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Abstract

We consider a generalization of the fundamental k-means clustering for data with incomplete
or corrupted entries. When data objects are represented by points in Rd, a data point is said
to be incomplete when some of its entries are missing or unspecified. An incomplete data point
with at most ∆ unspecified entries corresponds to an axis-parallel affine subspace of dimension
at most ∆, called a ∆-point. Thus we seek a partition of n input ∆-points into k clusters
minimizing the k-means objective. For ∆ = 0, when all coordinates of each point are specified,
this is the usual k-means clustering. We give an algorithm that finds an (1 + ε)-approximate
solution in time f(k, ε,∆) · n2 · d for some function f of k, ε, and ∆ only.

1 Introduction

Clustering is one of the most widely used techniques in data mining, statistics, and machine learning.
In general, the purpose of clustering is to group a set of objects such that similar objects end up
in the same cluster. A common approach to clustering is to treat objects with d features as points
in Rd. The measure of the similarity between two objects is the Euclidian distance between the
corresponding points. One of the most famous mathematical models of data clustering is k-means.
In k-means clustering, we want to partition the points in Rd, or some other metric space, by
selecting a set of k centers and assign each of the points to its closest center. The quality of
the clustering solution is characterized by the k-means cost function, which minimizes the sum of
squared distances between every point and its nearest center.

It is a common occurrence in practical applications that some features of data can be missing or
unspecified. Since missing data could significantly affect the information retrieved from the data,
handling such data is a pervasive challenge. Various heuristic, greedy, convex optimization, statis-
tical, or even ad hoc methods were proposed throughout the years in different practical domains
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to handle missing data. We refer to books [2], [19], and the Wikipedia entry1 for an introduction
to the topic.

Gao, Langberg, and Schulman in [8] proposed the following geometric approach to the clus-
tering of incomplete data. A data object that misses ∆ entries corresponds to a ∆-dimensional
affine subspace in Rd. This subspace is parallel to coordinate axes corresponding to the missing
coordinates. We call such affine subspaces ∆-points. With this notation, a regular point in Rd is
a 0-point. The distance between a ∆-point x and a point y is naturally defined as the minimum
distance between y and a point from x. In this setting, the classical k-means and other clustering
problems like k-median and k-center, can be defined on a set of ∆-points. The only difference is
that we minimize the corresponding objective function based on the distances between the center
of the cluster and the ∆-points from the cluster. Gao et al.’s geometric model has the following
explanation: It provides the values of missing entries that are most suitable for clustering objective.
In particular, under the assumption that the set of “complete” data objects is well-clustered, this
approach yields the correct clustering.

From the computational perspective, the ∆-point clustering models are way more challenging
than their vanilla clustering counterparts. Most of the clustering algorithms crucially exploit the
fact that clustering occurs in a metric space. The major obstacle of using these algorithms for the
more general clustering problem is that the “distances” between ∆-points do not satisfy the triangle
inequality. As Gao et al. [8] wrote: “This problem defeats many existing algorithmic approaches
for “clustering”-type tasks, and for good reason—the geometry seems, in a genuine sense, to be
absent.”

While the definition of clustering of Gao et al. [8] is applicable to k-center, k-means, and k-
median versions of clustering, most of the work in this direction concentrated on k-center. (In
k-center clustering the objective is to minimize the distance r such that every point is within
distance r from at least one of the k centers.) Only very recently the first approximation algorithm
for k-means ∆-point clustering was given by Marom and Feldman [16] for the special case of ∆ = 1.
We discuss in details the literature relevant to our work in the next subsection.

The main result of our paper is the following theorem, which is the first step in the study of
the computational complexity of k-means ∆-point clustering beyond ∆ ∈ {0, 1}.

Theorem 1. The problem of k-means clustering of ∆-points in Rd admits an (1+ε)-approximation

algorithm with running time 2O( ∆7k3

ε
log k∆

ε
)n2d.

1.1 Related Work

The study of k-means clustering dates back to 1980s [15]. The problem is NP-hard even for k = 2 [3]
and development of approximation algorithms for k-means is an active research directions for many
years [7, 5, 10, 1, 13, 4, 6]. From this list of literature, the paper of Kumar, Sabharwal, and Sen [13]
is the most relevant to our work. In that paper, Kumar et al. gave an (1 + ε)-approximation

algorithm for k-means that runs in time 2(k/ε)O(1)
nd. Theorem 1 provides an extension of the

algorithm of Kumar et al. to clustering of ∆-points.
Clustering of ∆-points was defined by Gao, Langberg, and Schulman [8]. (They call ∆-points

axis-parallel ∆-flats.) In [8] and the consecutive work [9], Gao et al. developed several constant
factor approximation algorithms for k-center clustering of ∆-points and lines. Lee and Schulman

1https://en.wikipedia.org/wiki/Missing_data

2

https://en.wikipedia.org/wiki/Missing_data


[14] gave a (1 + ε)-approximation algorithm for k-center ∆-point clustering that runs in time
2O(∆k log k(1+1/ε2))nd. On the negative side, they show that even if one of k or ∆ (but not both) is a
fixed constant greater that 3, it is NP-hard to decide whether there is a k-center ∆-point clustering
of value 0. This implies that there is no approximation algorithm running in time polynomial in
n+ d+ k, respectively polynomial in n+ d+ ∆, for any approximation factor for k-center as well
as k-median and k-means clustering of ∆-points.

A number of results on k-means and k-median clustering of lines can be found in the literature.
Ommer and Malik [17] studied k-median clustering of lines in R3. Their algorithm does not have
any approximation guarantee and can run for unbounded time. Perets [18] gave an algorithm
that in time n(log n/ε)O(k)d finds a (1 + ε)-approximate solution for k-median line clustering in
R2. Finally, Marom and Feldman in [16] gave the first PTAS for k-means clustering of lines by
providing an (1 + ε)-approximation algorithm of running time f(k, d, ε)n log n. The algorithm of
Marom and Feldman follows from the construction of a coreset of size dkO(k) log n/ε2. Comparing
Theorem 1 with the result of Marom and Feldman, since every 1-point is a line, their result implies
a PTAS for k-means clustering of ∆-points for ∆ = 1. However, Theorem 1 implies PTAS only
for axis-parallel lines. To the best of our knowledge, no approximation algorithm was known for
k-means for ∆ > 1.

1.2 Overview of the Algorithm

In order to describe our algorithm, let us recall roughly the argument of Kumar et al. [13] for the
case when ∆ = 0 and k = 2. Let P denote the set of points in the instance, let (P1, P2) be an
optimal partition of P such that |P1| ≥ |P2|, and let (c1, c2) be the optimal cluster centers for
this partition. The algorithm starts by picking at random some s = s(ε) points S ⊆ P . Because
|P1| ≥ |P2|, it means that with constant probability, all these points belong to P1 and the center c′1
of S gives a good approximation of c1. Once this is achieved, the algorithm tries to sample inside
P2 in order to get an approximation of c2. Because |P1| can be very large compared to |P2|, the
algorithm needs to remove some elements of P from the sampling pool. What Kumar et al. show
is that, if t denote the distance between c1 and c2, then the ball B of radius t/4 around c′1 contains
only elements of P1. Moreover, they show that either P2 is large compared to P1−B or the solution
containing only one cluster with center c′1 is a good enough approximation. Therefore, by guessing
an approximation of B, the algorithm is able to sample inside P2 with constant probability and
thus obtain a good estimate c′2 for c2.

Let us now explain some of the difficulties encountered while trying to generalize this argument
to ∆-points. Let P denote an instance of 2-clustering with ∆-points and let (P1, P2) be an optimal
clustering with centers (c1, c2). The first problem we encounter is that sampling elements of P1

might not give a good approximation for c1. Indeed, suppose, for example, that for almost all the
points in P1, the first coordinate value is missing. In that case, almost surely, a constant number of
randomly sampled elements of P1 will be such that for all of them the value of the first coordinate
is missing, and we get no information about the value of c1 on this coordinate. However, we can
show that the number of such “bad” coordinates is at most ∆. This means that we can obtain
a good approximation of c1 on some set of coordinates I1 such that |I1| ≥ d − ∆. Let us call
this approximation u1. Moreover, a large portion of the elements of P1 will have all their missing
values outside of I1. For these points, u1 contains all the information necessary to decide whether
they belong to P1 or not. So the algorithm will then guess these points and remove them from
the sampling pool (we will come back to how exactly this is done later). Afterward, either P2 is
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large enough so that we can sample inside this set with good probability, or what remains of P1 is
still larger than P2. In the last case, we can sample in P1 to obtain information on the value of c1

outside of I1. The first time we sample inside P1 we get information about d−∆ coordinates, and
with each of the subsequent set of samples, learn at least one new coordinate. Hence we only have
to do 2(∆ + 1) sampling steps to obtain an estimate of all the coordinates of c1 and c2.

However, the major problem that we face is how to find the elements of P1 with missing values
outside of I1 to remove from the sampling pool. The triangular inequality does not hold for ∆-
points, and in particular, if t is the distance between c1 and c2, it is not true that the ball of radius
t/4 around c1 does not contain any point of P2. What we are able to prove is that the above holds
if we exclude a certain small set of coordinates from the computation. Namely, if I1,2 is the set
of indices obtained from [d] by removing the ∆ indices that maximize |(c1)r − (c2)r| over r ∈ [d],
then for t′ = dI1,2(c1, c2) (i.e., the distance between c1 and c2 when considering only coordinates in
I1,2), no point of P2 is at distance less than t′/4 from c1. Moreover, we can also show that either
the ball of radius t′/4 around c1 removes enough points from the sampling pool, or the coordinates
of I1,2 are “useless”, meaning that we can set the two centers to be equal on these coordinate and
still obtain a good approximation. The main difficulty here is that we do not know the coordinates
I1,2 and guessing this set would add a factor

(
d
∆

)
to the running time, which we can not afford. We

will show how to deal with this problem in Section 3, which is the main technical part of our proof.

2 Preliminaries

Throught the paper, we use [n] to denote the set {1, . . . , n} for any integer n, and R+ to denote
the set of positive real numbers. For two sets H and F of elements of a universe U , we write F −H
for F \H.

2.1 Points with Missing Coordinates

As explained, the goal of the paper is to study clustering of points in Rd with missing entries in
some coordinates. Let us denote the missing entry value by ? and let Hd denote the set of elements
of Rd where we allow some coordinates to take the value ?. We say that a point x = (x1, . . . , xd)
in Hd is a ∆-point, if at most ∆ of the coordinates xi of x have value ?.

Definition 2 (Domain of a point). For an element x ∈ Hd, we call the domain of x, denoted
by Dom(x), the set of coordinates i ∈ [d] such that xi 6= ?.

Definition 3 (FD and PD points). For a set S of elements of Hd and a set I of indices in [d],
corresponding to coordinates, let FD(S, I) denote the set of points in S that are fully defined on I,
i.e. x ∈ S such that Dom(x) ⊆ I. Formally,

FD(S, I) = {x ∈ S | Dom(x) ⊆ I}.

By PD(S, I), we denote the set of points in S that are partially defined on I, i.e. x ∈ S such that
Dom(x) ∩ I 6= ∅. Formally,

PD(S, I) = {x ∈ S | Dom(x) ∩ I 6= ∅}.

With a slight abuse of notation, in all the definitions here and next that concern a particular
set of indices I ⊂ [d], we might use i ∈ [d] instead of {i}, e.g., PD(S, i) = PD(S, {i}).
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For elements x, y ∈ Hd and a set of coordinates in I ⊆ [d], we define

dI(x, y) =

√∑
i∈I

(xi − yi)2,

where by convention if either y =? or x =?, then (x − y)2 = 0. When I = [d], we let d(x, y) =
dI(x, y). Note that d(x, y) corresponds to the standard Euclidean distance when x and y are
elements of Rd. For a set P of elements of Hd and a set I of coordinates, we denote by cI(P ) the
“mean” of P on the coordinates of I. That is, cI(P ) is the element of Hd such that for every i ∈ I,

cI(P )i =

{
? if PD(P, i) is empty,∑

x∈PD(P,i) xi

|PD(P,i)| otherwise.

When I contains all elements of [d], we let c(P ) = cI(P ). For an element y ∈ Hd, a set X of
elements of Hd and a set I of coordinates in [d], let us define

f I2 (X, y) =
∑
x∈X

dI(x, y)2.

Note that if I1 and I2 are disjoint sets of coordinates, then f I2∪I12 (X, y) = f I12 (X, y) + f I22 (X, y).
For I = [d], we write f2(X, y) = f I2 (X, y).

For a set (Pi)i∈[k] of subsets of Hd and a set of points (ci)i∈[k], we set

val
(
(Pi)i∈[k], (ci)i∈[k]

)
=
∑
i∈[k]

f2(Pi, ci).

Lemma 4. For every point x ∈ Hd, set of points P ⊆ Hd, and set of coordinates I ⊆ [d], it holds
that

f I2 (P, x) = f I2 (P, c(P )) +
∑
i∈I
|PD(P, i)|(xi − c(P )i)

2.

In particular,
f I2 (P, x) ≤ f I2 (P, c(P )) + |PD(P, I)|d(x, c(P ))2.

Proof. For an index i ∈ I, we have

f i2(P, x) =
∑

v∈PD(P,i)

(vi − xi)2

=
∑

v∈PD(P,i)

(vi − c(P )i + c(P )i − xi)2

=
∑

v∈PD(P,i)

(vi − c(P )i)
2 +

∑
v∈PD(P,i)

(xi − c(P )i)
2,

because
∑

v∈PD(P,i)(vi−c(P )i) = 0 by definition of c(P ). This means that f i2(P, x) = f i2(P, ci(P ))+

|PD(P, i)|(xi − c(P )i)
2. We conclude by summing over all i ∈ I.
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2.2 k-means for ∆-points

Let us define the k-means clustering problem for ∆-points. Given an instance P of n ∆-points in
Hd, the task is to partition P into k sets (P1, . . . , Pk), which we will refer to as clusters. A solution
also consists of a set of centers (c1, . . . , ck) and the objective is to minimize

∑
i∈[k] f2(Pi, ci). Note

that, by Lemma 4, for a given cluster Pi the optimal center is exactly c(Pi), and we can equivalently
minimize the objective value

∑
i∈[k] f2(Pi, c(Pi)) over all partitions (P1, . . . , Pk). Furthermore,

notice that if Dom(x) = ∅, then x always contributes zero to
∑

i∈[k] f2(Pi, ci), so we can assume
that Dom(x) 6= ∅ for all x ∈ P , and, consequently, ∆ < d.

From now on we fix an instance of the k-means clustering problem, and denote by P the
corresponding set of ∆-points in Hd.

Partial clustering. Suppose (P1, . . . , Pk) together with centers (c1, . . . , ck) is an optimal solution.
As explained earlier, the goal of our algorithm is to discover the centers of the clusters step by step,
while assigning some elements of P to some clusters. For this purpose we define the notion of partial
clustering. We say that integers (n1, . . . , nk), sets (H1, . . . ,Hk), (I1, . . . , Ik) and points (u1, . . . , uk)
form a partial clustering if for every i ∈ [k]:

• Hi is a set of elements of P ,

• ni is an integer in [∆ + 1],

• Ii is a set of indices in [d],

• if ni > 0, then |Ii| ≥ d−∆ + (ni − 1),

• if ni = 0, then Ii and Hi are empty, and

• ui is a point of Hd such that Dom(ui) = Ii.

Intuitively, for every i ∈ [k], Hi is a set of points which are already assigned to the cluster i, ui
is a partially discovered center of the cluster, and Ii represents the coordinates where ui is already
specified. As we will incur some error each time we are performing a sampling step, the values ni
represent the number of sampling steps that has been done for guessing ui on Ii, and the fact that
Ii ≥ d−∆ + (ni− 1) is used to show that the number of sampling steps performed before reaching
a point where Ii = [d] for each i is just O(∆ · k). Let R denote the set P − (

⋃
i∈[k]Hi) of the points

in P that are not yet assigned to a cluster.
For a partial clustering P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]}, an extension is a partition

(P ′i )i∈[k] of the elements of P such that for every i ∈ [k], Hi ⊆ P ′i . We say that the points (c′i)i∈[k]

are the centers associated with (P ′i )i∈[k] if for every i ∈ [k], c′i and ui are equal on the coordinates

of Ii and c′i is equal to c[d]−Ii(P ′i ) on [d] − Ii. The value of an extension (P ′i )i∈[k] with associated
centers (c′i)i∈[k], denoted val

(
(P ′i )i∈[k]

)
, is equal to val

(
(P ′i )i∈[k], (c

′
i)i∈[k]

)
. The value of a partial

clustering P, denoted OPT (P), is the minimum value of an extension (P ′i )i∈[k] of P. We call the
extension optimizing this value optimal.

Observation 5. Let P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]} be a partial clustering and x ∈ R
such that Dom(x) ⊆ Ii for all i ∈ [k] and f2(x, uj) is minimal among all the f2(x, ui). The partial
clustering obtained from P by putting x in the set Hj has the same value as P.
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Proof. It follows from the fact that, for any extension with associated centers (c′i)i∈[k], f2(x, c′i) =
f2(x, ui) for every i ∈ [k].

Therefore from now on, we can assume that no point of x ∈ R is such that Dom(x) ⊆ Ii for all
i ∈ [k]. The previous statement and the conditions on |Ii| imply the following remark:

Observation 6. If P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]} is a partial clustering such that∑
i∈[k] ni = k(∆ + 1), then

⋃
i∈[k]Hi = P .

Let P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]} be a partial clustering, and let (P ′i )i∈[k] with
centers (c′i)i∈[k] be its optimal extension. Let us denote Ri = R ∩ P ′i . The goal of the algorithm
is to sample some of the elements of R in order to guess, for some i ∈ [k], coordinates of c′i which
are not in Ii. To do so we need to make sure that our sampling avoids elements x of Ri such that
Dom(x) ⊆ Ii (x ∈ FD(Ri, Ii)) as these elements do not provide any information about [d]− Ii. The
goal of the following section will be to cluster some of the elements of FD(Ri, Ii) in order to make
this set small compared to R. Note that we might need to consider an extension which is not an
optimal one.

3 Finding a Proper Partial Clustering

This section is devoted to the proof of the following lemma:

Lemma 7. Let P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]} be a partial clustering. For every constant
α ∈ R+, 0 < α < 1, there exists an algorithm running in time O(ndk), that with probability at least
( 1

3k2∆ log(n)k
) either:

• Returns a partial clustering P ′ = {(n′i)i∈[k], (H
′
i)i∈[k], (I

′
i)i∈[k], (u

′
i)i∈[k]} with OPT (P ′) ≤ (1 +

α)OPT (P) and
∑

i∈[k] n
′
i >

∑
i∈[k] ni; or

• Finds a set B of elements of R such that there exists an extension (P ′i )i∈[k] of P with value
at most (1 + α)OPT (P) and such that B ⊆

⋃
i∈[k] FD(P ′i , Ii) and for every i ∈ [k], there is

an index j ∈ [k] such that |PD(P ′j ∩R, Ii − Ij)| ≥ α
32·6(∆+1)k |FD(P ′i ∩R, Ii)−B|.

The Lemma 7 will serve as the base for one step of our algorithm in Section 4. The basic idea
behind our main algorithm is to iteratively extend the partial clustering, until we get a clustering
of P . In each step it computes a partial clustering P ′ = {(n′i)i∈[k], (H

′
i)i∈[k], (I

′
i)i∈[k], (u

′
i)i∈[k]} with

OPT (P ′) ≤ (1 + α)OPT (P) and
∑

i∈[k] n
′
i >

∑
i∈[k] ni with high enough probability. Observa-

tions 5 and 6 then allow us to conclude in at most k(∆ + 1) steps. Note that the first case of the
Lemma 7 is precisely what we want. On the other hand, the second case, together with the fact
that there are at most k clusters and the pigeonhole principle, will allow us to show that there is an
index r ∈ [k] such that |(P ′r∩R)−FD(P ′r∩R, Ir)| ≥ h(k,∆, α)|R−B| for some function h depending
only on k, ∆, and α and (P ′r ∩R)− FD(P ′r ∩R, Ir) ⊆ R −B. Hence we can with sufficiently high
probability, by sampling in R−B, obtain some points from (P ′r ∩R)− FD(P ′r ∩R, Ir) and a good
approximation of the center cr on some coordinate outside of Ir.
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3.1 Overview of the Proof

Before presenting our quite technical proof in the next subsection, let us first explain some of
the ideas and difficulties encountered. Let P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]} be a partial
clustering and (Pi)i∈[k] be an optimal extension with the associated centers (c′i)i∈[k]. Let us denote
Ri = Pi ∩R for every i ∈ [k].

Suppose first that ∆ = 0 and let (ci)i∈[k] be the centers of an optimal extension. Kumar et al.
[13] proved a similar statement as Lemma 7, where the first condition is replaced by the statement
that two centers can be equal. To do that, assuming that they have a good approximation ui of
one center ci, they consider the ball B with center ui and radius t/4 where t is the minimum over
all j ∈ [k], j 6= i of the distance of ci to the other centers cj . Because ui is a good approximation,
B contains only elements of Pi. Moreover, they are able to show that either |Pj | is large enough
compared to |Pi−B|, or putting all the points of Pj in Pi gives a good approximation. Unfortunately,
this property is not true anymore for ∆-points with ∆ > 0.

First note that in the case when ∆ > 0, as opposed to Kumar et al. [13] where all approximate
centers ui are either in Rd or not set at all, we have approximate centers that are partially set.
Now, if we have some two centers ui and uj and we want to extend uj to some coordinates in
Dom(ui) − Dom(uj) = Ii − Ij then even if t = dIi−Ij (ui, c

′
j), it might not be true that the ball

with center ui and diameter t/4 contains no elements of Pj which makes the previous argument
considerably more difficult to make. To overcome this problem we will consider the coordinates r
in Ii − Ij where dr(ui, c

′
j) is large, separately one by one.

Let us now fix an index i for the rest of this subsection. For every j ∈ [k], let Jj = Ii − Ij ,
let ij1, . . . , i

j
|Jj | be the coordinates in Jj , and let djr = di

j
r(ui, c

′
j) for all r ∈ [|Jj |]. Without loss

of generality, we can assume that dj1 ≥ dj2 ≥ · · · ≥ dj|Jj |. We distinguish two cases depending on

whether |Jj | ≥ ∆ + 1 or not.

Case 1: |Jj | ≥ ∆ + 1. Let us denote by J ′j the set {ij∆+1, . . . , i
j
|Jj |} and let dj = dJ

′
j (ui, c

′
j).

Note that in this case it follows from the definition of partial clustering that Ij = ∅, nj = 0, and,
consequently, Jj = Ii.

Lemma 8. For every j ∈ [k] \ {i} such that Ij = ∅ and every x ∈ Rj such that Dom(x) ⊆ Ii, it
holds that d(x, ui) > dj/4.

Proof. First observe that if dj = 0, then the lemma trivially holds and we can assume for the rest
of the proof that dj > 0. Now, note that |Ii − Dom(x)| ≤ ∆ and |Ii − J ′j | = ∆. Because both
sets (Dom(x) and J ′j) are subsets of Ii, we have |Dom(x) − J ′j | ≥ |J ′j − Dom(x)|. Moreover, by

the definition of J ′j and because Dom(x) ⊆ Ii we have that Dom(x) − J ′j ⊆ {i
j
1, . . . , i

j
∆}. Since

dj1, . . . , d
j
∆ are larger than any djr for r > ∆, we have that dDom(x)(ui, c

′
j) ≥ dj .

For the sake of contradiction, let us assume for the remainder of the proof that d(x, ui) ≤ dj

4 .

Since Dom(x) ⊆ Ii, we have d(x, c′i) = d(x, ui) and d(x, c′i) ≤ dj

4 . Moreover, because (Pi)i∈[k] is

optimal, we have that d(x, c′j) ≤ d(x, c′i) ≤ dj

4 . Finally, since x, ui, and c′j are points without any ?

on Dom(x), the triangle inequality implies that dDom(x)(ui, c
′
j) ≤ dDom(x)(ui, x) + dDom(x)(x, c′j) ≤

2d
j

4 , which contradicts dDom(x)(ui, c
′
j) ≥ dj .
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Given the above, we show in the following lemma that the set of elements in FD(R, Ii) at
distance at most dj/4 from ui is basically what is sufficient to include in the set B of elements in R
for the index i to satisfy the second case of Lemma 7 with a caveat that if it is not the case, then
we can actually set uj to be the same as ui on the coordinates of J ′j without introducing too large
error.

Lemma 9. For every constant c > 0 and every index j ∈ [k] \ {i} such that Ii − Ij > ∆, if B
denotes the set of all elements in FD(R, Ii) at distance at most dj/4 from ui, then:

• Either |PD(Rj , J
′
j)−B| ≥ c|Pi −B|;

• or f
J ′j
2 (Pj , ui)− f

J ′j
2 (Pj , c

′
j) ≤ 16cf2(Pi, ui).

Proof. Recall that Ii−Ij > ∆ implies that Ij = ∅ and by the definition of partial clustering we have
nj = 0, Hj = ∅ and consequently Pj = Rj . Suppose that |PD(Rj , J

′
j)− B| < c|Pi − B| (otherwise

we are done). We know that f2(Pi, ui) ≥ |Pi−B|(dj/4)2 as all the points of Pi−B are at distance
at least (dj/4) from ui. By Lemma 8, we have that

|PD(Rj , J
′
j)| = |PD(Rj , J

′
j)−B| ≤ c|Pi −B|.

However, by Lemma 4,

f
J ′j
2 (Rj , ui)− f

J ′j
2 (Rj , c

′
j) ≤ |PD(Rj , J

′
j)|(dj)2,

which implies that

f
J ′j
2 (Pj , ui)− f

J ′j
2 (Pj , c

′
j) = f

J ′j
2 (Rj , ui)− f

J ′j
2 (Rj , c

′
j) ≤ 16cf2(Pi, ui).

Now let j be the index that minimizes dj among all indices j′ in [k]\{i} for which Ij′ = ∅ (i.e., an
index j such that dj = minj′∈[k]\{i},Ij′=∅{d

j′}). Then the set B = {x ∈ FD(R, Ii) | d(x, ui) ≤ dj/4},
i.e., the set of all the elements in FD(R, Ii) at distance at most dj/4 from ui, does not contain
any element in

⋃
j′∈[k]\i,Ij′=∅

Rj′ (that is, any element of Rj′ for every j′ ∈ [k] \ {i} with Ij′ = ∅).
Furthermore, we have that

• either |PD(Rj , Jj)−B| ≥ c|Ri −B|,

• or f
J ′j
2 (Rj , u1)− f

J ′j
2 (Rj , c

′
2) ≤ 4α∆f2(R1, u1).

When the first inequality occurs, this is the good case. Basically it means that PD(Rj , J
′
j) is large

enough so that sampling in R − B avoids FD(Ri, Ii) with constant probability. Note that even
though we do not know dj , we can get a superset of R−B of size at most 2|R−B| with probability

1
logn by taking n

2r furthest points from ui for some r ∈ [blog nc]. To deal with the case when the
second inequality holds, let us first show the following lemma, which will be useful throughout the
paper.
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Lemma 10. Let P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]} be a partial clustering, (Pi)i∈[k] be an
optimal extension of P with associated centers (c′i)i∈[k], and C ∈ R+. If there exist two indices

i, j ∈ [k] and I ′ ⊆ Ii such that Ij is empty, |I ′| ≥ d−∆, and f I
′

2 (Pj , ui)− f I
′

2 (Pj , c
′
j) ≤ Cf2(Pi, ui),

then the partial clustering P ′ obtained from P by setting Ij = I ′, uj the element of Hd equal to
ui on the coordinates of I ′ and ? on the rest and nj := 1 is a partial clustering of value at most
(1 + C)OPT (P).

Proof. Indeed, (Pi)i∈[k] is an extension of P ′. Let Cj be the point of Hd such that

(Cj)r =

{
(ui)r if r ∈ I ′,
(c′j)r otherwise,

(1)

and let Cs = c′s for s ∈ [k] \ {j}. Then

val
(
(Pi)i∈[k], (Ci)i∈[k]

)
≤ val

(
(Pi)i∈[k], (c

′
i)i∈[k]

)
+ Cf2(Pi, ui)

≤ (1 + C)OPT (P).

This means that the extension P ′ obtained by applying the previous Lemma with I ′ = J ′j
satisfies the first property of Lemma 7. A major problem is that we do not know J ′j and in the

worst case there are d∆ possibilities for J ′j , so guessing a feasible set I ′ for Lemma 10 is not an
option here. We postpone dealing with this problem for later and switch our focus to the second
case.

Case 2: |Jj | ≤ ∆. Let r = |Jj |. Recall that ij1, . . . , i
j
r denote the coordinates of Jj = Ii − Ij and

r is such that djr is minimal. Let us denote by Bj the ball of elements of FD(R, Ii) at distance at

most djr from ui. We show now that we can adapt Lemmas 8 and 9 to this setting as well.

Lemma 11. Suppose j ∈ [k] is such that Ii − Ij ≤ ∆, if x ∈ PD(Rj , Ii − Ij), then d(x, ui) ≥ djr/4.

Proof. Let i′ be the index of Ii − Ij such that i′ ∈ Dom(x). By the choice of ijr, we have that

di
′
(ui, c

′
j) > djr, and the triangle inequality allows us to conclude.

Note that this time the set of elements of FD(R, Ii) at distance at most djr/4 from ui can contain
some elements of Rj , but only those such that Dom(x) ⊆ Ij , which are the “useless” ones for our
sampling as they do not give any information for the coordinates outside of Ij . An analogous proof
to the one of Lemma 9 gives the following result:

Lemma 12. For every constant c ∈ R+ and j ∈ [k] such that r = |Ii − Ij | ≤ ∆, if we denote by B

the set of elements of FD(R, Ii) at distance at most djr/4 from u1, then:

• Either |PD(Rj , i
j
r)−B| ≥ c|Ri −B|;

• or f i
j
r

2 (Rj , u1)− f i
j
r

2 (Rj , c
′
2) ≤ 16cf2(P1, u1).

Again the first case is the good one, as B then provides a set such that drawing a sample from
R − B has constant probability to avoid FD(Ri, Ii). In the second case, however, it means that
setting Ij = Ii ∪ ijr and (uj)r := (ui)r gives a partial clustering of value at most (1 + 16c)OPT (P).
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In that case, we can guess the index ijr uniformly among Ii − Ij and succeed with probability at
least 1/∆. Since we do this only when Ij is non-empty, and thus of size at least d−∆, the number
of times we can do this for each j ∈ [k] is at most ∆. In total, it means that we will perform this
guessing only k∆ times, and it will only contribute (∆)k∆ to the time complexity.

Therefore, the main problem we have to overcome is the case |Ij | = 0 and f
J ′j
2 (Pj , ui) −

f
J ′j
2 (Pj , c

′
j) ≤ 16cf2(Pi, ui) where we do not know J ′j . The main idea is the following. Recall

that j is the index of [k] \ {i} such that Ij is empty and dj is minimal among all such indices. Sup-

pose f
J ′j
2 (Pj , ui)−f

J ′j
2 (Pj , c

′
j) ≤ 16cf2(Pi, ui) and now consider the next smallest distance dj

′
and B′

the set of elements of FD(R, Ii) at distance at most dj
′
/4 from ui. If |PD(Rj′ , J

′
j′)−B′| ≥ c|Pi−B′|,

then we almost have the set that we want, except that some elements of FD(Pj , Ii) can belong to
B′. The idea will be to move these elements to Pi so that B′ satisfies the desired properties for this
new extension. While we are able to control the value of the new extension, as it increases by at
most 16cf2(Pi, ui), the fact that it stops being an optimal one creates some problems. Moreover,
since we want to do this for each i ∈ [k], we have to also impose some control over the centers
associated with these extensions. This is the goal of the next subsection.

3.2 Extensions and Useless Sets of Coordinates

Let us fix some partial clustering P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]}. By Observation 5, we
can assume that for every index i ∈ [k] such that Ii − Ij is empty for every j ∈ [k], no point x
satisfying Dom(x) ⊆ Ii belongs to R. For the rest of this section, P will be fixed, and any extension
(P ′i )i∈[k] will refer to an extension of P unless stated otherwise. We say that an extension is safe if
for every x ∈ R and every i, j ∈ [k] such that Dom(x) ⊆ Ii and Dom(x) ⊆ Ij , x ∈ P ′i implies that
d(x, c′i) ≤ d(x, c′j).

As explained before, the hard case is when |Ii− Ij | > ∆, which means that Ij is empty. To deal
with this case, let us first introduce the following notion of useless sets of coordinates. Let t ∈ R+,
i, j ∈ [k] such that Ij = ∅ and Ii 6= ∅, let (P ′i )i∈[k] be an extension of P, and finally set R′i = P ′i ∩R.
A set of indices Zi,j ⊆ Ii is a t-useless set of coordinates for (P ′i )i∈[k] if

• Zi,j is either empty or of size at least d−∆, and

• fZi,j2 (R′j , ui)− f
Zi,j
2 (R′j , c

′
j) ≤ t ·OPT (P).

To simplify the quantifications over i, j ∈ [k] where Zi,j appears, we define t-useless sets of coordi-
nates to be empty sets when Ii = ∅ or Ij 6= ∅. Intuitively, Zi,j corresponds to a set of coordinates
such that setting uj to be equal to ui on these coordinates still gives a good partial clustering. The
whole argument revolves around modifying the extension by “moving” some elements of some R′i
into some R′j . However, by doing this we might change the values of |fZi,j2 (R′j , ui)− f

Zi,j
2 (R′j , c

′
j))|,

especially we might change the centers associated with the extension. The next lemma allows us to
have some control of what happens for t-useless sets of coordinates when the changes are “small”.

Lemma 13. Let (P ′i )i∈[k] be an extension with associated centers (c′i)i∈[k] of value at most (1 +
t1) ·OPT (P) and (Zi,j)i,j∈[k] be t-useless sets of coordinates for (P ′i )i∈[k]. Let (P 1

i )i∈[k] be another
extension of P, and denote by X the set of points of P belonging to different clusters in (P 1

i )i∈[k]

and (P ′i )i∈[k]. For every x ∈ X such that x ∈ P ′r and x ∈ P 1
s for some r, s ∈ [k], let F (x) =

f2(x, c′s)− f2(x, c′r). If

11



• for every x ∈ X and r ∈ [k] such that x ∈ P 1
r , Dom(x) ⊆ Ir and

•
∑

x∈X F (x) ≤ t2 ·OPT (P),

then (Zi,j)i,j∈[k] are (t+ t1 + t2)-useless sets of coordinates for (P 1
i )i∈[k].

Proof. Let (c1
i )i∈[k] be the centers associated with the extension (P 1

i )i∈[k] and for each r ∈ [k] let
R1
r = R ∩ P 1

r . Note that by the definition of X, for every r ∈ [k], every element x of P 1
r − P ′r is

such that Dom(x) ⊆ Ir. In particular, if for some r ∈ [k] it holds that Ir = ∅, then P 1
r ⊆ P ′r (as we

assume that no point x in P is such that Dom(x) = ∅). Moreover, the t-useless sets of coordinates
Zi,j , for some i, j ∈ [k], are only defined in the case that Ij = ∅. This implies that, for all i, j ∈ [k]
such that Zi,j is defined, it holds that:

f
Zi,j
2 (P 1

j , ui) ≤ f
Zi,j
2 (P ′j , ui) and f

[d]−Zi,j
2 (P 1

j , ui) ≤ f
[d]−Zi,j
2 (P ′j , ui). (2)

Suppose now that for some i, j ∈ [k] such that Zi,j is defined, it holds that fZi,j (P 1
j , c

1
j ) <

fZi,j (P ′j , c
′
j)− (t1 + t2)OPT (P). We want to reach a contradiction by showing that in this case the

value of (P 1
i )i∈[k] is smaller than OPT (P). For this purpose, let Cj be the element of Rd equal to

c1
j on the coordinates of Zi,j and to c′j on the rest of coordinates, and let Cr = c′r for r ∈ [k] \ {j}.

By the definitions of X, F (•), f2(•, •), and by (2), we have that∑
r∈[k],r 6=j

f2(P 1
r , Cr) + f

[d]−Zi,j
2 (P 1

j , Cj) ≤
∑

r∈[k],r 6=j

f2(P ′r, Cr) +
∑
x∈X

F (x) + f
[d]−Zi,j
2 (P ′j , Cj). (3)

Note that

val
(
(P 1

r )r∈[k], (Cr)r∈[k]

)
=

∑
r∈[k],r 6=j

f2(P 1
r , Cr) + f

[d]−Zi,j
2 (P 1

j , Cj) + f
Zi,j
2 (P 1

j , c
1
j )

and
val
(
(P ′r)r∈[k], (c

′
r)r∈[k]

)
=

∑
r∈[k],r 6=j

f2(P ′r, Cr) + f
[d]−Zi,j
2 (P ′j , Cj) + f

Zi,j
2 (P ′j , c

′
j).

Hence the inequality (3) together with our assumption implies that

val((P 1
r )r∈[k], (Cr)r∈[k]) < val((P ′r)r∈[k], (c

′
r)r∈[k]) + t2 ·OPT (P)− (t1 + t2)OPT (P) < OPT (P),

a contradiction. This means that(
f
Zi,j
2 (P ′j , c

′
j)− f

Zi,j
2 (P 1

j , c
′
j)
)
≤ (t1 + t2)OPT (P),

and thus

f
Zi,j
2 (P 1

j , ui)− f
Zi,j
2 (P 1

j , c
′
j) ≤ f

Zi,j
2 (P ′j , ui)− f

Zi,j
2 (P 1

j , c
′
j)

≤
(
f
Zi,j
2 (P ′j , ui)− f

Zi,j
2 (P ′j , c

′
j)
)

+
(
f
Zi,j
2 (P ′j , c

′
j)− f

Zi,j
2 (P 1

j , c
′
j)
)

≤ (t+ t1 + t2) ·OPT (P).
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An important part of the proof of Lemmas 8 and 11 is that the extension we consider is optimal.
This allowed us to say that picking balls of small radius around ui will contain only elements of P ′i .
Since we have to handle extensions which are not optimal, we have to require similar properties for
them. This is the role of the next definition.

For an extension (P ′i )i∈[k] with associated centers (c′j) and a t-useless set of coordinates Zi,j for
some i, j ∈ [k], we say that Zi,j is compatible with (P ′i )i∈[k] if

• there is no element x ∈ P ′j such that Dom(x) 6⊆ Ij and Dom(x) ⊆ Zi,j ; and

• there is no element x ∈ P ′j such that Dom(x) ⊆ Ii and d(x, ui) <
d(x,c′j)

2 .

Note that the factor 1/2 here might seems strange, since if d(x, ui) ≤ d(x, c′j), putting x in
P ′i decreases the value of the extension. However, the problem with the definition without the
factor 1/2 would be the following: suppose we have an extension (P ′i )i∈[k], a set of t-useless sets of
coordinates Zi,j and the goal is to make Zi,j compatible with (P ′i )i∈[k]. To do so, suppose we move
iteratively elements x ∈ P ′j such that Dom(x) ⊆ Ii and d(x, ui) < d(x, c′j) to P ′i (where c′j is the
updated center), until there are no such elements. The value of the extension can only decrease after
this modification. However, we have to show that the (Zi,j) are still t′ useless for some bounded
t′. As we have seen in Lemma 13, if we have some upper bound on the sum of f2(x, c′r)− f2(x, c′j)
over the elements x which are moved, then we achieve our goal. If d(x, ui) < d(x, c′j), it doesn’t

seem like we can have control over these values, however if d(x, ui) <
d(x,c′j)

2 every time we move an
element x, the value of the extension decrease by at least f2(x, c′r)/2. This means that if we start
with an extension of value (1+ t1)OPT (P), then the sum of f2(x, c′r) over the elements x which are
moved is bounded by 2t1OPT (P) and we can apply Lemma 13. This will be the main argument
of the next lemma.

Lemma 14. Suppose (P ′i )i∈[k] is a safe extension of value at most (1 + t1)OPT (P) with associated
centers (c′j) and (Zi,j)i,j∈[k] are compatible t2-useless sets of coordinates for (P ′i )i∈[k]. If there exist
i, j ∈ [k] with Ii 6= ∅ and Ij = ∅ as well as a set Ii,j of coordinates in Ii such that |Ii,j | ≥ d −∆,

Ii,j 6⊆ Zi,j, and f
Ii,j
2 (P ′j , ui)−f

Ii,j
2 (P ′j , c

′
j) ≤ t3 ·OPT (P), then there exists a safe extension (P 1

i )i∈[k]

of P with compatible 3t1 +2t3 +t2-useless sets of coordinates (Z1
i,j)i,j such that the value of (P 1

i )i∈[k]

is at most (1 + t1 + t3)OPT (P) and
∑

i,j∈[k] |Z1
i,j | >

∑
i,j∈[k] |Z ′i,j |.

Proof. Define Z1
i,j = Zi,j ∪ Ii,j , and note that |Z1

i,j | > |Zi,j | and |Z1
i,j | ≥ |d−∆|. Let Z1

i′,j′ = Zi′,j′

for any other pair i′, j′ ∈ [k]. Note that Z1
i′,j′ is still a compatible t-useless set of coordinates for

(P ′i )i∈[k]. Because f
Ii,j
2 (P ′j , ui) − f

Ii,j
2 (P ′j , c

′
j) ≤ t3 · OPT (P) and Zi,j is t2-useless, we get that Z1

i,j

is a t3 + t2 useless set of coordinates for (P ′i )i∈[k].
Consider now the extension (P 1

r )r∈[k] obtained from (P ′r)r∈[k] by putting in P ′i the set X1

of elements x ∈ P ′j such that Dom(x) 6⊆ Ij and Dom(x) ⊆ Z1
i,j . Let us define a sequence

(P 2
r )r∈[k], . . . (P

q
r )r∈[k] of extensions with the associated centers (c2

r)r∈[k], . . . , (cqr)r∈[k]. For each
s ∈ [q − 1], we obtain the extension (P s+1

r )r∈[k] from (P sr )r∈[k] as follows. If there is an element in

P sj such that Dom(x) ⊆ Ii′ for some i′ ∈ [k] and d(x, ui′) ≤
d(x,csj)

2 then we get (P s+1
r )r∈[k] from

(P sr )r∈[k] by moving x from P sj to P si′ . If there are multiple choices, we simply take any i′ such that
d(x, ui′) is minimal. Note that throughout this process, we are only removing elements from P sj
to put it in another P si′ , which means that this process has to stop after at most |P 1

j | steps. Let
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(P ′′r )r∈[k] be the final extension of this process. Note as well that since we only add to P si′ elements
x such that Dom(x) ∈ Ii′ , it means that csi′ = c′i′ for every i′ different from j. Denote by X2 the
set of all elements we moved between (P 1

r )r∈[k] and (P ′′r )r∈[k], that is, X2 = P 1
j − P ′′j . For x ∈ X2

such that x ∈ P ′′r , let f(x) = f2(x, c′r).

Claim 14.1.
∑

x∈X2
f(x) ≤ 2(t1 + t3)OPT (P).

Proof of Claim. Since f
Ii,j
2 (P ′j , ui) − f

Ii,j
2 (P ′j , c

′
j) ≤ t3 · OPT (P), we have that (P 1

r )r∈[k] has value

at most (1 + t1 + t3)OPT (P). However, suppose x is such that x ∈ P sj and x ∈ P s+1
r for some

r ∈ [k] \ j. It means that d(x, ur) ≤
d(x,c(P sj ))

2 and:

val((P s+1
r )r∈[k]) = val((P sr )r∈[k]) + (d(x, ur)

2 − d(x, c(P sj ))2) ≤ val((P sr )r∈[k])−
3f(x)

4
.

Since val((P ′′i )i∈[k]) ≥ OPT (P), this ends the proof of the claim. ♦

Overall, if we set X := X1 ∪ X2, then we can apply Lemma 13 to show that each Z1
i′,j′ is a

3t1 + 2t3 + t2-useless set of coordinates for i′, j′ ∈ [k]. Moreover, since we only move elements of P ′j
and c′r = c′′r for every other r ∈ [k] \ j, the extension (P ′′r )r∈[k] remains safe. Finally we can verify
that the (Z1

i′,j′) are compatible with (P ′′r )r∈[k] as well. Indeed, for every i′ ∈ [k], Z1
i′,j is compatible

with (P ′′r )r∈[k] by the definition of X. For every j′ 6= j and i′ ∈ [k], we have that Z1
i′,j′ = Zi′,j′

and thus since Zi′,j′ is compatible with (P ′i )i∈[k] and the elements x of P ′′j′ − P ′j′ are such that

Dom(x) ⊆ Ij′ , there is no element x ∈ P ′′j′ such that Dom(x) 6⊆ Ij′ and Dom(x) ⊆ Z1
i′,j′ . Moreover,

since c′′j′ = c′j′ , we have d(x, c′′j′) = d(x, c′j′), which means that there is no element of P ′j such that

d(x, ui′) ≤
d(x,c′′j )

2 . Finally for every x ∈ P ′′j′ − P ′j′ , d(x, c′′j′) = d(x, uj′), which ends the proof, as we
chose j′ as the index such that Dom(x) ⊆ Ij′ and d(x, uj′) is minimal.

The next lemma is the main technical part of this subsection.

Lemma 15. Let t ∈ R+, let (P ′i )i∈[k] be a safe extension of P with value at most (1 + t)OPT (P)
and for every i, j ∈ [k] let Zi,j be a compatible t-useless set of coordinates, such that (Zi,j) are
compatible with (P ′i )i∈[k]. One of the following holds:

• Either Zi,j = Ii for one pair i, j ∈ [k] such that Ii 6= ∅ and Ij = ∅; or

• There exists i, j ∈ [k] such that Ii and Ij are nonempty and f
ij1
2 (P ′j , ui) − f

ij1
2 (P ′j , c

′
j) ≤ t ·

f2(R′i, ui) for some index ij1 ∈ Ii − Ij; or

• There is an algorithm running in time O(nkd) that returns for every i ∈ [k] a set T ′i such
that T ′i ⊆ FD(R′i, Ii) and |PD(P ′j , Ii − Ij) − T ′i | ≥ t

32 |FD(R′i, Ii) − T ′i | for some j ∈ [k] with

probability at least ( 1
log(n))k; or

• There exists an extension (P 1
i )i∈[k] of P with compatible (5t + t2)-useless sets of coordinates

(Z1
i,j)i,j∈[k] such that the value of (P 1

i )i∈[k]) is at most (1+ 3t+t2

2 )OPT (P) and
∑

i,j∈[k] |Z1
i,j | >∑

i,j∈[k] |Zi,j |.
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Proof. Let c = t/32. If Zi,j = Ii for one pair i, j ∈ [k] such that Ij = ∅ and Ii 6= ∅, then nothing
needs to be done, so let us assume this is not the case. Let F be the set of indices i ∈ [k] such that
Ii is empty and G = [k]− F .

Let i be some index of G. For any j ∈ F , let us denote ij,min the element of Ii −Zi,j such that
dij,min(ui, c(P

′
j)) is minimal. Let us now denote by r1,j , . . . , r∆,j the ∆ coordinates of Ii − ij,min

such that the drs,j (ui, c(P
′
j)) for s ∈ [∆] are the ∆ maximal values among all dr(ui, c(P

′
j)) for

r ∈ Ii − ij,min, and set Ii,j = Ii − {r1, . . . , r∆}. Let dj = dIi,j (ui, c(P
′
j)). The following claim is

the analogue of Lemma 8, but using the fact that Zi,j is compatible with (P ′r)r∈[k] instead of the
extension being optimal.

Claim 15.1. For any x ∈ P ′j such that Dom(x) ⊆ Ii, d(x, ui) > dj/4.

Proof of Claim. Let x be an element of P ′j such that Dom(x) ⊆ Ii and note that Dom(x)− Ii < ∆.
Because Zi,j is compatible with (P ′i )i∈[k], we have that Dom(x) ∩ (Ii − Zi,j) is nonempty, and

thus, by the choice of Ii,j , we have that dDom(x)(ui, c
′
j) ≥ dIi,j (ui, c

′
j). However, because Zi,j is

compatible with (P ′i )i∈[k] and Dom(x) ⊆ Ii, we have that dDom(x)(x, c′j) ≤ 2d(x, ui). Therefore, if

d(x, ui) ≤ dIi,j (ui, c′j)/4 ≤ dDom(x)(ui, c
′
j)/4, the triangle inequality gives us:

dDom(x)(ui, c
′
j) ≤ dDom(x)(ui, x) + dDom(x)(x, c′j) < dDom(x)(ui, c

′
j),

where the triangle inequality applies because no coordinates of x, ui and c′j has value ? on Dom(x).
This is a contradiction and thus ends the proof. ♦

We can also show the following:

Claim 15.2. For every constant c ∈ R+ and j ∈ F , the set Bj of elements of FD(R, Ii) at distance
at most dj/4 from ui is such that one of the following properties is satisfied:

• |P ′j −Bj | ≥ c|FD(R′i, Ii)−Bj |; or

• f Ii,j2 (P ′j , ui)− f
Ii,j
2 (P ′j , c

′
j) ≤ 16c(1 + t)OPT (P).

Proof of Claim. Indeed, suppose that |P ′j − Bi| < c|FD(R′i, Ii) − Bj | . We know that f2(P ′i , ui) ≥
|FD(R′i, Ii) − B|(dj/4)2 as all the points of FD(R′i, Ii) − Bi are at distance at least dj/4 from ui.
Because of Claim 15.1, we have that |P ′j − Bj | = |P ′j | ≤ c|FD(R′i, Ii) − Bi|. Moreover, since Ij
is empty, it means that c′j = c(P ′j) and thus, by Lemma 4, we have that f2(P ′j , ui) − f2(P ′j , c

′
j) ≤

|P ′j |d(ui, c
′
j)

2, which implies that f2(P ′j , ui)− f2(P ′j , c
′
j) ≤ 16c · f2(P ′i , ui) ≤ 16c(1 + t)OPT (P). ♦

If f
Ii,j
2 (P ′j , ui)− f

Ii,j
2 (P ′j , c

′
j) ≤ 16c(1 + t)OPT (P), then Lemma 14 gives us the existence of an

extension and some sets of coordinates satisfying the fourth property of the lemma. Therefore,
from now on we assume that for every j ∈ F , |P ′j −Bj | ≥ c|FD(R′i, Ii)−Bj |.

For any j ∈ G different from i such that Ii−Ij 6= ∅, let us define ij1, . . . , i
j
|Ii−Ij | as the coordinates

of Ii − Ij , and set djr = di
j
r(ui, c

′
j) for all r ∈ [|Ii − Ij |]. Without loss of generality, we can assume

dj1 is minimum, and let dj = dj1. Using analogous proofs as those of Lemmas 11 and 12, we can use
the fact that (P ′i )i∈[k] is safe to prove the following two claims:

Claim 15.3. For j ∈ G, if x ∈ PD(P ′j , Ii − Ij), then d(x, ui) ≥ dj/4.
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Claim 15.4. For every constant c ∈ R+ and j ∈ G, if we denote by Bj the set of elements of
FD(R, Ii) at distance at most dj from u1, then:

• Either |PD(P ′j , i
j
1)−Bj | ≥ c|R′i −B|; or

• f i
j
1

2 (P ′j , ui)− f
ij1
2 (P ′j , c

′
j) ≤ 16cf2(P ′i , ui).

Note that if there exists j such that f
ij1
2 (P ′j , ui) − f

ij1
2 (P ′j , c

′
j) ≤ 16cf2(R′i, ui), then the second

property of the lemma is satisfied, so we can assume that |PD(P ′j , i
j
1) − Bj | ≥ c|R′i − Bj | for all

j ∈ G.
Let us consider now the index j ∈ G ∪ F such that dj is defined and minimal. Note that if no

dj is defined, it means that Ii − Ij is empty for every j and thus because of Observation 5, we can
assume that FD(R′i, Ii) is empty. Let us denote by Bi the set of elements x of FD(R, Ii) at distance
at most dj/4 from ui and such that, if Dom(x) ⊆ Ij for some j ∈ [k], then d(x, ui) ≤ d(x, uj). By
combining Claims 15.1 and 15.3, the choice of j and the assumptions we made on the results of
Claims 15.4 and 15.2 we get the following claim:

Claim 15.5. Bi contains only elements of R′i and |PD(P ′j , I1 − Ij)−Bi| ≥ c|FD(R′i, Ii)−Bi|.

Consider the integer r such n
2r ≤ |FD(R, Ii) − Bi| ≤ n

2r−1 , let H be the set of n
2r−1 points of

FD(R, Ii) that are the farthest away from u1 and let B′i = FD(R, Ii)−H. By the definition of H,

B′i ⊆ Bi and |Ri −B′| ≤ 2|Ri −B| which means that |PD(P ′j , Ii − Ij)−B′i| ≥
c|Ri−B′|

2 . Therefore,
if the algorithm selects uniformly at random an integer in [log(n)], then with probability 1/ log(n)
this integer is equal to r, and the algorithm is then able to find the set T ′i := B′i. Note that once r
is selected, the set B′ can be found in O(nd) time. We finish the proof by repeating this for every
i such that dj can be defined. For the other indices i, as explained, FD(R′i, Ii) is empty and thus
B′i := ∅ has the required properties.

A very important remark here is that in the case where there is an algorithm running in time
O(nkd) that returns for every i ∈ [k] a set T ′i such that T ′i ⊆ FD(R′i, Ii) and |PD(P ′j , Ii−Ij)−T ′i | ≥
t

32 |FD(R′i, Ii)− T ′i | for some j ∈ [k] with probability at least ( 1
log(n))k, the algorithm does not need

to know the extension (P ′i )i∈[k], as the only thing that matters are the distances of the elements of
P to the point ui that are given in P.

3.3 Proof of Lemma 7

We are now ready to prove the main result of this section, Lemma 7.

Proof of Lemma 7. Let t1 = α
6(∆+1)k and note that 6(∆+1)kt1 = α. Let (P 1

i )i∈[k] be an optimal

extension of P and Z1
i,j = ∅ for every pair i, j ∈ [k]. Note that (P 1

i )i∈[k] is safe and the (Z1
i,j) are

compatible t1-useless sets of coordinates. By applying Lemma 15 to (P 1
i )i∈[k] and (Z1

i,j)i,j∈[k], we

have that, denoting R1
i = P 1

i ∩R:

• Either Zi,j = Ii for one pair i, j ∈ [k] such that Ii 6= ∅ and Ij = ∅; or

• There exists i, j ∈ [k] such that Ii and Ij are non empty and f
ij1
2 (P 1

j , ui) − f
ij1
2 (P 1

j , c
′
j) ≤

t1 · f2(R1
i , ui) for some index ij1 ∈ Ii − Ij ; or
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• There is an algorithm that returns for every i ∈ [k] a set T ′i such that T ′i ⊆ FD(R1
i , Ii) and

|PD(P 1
j , Ii−Ij)−T ′i | ≥

t1
32 |FD(R1

i , Ii)−T ′i | for some j ∈ [k] with probability at least ( 1
log(n))k;

or

• There exists an extension (P 2
i )i∈[k] of P with some compatible 5t1+t21-useless set of coordinates

(Z2
i,j)i,j such that the value of (P 2

i )i∈[k] is at most (1+
3t1+t21

2 )OPT (P) ≤ (1+5t1 +t21)OPT (P)

and
∑

i,j∈[k] |Z2
i,j | >

∑
i,j∈[k] |Z1

i,j |.

In the first case, the partial clustering P ′ obtained from P by setting Ij := Ii, uj := ui, and
nj := ni, has value at most

OPT (P) +

(
f
Zi,j
2 (P ′j , ui)− f

ij1
2 (P ′j , c

′
j)

)
≤ (1 + t1)OPT (P)

by definition of t1-useless sets of coordinates, and therefore P ′ satisfies the first property of Lemma 7.
In the second case, the partial clustering P ′ obtained from P by setting Ij := Ij∪ ij1, (uj)ij1

:= (ui)ij1
and nj := nj + 1 is a partial clustering of value at most

OPT (P) +

(
f
ij1
2 (P ′j , ui)− f

ij1
2 (P ′j , c

′
j)

)
≤ (1 + t1)OPT (P),

and therefore P ′ satisfies the first property of Lemma 7. In the third case, then the set B =
⋃
i∈[k] T

′
i

satisfies the second property of Lemma 7.
In the last case, we can again apply Lemma 15 to (P 2

i )i∈[k] and (Z2
i,j)i,j∈[k] with t2 = 5t1 + t21.

By repeating this process until we arrive to an application of Lemma 15 where one of the first three
cases is satisfied, we can define a sequence of extensions (P si )i∈[k], (Zsi,j)i,j∈[k] and ts = 5ts−1 + t2s−1

such that the (Zsi,j)i,j∈[k] are compatible ts-useless sets of coordinates for (P si )i∈[k]. Note that if
ts−1 ≤ 1, then ts ≤ 6ts−1 and recall that α < 1. Moreover, this process has to stop after at
most (∆ + 1)k iterations, because

∑
i,j∈[k] |Z

s+1
i,j | >

∑
i,j∈[k] |Zsi,j |, and if Zri,j increases more than ∆

times, then |Zri,j | = d, and we are in the first case. Therefore, by the choice of t1, there exists a safe
extension (P ′i )i∈[k] with compatible α-useless sets (Z ′i,j)i,j∈[k] such that the application of Lemma
15 falls into one of the first three cases, and we can conclude.

The desired algorithm proceeds as follows. First, it guesses with probability 1/3 in which of the
above cases it falls. In the first case, guessing the pair i, j allows us to conclude with probability
1/k2. In the second, guessing i, j and ij1 ∈ Ii − Ij allows us to conclude with probability 1

k2∆
(remember that |Ii − Ij | ≤ ∆). Finally in the last case, the algorithm succeeds if the algorithm of
Lemma 15 succeeds, so the probability of that is ( 1

log(n))k.

Overall, the probability of success is at least 1
3k2∆ log(n)k

, and the algorithm runs in time O(nkd).

4 The Algorithm

Now that we have Lemma 7, we can describe our algorithm. Let us first recall the following lemma,
which is a direct consequence of the definition of variance (see Lemma 1 of Inaba et al. [12]).

Lemma 16. Let x1, . . . , xm be a set of reals with average µ and s1, . . . , st be a set of elements
obtained by t independent and uniform draws among the xi. The random variable s =

∑
i∈t si/t is

such that E(|s− µ|2) ≤
∑
i∈[m] |xi−µ|2

tm .
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The main element of our proof is the following lemma providing one step of the algorithm.

Lemma 17. For every constant α ∈ R+, there exists an algorithm that, given a partial clustering
P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]} outputs in time O(nkd) with probability at least

min{ 1

2O( ∆3k
α

log 1
α

)(log n)k
,

1

2O(∆6k log ∆)(log n)k
}

a partial clustering P ′ = {(n′i)i∈[k], (H
′
i)i∈[k], (I

′
i)i∈[k], (u

′
i)i∈[k]} such that

∑
i∈[k] n

′
i >

∑
i∈[k] ni and

OPT (P ′) ≤ (1 + α)OPT (P).

Proof. Let us fix sufficiently small q ∈ R+ such that (1 + q)2 ≤ (1 + α) and exp(− 1
4∆q ) ≤ q

4∆ .
The choice of q will be clear later in the proof. For now just notice that q < 1 and setting
q = min{α3 ,

1
128∆3 } satisfies both conditions. Additionally, let q′ = q

32·6(∆+1)k . By applying Lemma
7 with the constant q, we have an algorithm that runs in time O(nd) and with probability at least
( 1

2 log(n))k returns either:

• A partial clustering P ′ = {(n′i)i∈[k], (H
′
i)i∈[k], (I

′
i)i∈[k], (u

′
i)i∈[k]} withOPT (P ′) ≤ (1+q)OPT (P)

and
∑

i∈[k] n
′
i >

∑
i∈[k] ni; or

• a set B of elements of R such that there exists an extension (P ′i )i∈[k] of P with value at most
(1 + q)OPT (P) and such that B ⊆

⋃
i∈[k] FD(P ′i ∩ R, Ii) and for every i ∈ [k], there is an

index j ∈ [k] such that |PD(P ′j ∩R, Ii − Ij)−B| ≥ q′|FD(P ′i ∩R, Ii)−B|.

In the former case, nothing needs to be done as P ′ satisfies all the properties of the lemma.
Therefore, from now on we assume that we are in the latter case and we are given a set B ⊆ R
satisfying all the conditions of the second case of Lemma 7. Let (P ′i )i∈[k] be the hypothetical
extension with value at most (1 + q)OPT (P) whose existence is guaranteed. Let R′i = P ′i ∩ (R−B)
for all i ∈ [k] and let (c′i)i∈[k] be the centers associated with (P ′i )i∈[k]. Let i be the index such that
|R′i| is maximal, meaning |R′i| ≥ |R − B|/k. Now either |FD(R′i, Ii)| ≥ |R′i|/2, in which case we

know that there exists an index j ∈ [k] such that |PD(R′j , Ii − Ij)| ≥ q′|FD(R′i, Ii)| ≥
q′|R−B|

2k , or

|R′i−FD(R′i, Ii)| ≥
|R−B|

2k . Note that PD(R′j , Ii−Ij)∩FD(R′j , Ij) = ∅ which means that there exists

an index r ∈ {i, j} such that |R′r −FD(R′r, Ir)| ≥
q′|R−B|

2k . The goal of the algorithm now will be to
sample points inside R′r − FD(R′r, Ir) in order to obtain a good estimate of some coordinates of c′r
that are not yet in Ir. We will consider two different cases, depending on whether |Ir| ≥ d−∆ or
not.

Case 1: |Ir| < d−∆. Note that in this case, by the definition of a partial clustering, nr = 0 and
Hr∪FD(R′r, Ir) is empty. This implies that R′r = P ′r. Let δ = 1

2∆ and note that (1−δ)∆ ≥ 1/2. We
claim that there exists a set Lr of at most ∆ coordinates (possibly empty) such that there exists a
set Fr ⊆ R′r, |Fr| ≥ |R′r|/2 where every element x of Fr is such that xj = ? on every j ∈ Lr and for
every i ∈ [d]−Lr, there are at most (1−δ)|Fr| points x in Fr with xi = ?. We can obtain the set Fr
from R′r as follows. Start with Lr = ∅ and Fr = R′r. As long as there exists a coordinate i ∈ [d]−Lr
where a (1 − δ) fraction of points in Fr has value ? on the coordinate i, then set Lr := Lr ∪ {i}
and Fr as the set of points of Fr with value ? on the coordinate i. This process has to stop after
∆ steps as P consists of ∆-points. This means that, at the end, |Fr| ≥ (1 − δ)∆|R′r|, which ends
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the proof of the claim. For i ∈ Lr, let Rir = PD(R′r, i) and pi = |Rir|/|R′r|. The previous discussion
shows that pi ≥ δ

2 for all i 6∈ Lr.
Intuitively, Lr correspond to the set of coordinates such that, if we sample in R′r, then we might

not get a good estimate for c′r on these coordinates. Suppose now we pick uniformly at random an

element x of R − B. Because |Fr| ≥ |R
′
r|

2 ≥ q′|R−B|
4k , with probability at least q′

4k , x ∈ Fr. Assume
from now on this is the case, and let Jr = Dom(x). Note that Lr ⊆ [d]− Jr and |Jr| ≥ d−∆.

Let t = 8
qδ . From the choice of q and because pi ≥ δ

2 one can show that exp(−tp2
i /4) ≤ 2

tpi
.

Consider X = {x1, . . . , xt}, a (multi)set of t elements in R − B obtained by doing t independent

and uniform draws. With probability at least ( q
′

2k )t, all these points belong to R′r. From now on we
assume this is the case, and all the probabilities computed will be conditioned by that fact. Note
that the set {x1, . . . , xt} then follows exactly the same distribution as the one obtained by doing
t independent and uniform draws in R′r. Let J ′r be the set of coordinates e of Jr for which there
exists an element xs ∈ X such that (xs)e 6= ?, note that |Jr − J ′r| ≤ ∆. Let u′ = cJ

′
r(X). For every

i ∈ J ′r, denote by Xi the random variable counting the number of the points xj with j ∈ [t] such
that (xj)i 6= ?. Note that Xi follows the binomial distribution with parameters t and pi. By using
standard tail bounds of the binomial distribution (see, e.g., Theorem 1 of [11]) we can show the
following claim:

Claim 17.1. For every i ∈ J ′r, Pr[Xi ≤ tpi/2] ≤ exp(−tp2
i /4).

Moreover, if we condition by the event that Xi = p, then the distribution followed by the p
values of (xs)i is exactly the same as the one obtained by doing p uniform and random draws among
all the vi for v ∈ PD(R′r, i). This implies the following result.

Claim 17.2. For every i ∈ J ′r, we have E
(
|(c′r)i − (u′)i|2

)
≤

∑
x∈Rir

|xi−(c′r)i|2

|Rir|
· 4
tpi

.

Proof of Claim. By the definition of a partial clustering and an extension, and because Ir is empty,
we know that (c′r)i is equal to the average of si over all elements s of Rir. By applying Lemma 16,
we get that, for every s ≤ t,

E
(
|(c′r)i − u′i|2|Xi = s

)
≤
∑

x∈Rir |xi − (cr)i|2

|Rir|s
.

This means that:

E
(
|(c′r)i − u′i|2

)
= E

(
|(c′r)i − u′i|2 | Xi ≤ tpi/2

)
Pr[Xi ≤ tpi/2]

+ E
(
|(c′r)i − u′i|2 | Xi > tpi/2

)
Pr[Xi > tpi/2]

≤
∑

x∈Rir |xi − (cr)i|2

|Rir|
· Pr[Xi ≤ tpi/2]

+

∑
x∈Rir |xi − (cr)i|2

|Rir|tpi/2

≤
∑

x∈Rir |xi − (cr)i|2

|Rir|

(
exp(−tp2

i /4) +
2

tpi

)
.

Which ends the proof as we chose q such that exp(−tp2
i /4) ≤ 2

tpi
. ♦
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Now for every index a ∈ Jr − J ′r, consider Aa = {xa1, . . . , xat } a new (multi)set of t elements

in R − B obtained by doing uniform and independent draws. With probability at least ( q
′δ

4k )t all
these elements belong to Rar . From now on, let us assume that it is the case for every a ∈ Jr − J ′r.
Setting u′a = ca(Aa), an analogous proof as the one of Claim 17.2 would yield:

Claim 17.3. For every a ∈ (Jr − J ′r), we have E
(
|(c′r)a − u′a|2

)
≤

∑
x∈Rar

|xa−(c′r)i|2

|Rar |
· 4
tpa

.

By summing over all coordinates of Jr, we obtain the following result.

Claim 17.4. With probability at least 1/2, fJr2 (R′r, u
′) ≤ (1 + 8

tpi
)(fJ1

2 (Rr, c
′
r)).

Proof of Claim. Indeed, E(fJr2 (R′r, u
′) − fJr2 (Rr, c

′
r)) =

∑
i∈Jr |R

i
r| · E(|(c′r)i − u′i|2) by Lemma 4,

which is smaller than 4
tpi

(fJr2 (Rr, c
′
1)) by the previous claims. Markov’s inequality allows us to

conclude. ♦

Therefore, by choosing the following at random:

• an index r ∈ [k] such that |R′r − FD(R′r, Ir)| ≥
q′|R−B|

2k ,

• an element x ∈ R−B,

• t elements x1, . . . , xt in R−B, and

• t elements xa1, . . . , x
a
1 in R−B for each a ∈ Jr − J ′r

we find, with probability at least 1
k ·

q′

4k · (
q′

2k )(t−1) · ( q
′δ

4k )t∆ · 1/2 ≥ (q′δ)(∆+1)t

(4k)(∆+1)t+1 = 1

2
O( ∆3k

q log 1
q )

, a point

u1 ∈ Hd such that fJr2 (R′r, u
′) ≤ (1 + 8

tpi
)(fJr2 (Rr, c

′
r)). Now consider the set of points (ci)i∈[k]

defined as follows: if i 6= r, then ci = c′i and cr is the point obtained from c′r by setting (cr)j = u′j
on all the coordinates of Jr. We have that:

val((P ′i )i∈[k], (ci)i∈[k]) ≤ val((P ′i )i∈[k], (c
′
i)i∈[k]) +

8

tpi
(fJ1

2 (Rr, c
′
r))

≤ (1 + q)2OPT (P)

≤ (1 + α)OPT (P).

Therefore, it means that the partial clustering P ′ obtained from P by setting nr = 1, ur = u′

and Ir = Jr satisfies the property of the lemma. Indeed, the partition (P ′i )i∈[k] is an extension of
P ′ with value at most val

(
(P ′i )i∈[k], (ci)i∈[k]

)
and |Jr| ≥ d−∆.

Case 2: |Ir| ≥ d−∆. Let S = [d]− Ir and note that, by the definition of FD(R′r, Ir), for every
element y ∈ R′r − FD(R′r, Ir), there is an index j ∈ S such that j ∈ Dom(y). In particular it
means that there exists an index j ∈ S such that j ∈ Dom(y) for at least |R′r − FD(R′r, Ir)|/∆
of the elements of R′r − FD(R′r, Ir). Because |S| ≤ ∆, by picking a random element of S, with
probability at least 1/∆, we can assume that we know this index j. Our main goal now will be to
guess (c′r)j . Let t′ = 2

q and suppose that s1, . . . , st′ is a (multi)set of elements of R − B obtained

by t′ uniform and independent draws. With probability at least ( q′

2k∆)t
′
, all the si’s belong to

PD(R′r, j). From now on, let us assume that this is the case. Note that in this case, the random
set (s1, . . . , st′) follows the same distribution as one obtained by doing t uniform and independent
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draws in PD(R′r, j). Let aj =
∑

i∈[t](si)j/t
′, a proof similar to the one of Claim 17.4 gives the

following claim:

Claim 17.5. With probability at least 1/2, f j2 (R′r, aj) ≤ (1 + q)(f j2 (R′r, c
′
r)).

In that case, the partial clustering P ′ obtained from P by setting (ur)j = aj and nr := nr + 1
satisfies the desired properties.

By considering both cases, we obtain an algorithm running in time O(knd) and succeeding with
probability at least the probability that the algorithm of Lemma 7 succeeds times the minimum of

(q′δ)(∆+1)t

(4k)(∆+1)t+1 and 1
∆ · (

q′

2k∆)t
′
, which is at least

1

2
O( ∆3k

q
log 1

q
)
(log n)k

.

Note that if α is sufficiently small, then this is 1

2O( ∆3k
α log 1

α )(logn)k
and else it is 1

2O(∆6k log ∆)(logn)k
,

finishing the proof.

Finally, by applying Lemma 17 at most k(∆ + 1) times we obtain Theorem 1.

Theorem 1. The problem of k-means clustering of ∆-points in Rd admits an (1+ε)-approximation

algorithm with running time 2O( ∆7k3

ε
log k∆

ε
)n2d.

Proof. Let P be a instance of the k-means clustering problem consisting of ∆-points. Fix
α = ((1 + ε)1/k(∆+1)− 1), note that α ≥ ε

3k(∆+1) , and let P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]}
be the partial clustering such that for each i ∈ [k], ni = 0, Hi = ∅, Ii = ∅ and ui is the point of Hd

with only ?. Note that OPT (P) is equal to the optimal value of the instance.
The algorithm consists of applying inductively Lemma 17 with the constant α and Observation 5

until
⋃
i∈[k](Hi) = P . Since

∑
i∈[k] ni increases in every application of Lemma 17, we get by

Observation 6 that this process stops after at most k(∆+1) steps. The probability that all the steps

succeed is at least (g(α,k,∆)
log(n)k

)k(∆+1), where g(α, k,∆) = min{ 1

2O( ∆3k
α log 1

α )
, 1

2O(∆6k log ∆)
}, and if it holds

then the partial clustering P ′ = {(n′i)i∈[k], (H
′
i)i∈[k], (I

′
i)i∈[k], (u

′
i)i∈[k]} obtained at the end is such

that OPT (P ′) ≤ (1 +α)k(∆+1). Since
⋃
i∈[k](Hi) = P , this gives us indeed a (1 + ε) approximation.

Note that we can obtain a center for Hi simply by either taking ui or computing c(Hi). The

running time is O(k2∆nd) and the probability of success is at least (g(α,k,∆)
log(n)k

)k(∆+1), which means

that running the previous algorithm O(( log(n)k

g(α,k,∆))k(∆+1)) times allows us to find the approximation

with constant probability. Finally, it is well-known that for any constant C, log(n)C = n+ CO(C)

which gives the total running time of:

max{2O( ∆3k
α

log 1
α

), 2O(∆6k log ∆)}k(∆+1)2O(k2∆) log(k∆)k2∆n2d

which can be simplified to

max{2O( ∆5k3

ε
log k∆

ε
), 2O(∆7k2 log(k∆))}n2d,

finishing the proof.
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5 Concluding Remarks

In this paper we gave the first PTAS for k-means clustering of ∆-points when ∆ > 1 running in

time 2O( ∆7k3

ε
log k∆

ε
)n2d based on iteratively sampling points to discover new coordinates of some

center. We believe that the study of clustering problems of ∆-points is an interesting research
direction and there is still a lot to be discovered. We conclude with concrete open questions.

Arguable, the most popular clustering objectives are k-center, k-means, and k-median. For
k-center clustering of ∆-points a PTAS was obtained by Lee and Schulman in [14]. However, for
k-median clustering of ∆-points, the question whether the problem admits a PTAS, remains open.
We would like to remark here that the algorithm of Kumar et al. [13] for clustering of points in Rd
works not only for k-means, but also for k-medial clustering.

Since ∆-points are basically ∆-dimensional axis-parallel subspaces, another interesting question
would be whether it is possible to extend our result to clustering of arbitrary ∆-dimensional affine
subspaces in Rd. This is a very natural computational geometry problem which complexity, to the
best of our knowledge, is widely open.

Following the coreset construction for k-means clustering of lines by Marom and Feldman [16],
it is a natural open question whether it is possible do design a coresets of small size for clustering
of ∆-points for ∆ > 1. For lines, the size of coreset of Marom and Feldman is dkO(k) log n/ε2. In
particular, whether log n can be removed even for ∆ = 1, is open.

Last but not least, we do not know how tight is the running time of our algorithm. While it is
plausible to suggest that the dependency in k and ∆ is not optimal, to design a faster algorithm we
need new ideas. It ls also an interesting open question whether one can improve the dependency
on n from quadratic to linear.
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