G. JORET AND W. LOCHET

Using these tools we can bound γ from above.

Lemma 10. γ < s when d is large enough.

Proof. We will use Lemma 9. Let ε1 > 0 be fixed (at the end of the proof ε1 will be
taken small enough as a function of q = 13). Let

x :=

(
1

q(1 + ε1)w1

)1/(q+1)

.

We claim that xφ′(x)/φ(x) < 1 when d is large enough. First, let us give some intuition:
If we counted only the subset of weighted Dyck words where each descent is of length
l1 = q + 1 and is weighted with an integer in [w1], then the corresponding function φ

would be φ(x) = 1 + w1x
q+1, and one would get τ =

(
1
qw1

)1/(q+1)

. As it turns out, the

value of τ for our function of φ tends to that one (from below) as d → ∞, hence our

choice of
(

1
qw1

)1/(q+1)

, slightly scaled down, for x.

To show xφ′(x)/φ(x) < 1, we make the following observations, each of which is self
evident:

• xφ′(x) =
∑5

i=1 liwix
li

• φ(x) > 1 + w1x
q+1

• x = O
(

1
d2

)
• liwi = O(d2li−1) for each i ∈ [2, 5].

It follows that ∑5
i=2 liwix

li

φ(x)
= O

(
1

d

)
and

xφ′(x)

φ(x)
6

(q + 1)w1x
q+1

1 + w1xq+1
+O

(
1

d

)
=

1
1+ε1
· q+1

q

1 + 1
(1+ε1)q

+O

(
1

d

)
=

1
1+ε1
· q+1

q

1
1+ε1
· q+1

q
+ ε1

1+ε1

+O

(
1

d

)
.

Thus xφ′(x)/φ(x) < 1 when d is large enough, as claimed. Hence, to prove the lemma
it is enough to show that φ(x)/x < s for d large enough, by Lemma 9.

Observe that
φ(x)

x
=

1

x
+ w1x

q +O(d).

Since s =
(
d−q

2

)
− 3d = Θ(d2), to prove that φ(x)/x < s for d large enough it is enough

to show that 1/x+ w1x
q < (1− δ)s for some fixed δ > 0. Let

cq,ε1 := (q(1 + ε1))1/(q+1) +

(
1

q(1 + ε1)

)q/(q+1)

.

PROGRESS ON THE ADJACENT VERTEX DISTINGUISHING EDGE COLOURING CONJECTURE15

Using that
(
a
b

)
6 ab

b!
and d 6 ∆/2, we obtain the following bound:

1

x
+ w1x

q = cq,ε1

((
∆

q

)
dq+2

)1/(q+1)

6 cq,ε1

(
∆2q+2

2q+2q!

)1/(q+1)

= cq,ε1

(
1

2q+2q!

)1/(q+1)

∆2.

Since s =
(
d−q

2

)
− 3d, for any fixed ε′ > 0 we have s > 1−ε′

2
d2 > (1−ε′)(1/2−ε)2

2
∆2 if d

is large enough. Hence, to conclude the proof it suffices to show that the following
inequality holds if ε, ε′ and ε1 are chosen small enough:

cq,ε1

(
1

2q+2q!

)1/(q+1)

<
(1− ε′)(1/2− ε)2

2
. (2)

This is true, since cq,0

(
1

2q+2q!

)1/(q+1)

' 0.12292 < 1/8 for q = 13. �

It follows from Theorem 8 and the above lemma that Ct,E ∈ o (st), and hence |Lt| ∈
o (st), when d is large enough. (To avoid any confusion, let us emphasise that here the
o(·) notation is w.r.t. the variable t, that is, we first assume that d is large enough for
Lemma 10 to hold, and then when the graph is fixed we let t vary.) Since there are st

random sequences of length t, Theorem 4 follows from Lemma 5 and Lemma 10.

It follows from Theorem 4 that Algorithm 1 stops on some random sequence, and thus
a function U+ satisfying the properties of Lemma 3 exists. Consider such a function U+

and the corresponding set of selected edges. Recall that each vertex of G is incident to
at most q + 2 selected edges, as follows from property (1) of Lemma 3. Using Vizing’s
theorem we recolour the set of selected edges properly using q+ 3 new colours, say from
the set [∆ + 3,∆ + q + 5]. Let c′ denote the resulting edge colouring of G. That is,
c′(e) := c(e) if e was not selected, and c′(e) denotes the new colour of e if e was selected.

For each bad edge uv ∈ M , choose one of its two endpoints, say u, and mark one
edge uw for some vertex w ∈ U+(u), with w 6= v in case v ∈ U+(u). It follows from
property (4) of Lemma 3 that marked edges form a matching, and that each bad edge is
incident to exactly one marked edge. Recolouring all marked edges with a new colour,
say colour ∆ + q + 6, we obtain a proper colouring c′′ of G with ∆ + q + 6 colours
such that Sc′′(u) 6= Sc′′(v) for all edges uv ∈ E(G) with u, v ∈ B and dG(u) = dG(v).
Indeed, if uv is a bad edge this holds because there is exactly one marked edge incident
to uv, and it is distinct from uv itself. If uv is not a bad edge, then by definition u
and v see distinct sets of colours in the colouring c when considering only non-selected
edges. Since marked edges form a subset of selected edges, we see that Sc′′(u) 6= Sc′′(v)
as desired.

Finally, consider edges uv ∈ E(G) with u, v ∈ A that are isolated in G[A] (i.e. such
that all neighbours of u, v outside {u, v} are big) with dG(u) = dG(v). Recall that
dG(u) = dG(v) > 2, since uv is not isolated in G. Recall also that in the initial colouring
c of G we had Sc(u) ∩ Sc(v) = {c(uv)}, that is, u and v saw no common colour except
for that of uv. If uv is fragile, then at least one of u, v is such that no incident edge was
selected, by property (2) of Lemma 3, and hence Sc′′(u) 6= Sc′′(v) (since marked edges

16 G. JORET AND W. LOCHET

form a subset of selected edges). If uv is not fragile, then dG(u) = dG(v) > q + 4 by
definition. Since at most q+ 2 edges incident to u were selected, and same for v, we see
that u and v are each incident to a non-selected edge distinct from uv. It follows that
Sc′′(u) 6= Sc′′(v).

4. Small vertices

At this point, we know that Sc′′(u) 6= Sc′′(v) for every edge uv ∈ E(G) with u, v ∈ B,
and for every edge uv ∈ E(G) with u, v ∈ A which is isolated in G[A]. However, we
could have Sc′′(u) = Sc′′(v) for some non-isolated edges uv of G[A]. Let A′ be the subset
of vertices of A that are not incident to an isolated edge of G[A]. In this section we
modify the colouring c′′ on the graph G[A′] only, and make sure that Sc′′(u) 6= Sc′′(v)
for every uv ∈ E(G) with u, v ∈ A′. Since this has no effect on the sets Sc′′(u) for
u ∈ B ∪ (A− A′), the resulting colouring will be an AVD-colouring of G.

First, uncolour every edge of G[A′] and fix an arbitrary ordering of these edges. We
colour these edges one by one using the following iterative algorithm; at all times, we
let c′′′ denote the current partial colouring of G. Consider the first uncoloured edge uv
in the ordering. Let s := d2ε∆e. Since (dG(u)− 1) + (dG(v)− 1) 6 2(d− 1) 6 ∆− 2ε∆,
there are at least s+q+6 available choices for the edge uv in order to maintain a proper
(partial) colouring. In case all other edges around u are already coloured, we possibly
remove one colour from the set of available choices as follows: Say that a neighbour w
of u in A− {v} is dangerous for u if dG(u) = dG(w), all edges incident to w are already
coloured, and Sc′′′(w) = Sc′′′(u) ∪ {i} for some colour i ∈ [∆ + q + 6]; the colour i is a
dangerous colour for u. Dangerous neighbours and colours for v are defined similarly.
If u has exactly one dangerous neighbour, remove the corresponding dangerous colour
from the set of available choices. Do the same for v. Thus, there are at least s+q+4 > s
available choices remaining for the edge uv. Colour uv with a colour chosen at random
among the first s colours available.

As with the algorithm from the previous section we define some bad events that could
happen after colouring the edge uv. Here, we only need to consider one type of bad
event:

The edge uv received a colour that was dangerous for u or v.

If such an event happens, consider a corresponding dangerous neighbour w, say it was
dangerous for u. Let F denote the set of edges incident to u in G[A′] that are distinct
from uv. Observe that |F | > 2, since otherwise we would have removed the dangerous
colour for u from the available choices. Our ordering of the edges of G[A′] induces an
ordering of the edges in F ; it will be convenient to see this ordering as a cyclic ordering.
With these notations, the bad event is handled as follows:

Uncolour uv and the edge just after uw in the cyclic ordering of F .

After possibly handling one such bad event, the algorithm proceeds with the next un-
coloured edge in this fashion, until every edge is coloured.

PROGRESS ON THE ADJACENT VERTEX DISTINGUISHING EDGE COLOURING CONJECTURE17

Lemma 11. If the algorithm terminates, then the resulting colouring c′′′ is an AVD-
colouring of G.

Proof. Consider an edge uv ∈ E(G) with dG(u) = dG(v). We already know that
Sc′′′(u) 6= Sc′′′(v) if u, v ∈ B, so let us assume that u, v ∈ A. Arguing by contra-
diction, suppose that Sc′′′(u) = Sc′′′(v). Recall that G[A′] has no isolated edges, thus
there is at least one edge incident to u or v which is distinct from uv in G[A′]. Let e be
the last edge coloured by the algorithm among all such edges. Suppose w.l.o.g. that e is
incident to v, say e = vw. Then, just before the edge vw was coloured for the last time,
vertex u was dangerous for v, with dangerous colour c′′′(vw). Hence, a bad event has
been triggered after colouring vw. The bad event that was handled by the algorithm
could have been the one with edge uv, or another one corresponding to another edge
incident to v or w. In any case, the edge vw got uncoloured, a contradiction. �

Thanks to the above lemma, to conclude the proof it only remains to show that the
algorithm terminates with nonzero probability, which we do now.

Theorem 12. The algorithm terminates with high probability.

Proof. The proof is very similar to the corresponding proof in the previous section (but
simpler). Let us encode the first t steps (iterations) of an execution of the algorithm
with a corresponding log (W, γ, δ, c′′′), where

• W is a partial Dyck word of semilength t, obtained by adding a 0 (a 1) each
time an edge is coloured (uncoloured, respectively);
• γ = (γ1, . . . , γt);
• δ = (δ1, . . . , δt);
• c′′′ is the current colouring at the end of the t-th iteration.

For each i ∈ [t], we let γi := −1 and δi := −1 in case no bad event was triggered during
the i-th iteration. Otherwise, if a bad event occurred, say involving a vertex w that was
dangerous for one of the two endpoints of the edge uv coloured during the iteration, we
let γi ∈ [2d] identify vertex w knowing uv (recall that u and v have degree at most d).
Observe that this identifies also the extra edge that is uncoloured (besides the edge uv).

Then, we let δi ∈ [2] identify the colours of the two edges that got uncoloured, assuming
we know these two edges and the colouring c′′′ at the end of iteration i. Observe that
we already know the set of colours that was used for these two edges, these are the two
colours appearing around w but not around the vertex (u or v) that triggered the bad
event. Thus it only remains to specify the mapping of these two colours to the two
edges (2 possibilities).

Reading W and γ from the beginning, one can deduce which subset of the edges of G[A′]
was coloured at any time during the execution. Then using the colouring c′′′ at the end
of the t-th iteration and working backwards, we can reconstruct the colouring c′′′ at any
time during the execution using γ and δ, and deduce in particular which random choice

18 G. JORET AND W. LOCHET

was made for the edge under consideration during the i-th iteration. Hence, the log
(W, γ, δ, c′′′) uniquely determines the t random choices that were made.

As before, we see a random choice as a number in [s]. Let Rt denote the set of random
vectors (r1, . . . , rt) of length t, where each entry is a number in [s]. Let Lt denote the
set of logs after t steps resulting from executions of the algorithm that last for at least
t steps. By the discussion above, there is an injective mapping from Lt to Rt. Since
|Rt| = st, to prove Theorem 12 it only remains to show that |Lt| = o(st).

Here, a rather crude counting will do. First, we count the partial Dyck words W of
semilength t that can appear in our logs. Each such word has only descents of length
2. They can be mapped to Dyck words of semilength t simply by adding the missing
1s at the end. Notice that each Dyck word of semilength t is the image of at most two
such partial Dyck words. (Two of our partial Dyck words have the same image iff they
are the same except one ends with 0 and the other ends with 011.) Hence, the number
of our partial Dyck words of semilength t is at most twice the number of Dyck words
of semilength t, and thus is at most 2 · 4t.

Next, given a log (W, γ, δ, c′′′), the indices i ∈ [t] such that γi 6= −1 and δi 6= −1
correspond to descents of W . Thus there are at most t/2 such indices, and we see that
the number of possible pairs (γ, δ) for a given W is at most (2d)t/2 · 2t/2 = (4d)t/2 6
(2∆)t/2.

Finally, the number of partial colourings c′′′ of G is at most |E(G)|∆+q+7, and is in
particular independent of t.

Assuming that ∆ is large enough so that s = d2ε∆e > (32∆)1/2, we conclude that

|Lt| 6 2 · 4t · (2∆)t/2 · |E(G)|∆+q+7 = O
(
(32∆)t/2

)
= o(st),

as desired. �

Acknowledgements

We thank Marthe Bonamy for inspiring discussions.

References

[1] P. N. Balister, E. Győri, J. Lehel, and R. H. Schelp. Adjacent vertex distinguishing edge-colorings.
SIAM J. Discrete Math., 21(1):237–250, 2007.

[2] M. Bonamy, N. Bousquet, and H. Hocquard. Adjacent vertex-distinguishing edge coloring of
graphs. In J. Nešetřil and M. Pellegrini, editors, The Seventh European Conference on Combi-
natorics, Graph Theory and Applications, pages 313–318, 2013.

[3] M. Bonamy and J. Przyby lo. On the neighbor sum distinguishing index of planar graphs. Journal
of Graph Theory, 85(3):669–690, 2017. arXiv:1408.3190.

[4] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, fourth edition,
2010.

[5] M. Drmota. Combinatorics and asymptotics on trees. Cubo Journal, 6(2), 2004.

http://arxiv.org/abs/1408.3190

PROGRESS ON THE ADJACENT VERTEX DISTINGUISHING EDGE COLOURING CONJECTURE19

[6] L. Esperet and A. Parreau. Acyclic edge-coloring using entropy compression. European Journal of
Combinatorics, 34(6):1019–1027, 2013. arXiv:1206.1535.

[7] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, New York,
NY, USA, 2009.

[8] E. Flandrin, A. Marczyk, J. Przyby lo, J.-F. Saclé, and M. Woźniak. Neighbor sum distinguishing
index. Graphs and Combinatorics, 29(5):1329–1336, Sep 2013.

[9] C. Greenhill and A. Ruciński. Neighbour-distinguishing edge colourings of random regular graphs.
Electronic Journal of Combinatorics, 13:#R77, 2006.

[10] H. Hatami. ∆ + 300 is a bound on the adjacent vertex distinguishing edge chromatic number. J.
Combin. Theory Ser. B, 95(2):246–256, 2005. arXiv:math/0701012.

[11] M. Horňák, D. Huang, and W. Wang. On neighbordistinguishing index of planar graphs. Journal
of Graph Theory, 76(4):262–278, 2014.

[12] M. Horňák and M. Woźniak. On neighbour-distinguishing colourings from lists. Discrete Mathe-
matics & Theoretical Computer Science, 4(2), 2012.

[13] J. Kahn. Asymptotically good list-colorings. Journal of Combinatorial Theory, Series A, 73(1):1–
59, 1996.

[14] J. Kwaśny and J. Przyby lo. Asymptotically optimal bound on the adjacent vertex distinguishing
edge choice number. 2017. arXiv:1705.01637.

[15] M. Molloy and B. Reed. Near optimal list colorings. Random Struct. Algorithms, 17(3-4):376–402,
2000.

[16] R. A. Moser and G. Tardos. A constructive proof of the general Lovász Local Lemma. J. ACM,
57(2):Art. 11, 2010. arXiv:0903.0544.

[17] J. Przyby lo. Neighbor distinguishing edge colorings via the combinatorial nullstellensatz. SIAM
Journal on Discrete Mathematics, 27(3):1313–1322, 2013.

[18] J. Przyby lo. A note on asymptotically optimal neighbour sum distinguishing colourings. 2017.
arXiv:1703.00406.

[19] Y. Wang, J. Cheng, R. Luo, and G. Mulley. Adjacent vertex-distinguishing edge coloring of 2-
degenerate graphs. Journal of Combinatorial Optimization, 31(2):874–880, Feb 2016.

[20] Z. Zhang, L. Liu, and J. Wang. Adjacent strong edge coloring of graphs. Appl. Math. Lett.,
15(5):623–626, 2002.

http://arxiv.org/abs/1206.1535
http://arxiv.org/abs/math/0701012
http://arxiv.org/abs/1705.01637
http://arxiv.org/abs/0903.0544
http://arxiv.org/abs/1703.00406sw

	1. Introduction
	2. Initial colouring
	3. Big vertices
	4. Small vertices
	Acknowledgements
	References

