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Abstract

The weak 2-linkage problem for digraphs asks for a given digraph and vertices

s1, s2, t1, t2 whether D contains a pair of arc-disjoint paths P1, P2 such that Pi is

an (si, ti)-path. This problem is NP-complete for general digraphs but polynomially

solvable for acyclic digraphs [8]. Recently it was shown [3] that if D is equipped with

a weight function w on the arcs which satisfies that all edges have positive weight,

then there is a polynomial algorithm for the variant of the weak-2-linkage problem

when both paths have to be shortest paths in D. In this paper we consider the unit

weight case and prove that for every pair constants k1, k2, there is a polynomial

algorithm which decides whether the input digraph D has a pair of arc-disjoint

paths P1, P2 such that Pi is an (si, ti)-path and the length of Pi is no more than

d(si, ti) + ki, for i = 1, 2, where d(si, ti) denotes the length of the shortest (si, ti)-

path. We prove that, unless the exponential time hypothesis (ETH) fails, there is

no polynomial algorithm for deciding the existence of a solution P1, P2 to the weak

2-linkage problem where each path Pi has length at most d(si, ti) + c log1+ǫ n for

some constant c.

Keywords: (arc)-disjoint paths, shortest disjoint paths, acyclic digraph,

linkage

1 Introduction

Notation throughout this paper follows [2, 1]. We use [0, i] to denote the set {0, 1, 2, . . . , i}.

Problems concerning disjoint paths with prescribed end vertices in graphs and digraphs

play an important role in many combinatorial problems. Among the most important such
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problems are the k-linkage problem and the weak k-linkage problem which we for-

mulate below for digraphs.

k-linkage

Input: A digraph D = (V,A) and distinct vertices s1, s2, . . . , sk, t1, t2, . . . , tk

Question: Does D contain k vertex-disjoint paths P1, P2, . . . , Pk such that Pi is an

(si, ti)-path for i ∈ [k]?

weak k-linkage

Input: A digraph D = (V,A) and not necessarily distinct vertices

s1, s2, . . . , sk, t1, t2, . . . , tk

Question: Does D contain k arc-disjoint paths P1, P2, . . . , Pk such that Pi is an

(si, ti)-path for i ∈ [k]?

It is an easy and well-known fact that the k-linkage problem and the weak k-

linkage problems are polynomially equivalent in the sense that one can easily reduce

one to the other by a polynomial reduction see e.g. [1, Chapter 10].

A famous and very important result by Robertson and Seymour [13] shows that the

corresponding linkage problems for undirected graphs are polynomially solvable for fixed

k and that the problems are in fact FPT, meaning that there is an algorithm for each

problem whose running time is of the form O(f(k)nc) for some computable function f

and a constant c. It was shown in [13] that c = 3 will do and this has been improved to

c = 2 in [10].

For directed graphs the situation is quite different: Fortune, Hopcroft and Wyllie [8]

proved that already the 2-linkage and the weak 2-linkage problems are NP-complete.

They also showed that if the input is an acyclic digraph, then both linkage problems are

polynomially solvable when the number of terminals is fixed (not part of the input).

Theorem 1.1. [8] The weak k-linkage problem in acyclic digrpahs is solvable in time

O(k!nk+2).

Eilam-Tzoreff [7] proved that for undirected graphs the 2-linkage problem is also

polynomially solvable if each edge of the input graph is equipped with a positive length

and the goal is to check whether there is a solution P1, P2 such that Pi is a shortest

(si, ti)-path for i = 1, 2. This result has recently been extended by Gottschau et al. in

[9] and by Kobayashi and Sako in [11] to the case where edges of length zero are allowed.

The problem has also been studied on digraphs by Bérczi and Kobayashi [3] who

recently proved the following:
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Theorem 1.2. There exists a polynomial algorithm that runs in time |V |O(a1+a2) for

the following problem as well as its arc-version: Given a digraph D = (V,A), ver-

tices s1, s2, t1, t2 ∈ V , a weight function w on A such that the weight of every di-

rected cycle is positive and numbers a1 and a2; decide whether D has disjoint paths

P 1
1 , . . . , P

1
a1
, P 2

1 , . . . , P
2
a2

such that P i
j is a shortest (si, ti)-path for i = 1, 2 and 1 6 j 6 ai.

There are several other papers dealing with shortest path version of the k-linkage

problem, see e.g. [4, 6, 12].

In this paper we consider the following variant of the weak-2-linkage problem where

the paths do not have to be shortest paths (in terms of number of arcs) but there is a

bound on how far from being shortest they can be. Throughout the paper, we denote by

d(u, v) the length of the shortest (u, v)-path.

short weak 2-linkage SW2L(D, s1, s2, t1, t2, k1, k2)

Input: A digraph D = (V,A), vertices s1, s2, t1, t2 ∈ V and natural numbers k1, k2

Question: Is there a pair of arc-disjoint paths P1, P2 such that Pi is an (si, ti)-path

and |A(Pi)| ≤ d(si, ti) + ki?

Clearly this problem is NP-complete when k1, k2 = n−1 since that puts no restriction

on P1, P2 in a solution. The main result of our paper is that when k1, k2 are both

constants the short weak 2-linkage problem can be solved in polynomial time. We

also prove that the problem is NP-complete when there is no restriction on the length of

one of the paths. Finally, we show that under the exponential time hypothesis, there is

no polynomial algorithm for the short weak 2-linkage when k1, k2 ∈ O(log1+ǫ n) no

matter how small the value of ǫ is as long as it is positive.

2 2-linkage with almost shortest paths

Let D be a digraph and s a vertex. The reach of s is the set of vertices x such that there

exists a path from s to x in D. Using breadth-first-search we can partition the reach of a

vertex s into levels, such that Li
s denotes the set of vertices x such that the shortest path

from s to x is of length i. We say that an arc uv is between two levels if, d(s, u) < ∞

and d(s, v) = d(s, u) + 1.

Suppose s1 and s2 are fixed, let A1 denote the set of arcs between two consecutive

levels from s1 and A2 the set of arcs between two consecutive levels from s2. Note that

both A1 and A2 induce acyclic digraphs. Furthermore, an arc uv is in Ai if and only

if some shortest (si, v)-path uses the arc uv. We will use the following lemma and its

analogous for A2:

Lemma 2.1. If P is a path from s1 to t1 of length at most d(s1, t1) + k, then P uses at

most k arcs not belonging to A1.
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Proof. Every path from s1 to t1 must visit every level with index smaller than d(s1, t1)

at least once. Moreover, it must use an arc of A1 to go from one level to the next, which

ends the proof. �

Theorem 2.2. For every fixed choice of positive integers k1, k2 the problem short weak

linkage problem with input [D, s1, s2, t1, t2, k1, k2] is polynomially solvable.

Proof: Let k = max{k1, k2}, n = |V | and m = |A|. We shall describe an al-

gorithm that runs in time nO(k) for the problem. Let E1 = (v1, u1), . . . , (vi, ui) and

E2 = (z1, w1), . . . , (zj , wj) be two ordered subsets of A of at most k arcs each and that

avoid A1 and A2 respectively. Recall that A1 denotes the set of arcs between two consec-

utive levels from s1 and A2 the set of arcs between two consecutive levels from s2. Let

dAℓ
(x, y) denote the distance from x to y in the digraph induced by the arcs in Aℓ. We

call E1 and E2 feasible if the following holds.

• dA1
(s1, v1)+1+dA1

(u1, v2)+1+dA1
(u2, v3)+ · · ·+dA1

(ui−1, vi)+1+dA1
(ui, t1) 6

dD(s1, t1) + k1

• dA2
(s2, z1)+1+dA2

(w1, z2)+1+dA2
(w2, z3)+ · · ·+dA2

(wj−1, zi)+1+dA2
(wj , t2) 6

dD(s2, t2) + k2

We will describe an O(nC) algorithm for some constant C, which decides if there exists

a solution P1, P2 to the problem such that for ℓ = 1, 2, Pℓ only uses arcs of Aℓ and Eℓ. To

solve the general question, we only need to run this algorithm for all feasible choices of

E1 and E2. We note that there are less than (mk)2 ≤ n4k (as m ≤ n2) ways of choosing

E1 and E2. So the algorithm only needs to be run at most O(n4k) times.

Let now E1 and E2 be fixed. We create the digraph D′ by adding the vertices

s′1, t
′
1, s

′
2, t

′
2 to D and the following paths:

• A path from s′1 to every vertex x ∈ {s1, u1, u2, . . . , ui} of length dD(s1, x) + 1.

• A path from every vertex x ∈ {t1, v1, v2, . . . , vi} to t′1 of length dD(x, t1) + 1.

• A path from s′2 to every vertex x ∈ {s2, w1, w2, . . . , wj} of length dD(s2, x) + 1.

• A path from every vertex x ∈ {t2, z1, z2, . . . , zj} to t′2 of length dD(x, t2) + 1.

All the internal vertices on all the above added paths are distinct and new vertices.

However, the length of all these paths cannot be grater than n and the number of these

paths is 2i + 2j + 4 = O(n). Hence, the number of vertices we add is still polynomial in

the size of the initial graph. Let P ∗
1 be a (s′1, t

′
1)-path in D′ and let x be the first vertex

on P ∗
1 from {s1, u1, u2, . . . , ui} and let y be the last vertex on P ∗

1 from {t1, v1, v2, . . . , vi}.
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Then the subpath from s′1 to x has length dD(s1, x)+ 1 and the subpath from y to t′1 has

length dD(y, t1) + 1. This implies that the length of P ∗
1 is the following.

(dD(s1, x)+1)+(dD(y, t1)+1)+dD(x, y) = dD(s1, x)+dD(x, y)+dD(y, t1)+2 ≥ dD(s1, t1)+2

As there exists an (s′1, t
′
1)-path of length dD(s1, t1) + 2 in D′ (using the arcs s′1s1 and

t1t
′
1 and a shortest (s1, t1)-path in D), we note that the shortest (s′1, t

′
1)-path in D′ has

length exactly dD(s1, t1) + 2. Furthermore if the subpath of P ∗
1 from x to y only uses

arcs from A1 then it has length dD(x, y) and we have equality everywhere in the above

equation, which implies that the length of P ′
1 is dD(s1, t1) + 2 = dD′(s′1, t

′
1). Analogously

if the length of P ∗
1 is dD′(s′1, t

′
1) then the subpath from x to y only uses arcs from A1.

Clearly the analogous result also holds for a shortest path from s′2 to t′2. By Theorem

1.2, we know that we can determine in polynomial time if there exist i+1 shortest paths

from s′1 to t′1 and j + 1 shortest paths from s′2 to t′2 such that all i + j + 2 paths are

arc-disjoint.

We claim that if such paths exist, then the answer to our instance of the short weak

linkage problem is true and if there is no such i + j + 2 arc-disjoint paths for any

feasible choice of E1 and E2, then the answer to our instance is false.

First assume that we found i+ j + 2 arc-disjoint paths for some feasible choice of E1

and E2. Now remove all vertices in V (D′)\V (D) from the (s′1, t
′
1)-paths and add the arcs

E1. Note that the outdegree of s1 will be one (as it belongs to one of the paths) and the

indegree of s1 will be zero. Analogously the indegree of t1 will be one and the outdegree

will be zero. All other vertices will have indegree and out degree equal to each other

(if they belong to k paths then the indegree and outdegree will both be k). Therefore

the arcs in the resulting subdigraph form a path from s1 to t1 plus possibly a number

of cycles. As the total number of arcs in the subdigraph is less than d(s1, t1) + k1 the

path from s1 to t1 (after discarding any cycles) also has length less than d(s1, t1) + k1.

Indeed, the graph contains all the arcs of E1 (i arcs) and all the arcs of the i+1 paths of

length d(s1, t1) + 2 except those of D′ \D. The number of arcs of D′ \D in those paths

is N1 =
∑

x∈{s1,u1,...,ui}
(d(s1, x) + 1) +

∑

x∈{v1,...,vi,t1}
(d(x, t1) + 1). Let us set u0 = s1

and vi+1 = t1. The total number of arcs in our graph is:

i+ (d(s1, t1) + 2)× (i + 1)−N1 = i+
i

∑

ℓ=0

[d(s1, t1)− d(s1, uℓ)− d(vℓ+1, t1)]

6 i+
i

∑

ℓ=0

d(uℓ, vℓ+1)

6 d(s1, t1) + k1 by definition of the feasibility of E1

Analogously we find a path from s2 to t2 of length less than d(s2, t2) + k2. By our
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construction these paths are arc-disjoint, completing the proof of one direction.

Now assume that there exist arc-disjoint paths P1 and P2 in D, such that Pℓ is a

(sℓ, tℓ)-path of length less than d(sℓ, tℓ)+kℓ. Let Eℓ be the arcs on Pℓ that do not belong

to Aℓ (ℓ ∈ [2]). Hence, E1 and E2 are feasible. Using these E1 and E2 and the subpaths

of P1 and P2 after removing the arcs in E1 and E2 we note that we can obtain the desired

i+ j + 2 arc-disjoint paths in D′. This completes the proof.

D′ has size O(n2), so the existence of this path Q can be checked in polynomial time,

and the overall problem can be solved in time nO(k).

3 Non-polynomial cases

This section is devoted to the proof of the NP-completeness of the problem of semi-short

weak 2-linkage:

semi-short weak 2-linkage SSW2L(D, s1, s2, t1, t2, k)

Input: A digraph D = (V,A), vertices s1, s2, t1, t2 ∈ V and a natural number k

Question: Is there a pair of arc-disjoint paths P1, P2 such that P1 is an (s1, t1)-path

of length |A(P1)| ≤ d(s1, t1) + k and P2 is an (s2, t2)-path?

Eilam-Tzoreff proved in [7] that the problem of SSW2L is NP-complete if P1 has to be

a shortest (s1, t1)-path, which is the case k = 0. We observe that this can be generalized

to all values of k.

Theorem 3.1. The semi-short weak 2-linkage problem is NP-complete for all values of

k.

Proof. The proof is by reducing SSW2L for k = 0 to SSW2L with any value of k. Let

k be fixed and let D, s1, s2, t1, t2, 0 be an instance of SSW2L. Let us now create D′ by

replacing every arc of D by a directed path of length k+1. Let P ′
1 and P ′

2 be (s1, t1) and

(s2, t2)-paths respectively in D′.

Note that every path P ′ from s1 to t1 in D′ is thus the image of a path P from s1 to t1

in D by subdivision of the edges of P , and P ′ is (k+1) times longer than P . Let P1 and

P2 be the preimage of P ′
1 and P ′

2. Hence, if |A(P
′
1)| 6 dD′(s1, t1)+k < dD′(s1, t1)+k+1,

then |A(P1)| < dD(s1, t1) + 1, which means that P1 is a shortest (s1, t1)-path in D.

It is also easy to see that P ′
1 and P ′

2 arc disjoint if and only if P1 and P2 are. Thus,

(P ′
1, P

′
2) is a solution of SSW2L(D′, s1, s2, t1, t2, k) if and only if P1 and P2 are solutions

of SSW2L(D, s1, s2, t1, t2, 0). This proves the NP-completeness of SSW2L for all k. �

Note that our algorithm in Theorem 2.2 is only polynomial for constant k, so it is

natural to ask whether we could replace constant k by some function of n.
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Recall the so-called Exponential Time Hypothesis (ETH) which in one of many for-

mulations says that there exist a real number δ > 0 so that no algorithm can solve 3-SAT

instances with m clauses in time O(2δm). This modification of the commonly known

version of ETH is in fact equivalent to that, see e.g. [5, Theorem 14.4].

Theorem 3.2. Assuming that ETH is true, then for every ǫ > 0 there is no polynomial

algorithm for weak short 2-linkage problem when the input D is a digraph on n

vertices and k1, k2 = Θ(log1+ǫ n).

Proof: We give the proof when k1, k2 = log1+ǫN , where N is the number of vertices

in the input digraph. Let [D, s1, s2, t1, t2] be an instance of the weak 2-linkage problem

and let n be the number of vertices of D. Let ǫ′ be defined such that 2n
1

1+ǫ′

=

⌈

2n
1

1+ǫ

⌉

and note that ǫ′ ≤ ǫ and that ǫ′ > 0 when n is large enough. Construct a new digraph

D′ by adding an independent set of size 2n
1

1+ǫ′

− n so that the resulting digraph has

N = 2n
1

1+ǫ′

vertices, implying that we have (logN)1+ǫ′ = n. Clearly every pair of arc-

disjoint (s1, t1)-, (s2, t2)-paths, P1, P2 in D′ use only vertices from D and hence each of

their lengths is at most n = log1+ǫ′ N ≤ log1+ǫN so Pi is at most ki longer that the

shortest (si, ti)-path for i = 1, 2.

Suppose there is an algorithm for the weak short 2-linkage problem that runs in

time O(N c) for inputs on N vertices when k1, k2 = log1+ǫ N for some fixed constanct

c > 0. Then we have

N c = (2n
1

1+ǫ′

)c

= 2c·n
1

1+ǫ′

< 2δ·n

for every fixed constant δ > 0 provided that n is large enough. This means that we can

solve the general weak 2-linkage problem in time O(2δ·n) for every δ > 0.

To see that this contradicts the ETH, we just have to observe that the reduction from

3-SAT to the 2-linkage problem in [8] (see also [1, Section 10.2]) converts a 3-SAT formula

with n variables and m clauses into an instance of 2-linkage with at most dm vertices

where d is a constant (it is at most 61). Furthermore, the 2-linkage problem for a digraph

on n vertices reduces to the weak 2-linkage problem on a digraph with twice as many

vertices.
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4 Remarks

Slivkins [14] proved that the weak k-linkage problem is W [1]-hard for acyclic digraphs.

We can prove that the same holds for short weak k-linkage in acyclic digraphs.

Indeed, consider an instance of weak k-linkage on an acyclic digraph D and consider

a topological ordering v1, ..., vn of the vertices of D, i.e. an ordering such that for every

arc vivj , we have j > i. Let us build D′ from D by replacing every arc vivj in D by a

directed path of length (j − i) in D′. Hence, D′ is still acyclic and every walk between a

vertex vi and a vertex vj in D is now replaced by a walk of length j − i in D′ and is thus

a shortest walk. Therefore, a solution of short weak k-linkage in D′ immediately provides

a solution of weak k-linkage in D.
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