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Abstract

Over the past few decades, the study of dense structures from the perspective of ap-
proximation algorithms has become a wide area of research. However, from the viewpoint of
parameterized algorithm, this area is largely unexplored. In particular, properties of random
samples have been successfully deployed to design approximation schemes for a number of
fundamental problems on dense structures [Arora et al. FOCS 1995, Goldreich et al. FOCS
1996, Giotis and Guruswami SODA 2006, Karpinksi and Schudy STOC 2009]. In this paper,
we fill this gap, and harness the power of random samples as well as structure theory to
design kernelization as well as parameterized algorithms on dense structures. In particular,
we obtain linear kernels for Edge-Disjoint Paths, Edge Odd Cycle Transversal,
Minimum Bisection, d-Way Cut, Multiway Cut and Multicut on everywhere dense
graphs. In fact, these kernels are obtained by designing a polynomial-time algorithm when
the corresponding parameter is at most Ω(n). Additionally, we obtain a cubic kernel for
Vertex-Disjoint Paths on everywhere dense graphs. In addition to kernelization results,
we obtain randomized subexponential-time parameterized algorithms for Edge Odd Cycle
Transversal, Minimum Bisection, and d-Way Cut. Finally, we show how all of our
results (as well as EPASes for these problems) can be de-randomized.
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1 Introduction

While several interesting optimization problems remain NP-complete even when restricted to
sparse graphs or dense graphs, the restriction of a problem to these families of graphs is usually
considerably more tractable algorithmically than the problem on general graphs. With respect
to graph classes, sparseness usually refers to families of planar graphs, graphs of bounded genus,
graphs excluding some fixed graph H as a minor, graphs of bounded expansion and no-where
dense graphs. Here, denseness usually refers to families of graphs with Ω(n2) edges. Addi-
tionally, sparseness and denseness can be defined for structures beyond graphs—for example,
dense 3-SAT instances are those for which the formula has Ω(n3) clauses. In this paper, we
focus on designing deterministic kernelization algorithms and fixed-parameter tractable (FPT)
algorithms for NP-hard problems on dense structures.

We start by defining some basic definitions from Parameterized Complexity, that we make
use of. Formally, a parameterization of a problem is assigning an integer k to each input
instance and we say that a parameterized problem is fixed-parameter tractable (FPT) if there is
an algorithm that solves the problem in time f(k)·|I|O(1), where |I| is the size of the input and f
is an arbitrary computable function depending on the parameter k only. We will also be studying
polynomial time preprocessing or kernelization. A parameterized problem Π is said to admit a
kernel if there is a polynomial-time algorithm, called a kernelization algorithm, that reduces the
input instance of Π down to an equivalent instance of Π whose size is bounded by a function
f(k) of k. (Here, two instances are equivalent if both of them are either Yes-instances or No-
instances.) Such an algorithm is called an f(k)-kernel for Π. If f(k) is a polynomial function
of k, we say that the kernel is a polynomial kernel. For more background on Parameterized
Complexity and Kernelization, we refer to the following books [22, 16, 24, 47, 26].

1.1 Context of Our Results and Overarching Goals

The algorithmic study of NP-hard problems on dense structures is two decade old and has rich
history. We start by giving definitions of (E)PTAS and denseness that will ease our discussion.
A PTAS is an algorithm that takes an instance I of an optimization problem and a parameter
ε > 0, runs in time nO(f(1/ε)), and produces a solution that is within a factor 1 + ε of being
optimal. A PTAS with running time f(1/ε) · nO(1) is called an efficient PTAS (EPTAS).

Definition 1.1 ([7, 34]). A graph on n vertices is δ-dense if it has δn2/2 edges. It is everywhere-
δ-dense if the minimum degree is δn. We abbreviate Ω(1)-dense as dense and everywhere-Ω(1)-
dense as everywhere-dense.

Arora, Karger and Karpinski [7] initiated the study of NP-hard problems on dense structures
and designed PTASes for several NP-hard optimization problems. Among many other results,
they showed that Bisection, k-Way Cut, and Separator admit PTASes on everywhere-
dense instances and Max-Cut, Max-d-SAT, and Max-Hypercut(d) admit PTASes on dense
instances. The main ingredients of these results are exhaustive sampling and its use in approx-
imation of polynomial integer programs. These results lead to a flurry of new ideas and results
in this area. Arora, Frieze, and Kaplan [6] used the exhaustive sampling idea to design additive
approximation schemes for problems in which feasible solutions are permutations (such as the
0-1 Quadratic Assignment Problem). Frieze and Kannan [28] and, independently, Gol-
dreich, Goldwasser, and Ron [30] showed that exhaustive sampling techniques apply because
of certain regularity properties in dense graphs and used this observation to design linear time
additive approximation schemes for most of the problems that were considered in [7]. In par-
ticular, [28, 30] made PTASes of [7] into EPTASes. Frieze and Kannan [28] also pointed out
connections to constructive versions of Szemeredi’s Regularity Lemma and Goldreich, Gold-
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wasser, and Ron [30] found its connection in property testing and learning theory based on an
idea of degree estimator.

This idea of degree estimator has been extremely useful in further developments in the
area. In particular, Giotis and Guruswami [29] used this idea to design a PTAS for correlation
clustering in general graphs, when the number of clusters is fixed. That is, they designed a
PTAS for d-Correlation Clustering (given an undirected graph G, edit (delete or add)
minimum number of edges so that the resulting graph becomes disjoint union of d cliques)

running in time nO(9
d/ε2) log n. It is also important to note here that before the paper of Giotis

and Guruswami [29], most of the earlier works largely focused on maximization problems. In
2009, Karpinski and Schudy [34] further used the idea of degree estimator and designed linear
time EPTASes for several problems, such as d-Correlation Clustering and Fragile Min-
d-CSP on everywhere-dense instances. Several other randomized PTASes and EPTAses based
on different sets of ideas can be found in [44, 20, 33, 8, 2, 1, 5].

As we established above the algorithmic study of NP-hard problems on dense structures
has been extremely rewarding from the perspective of Approximation Algorithms. Could this
success be repeated in other algorithmic paradigms meant to cope up with NP-hard problems?
In particular, in the field of Parameterized Complexity. This leads to the following question.

Could we exploit the denseness of structures in designing significantly faster FPT algo-
rithms and polynomial time kernelization algorithm for some of the fundamental problems
in the field, the way it has been utilized in the field of approximation algorithms?

Our study shows that the answer is an assertive YES! In particular, we obtain linear kernels
for Edge-Disjoint Paths, Edge Odd Cycle Transversal, Minimum Bisection, d-Way
Cut, Multiway Cut and Multicut on everywhere dense graphs. In fact, these kernels
are obtained by designing a polynomial-time algorithm when the corresponding parameter is
Ω(n). Additionally, we obtain a cubic kernel for Vertex-Disjoint Paths on everywhere
dense graphs. In addition to kernelization results, we obtain randomized subexponential-time
parameterized algorithms for Edge Odd Cycle Transversal, Minimum Bisection, and
d-Way Cut. Finally, we show how all of our results (as well as EPASes for these problems)
can be de-randomized.

1.2 Our Results and Methods

In this section we give a brief overview of the problems we address and the results we obtain
for these problems. This is complemented with a short discussion on techniques that we apply
to design our algorithms.

For maximization problems such as Max Cut on dense graphs, a solution would have size
k = Ω(n2), which trivially yields solvability in subexponential-time (i.e. 2o(k) · nO(1)-time) with
respect to k. This is true about several maximization problems. However, this is not the case
for well-studied minimization problems such as Edge Odd Cycle Transversal, Minimum
Bisection, d-Way Cut, Multiway Cut and Multicut. Thus, a natural class of problems
to consider are so called cut-problems. The other family of problems for which we do not
immediately get an algorithm are linkage problems, namely, the Edge-Disjoint Paths and
Vertex-Disjoint Paths problems.

We remark that the study of subexponential-time parameterized algorithms of vertex (rather
than edge) modification problem on everywhere-dense graphs does not make sense for natural
problems such as Vertex Cover as such problems become as hard as they are on general graphs
(and hence do not admit such algorithms under the ETH). For example, given an instance G
of Vertex Cover, create an instance G′ of Vertex Cover on everywhere-dense graphs by
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adding an n-vertex clique whose vertices are all but one adjacent to every vertex of G. Then,
the existence of an 2o(k)nO(1)-time algorithm for Vertex Cover on everywhere-dense graphs
where k is the solution size would imply the existence of a subexponential-time algorithm for
Vertex Cover on general graphs with respect to n.

1.2.1 Linkage Problems

The first two problems we address are extremely fundamental in the field of Parameterized
Complexity. They are Edge-Disjoint Paths and Vertex-Disjoint Paths. In the Edge-
Disjoint Paths problem, we are given a graph G, a set of request pairs (s1, t1), . . . , (sk, tk),
and the objective is to check whether there exist paths P1, . . . , Pk, between si and ti, such that
they are pairwise edge disjoint. In the Vertex-Disjoint Paths problem, the input is same as
the Edge-Disjoint Paths problem, but the paths P1, . . . , Pk are suppose to be pairwise vertex
disjoint. Both, Edge-Disjoint Paths and Vertex-Disjoint Paths are famously FPT by
the graph minor machinery of Robertson and Seymour [49]. However, the f(k) in the running
time in the algorithm of Robertson and Seymour [49] and its later improvement is at least triply

exponential [37]. Only recently an algorithm with f(k) = 2k
O(1)

are designed when the input is
restricted to planar graphs [40]. Further, Vertex-Disjoint Paths is not known not to admit
a polynomial kernel on general graphs [10]. In this paper we show that both Edge-Disjoint
Paths and Vertex-Disjoint Paths admit a polynomial kernel. In particular we get the
following result about Edge-Disjoint Paths.

Theorem 1.1. Edge-Disjoint Paths admits an O(k) vertex kernel on everywhere α-dense
graphs.

Proof of Theorem 1.1 is obtained by designing a polynomial time algorithm for the Edge-
Disjoint Paths problem in α-dense graphs, when the number of demands is small (but still
linear) compared to αn. Once this result is proved we know that k ≥ Ω(n), resulting in a linear
vertex kernel for the problem.

To design the desired polynomial time algorithm, we use the following path. We start by
showing that highly edge-connected (linear in n) parts will always contain a solution to an
Edge-Disjoint Paths instance. Towards this we first show that if a graph G on n vertices
with minimum degree at least cn, then for any pair of vertices x, y of G, if there exists a path
between x and y, then there exists a path of length at most 4/c. We use this result together
with high connectivity of G to get the following: Let G be a graph with minimum degree αn,
and cn edge-connected for some constant c ≤ α/2, then any instance of Edge-Disjoint Paths
with k ≤ αn

8 has a solution. Moreover, this solution can be found in polynomial time. Next, we
give a lemma that partition the input graph into small number of parts such that each part has
minimum degree and edge-connectivity linear in n. In particular we get the following.

Lemma 1.1. For any real α between 0 and 1, there exists a constant c ≤ α/2 such that, if G
is a graph on n vertices and minimum degree αn, then there exists a partition P of the vertices
V (G) into g ≤ 2

α subsets V1, · · · , Vg such that for all i ∈ [g]:

• G[Vi] is cn edge-connected.

• G[Vi] has minimum degree αn
2 .

Moreover, such a partition can be found in polynomial time.

To obtain the desired partition P. We inductively build a sequence of partitions of V (G):
P1, . . . ,Pt. Each Pi+1 is obtained from Pi by applying a set of operations. Further, either a
part of Pi remains a part in Pi+1 or breaks into several parts in Pi+1. In particular, Pi+1 is
a coarser partition than Pi. Let each Pi consists of V i

1 , · · · , V i
li

as its parts. Throughout the
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process, we maintain that each part has the required minimum degree. The only thing we try
to fix is the edge-connectivity. If V i

j satisfies the edge-connectivity property, then we include as

a part in Pi+1. Else, G[V i
j ] has a cut of size smaller than cn, we delete the edges of this cut

and include all the connected components of G[V i
j ] as parts. Indeed, we show that each of these

parts have the desired minimum degree. Essentially, what happens is that the way we select
c compared to α, at each iteration “the graph induced on parts” become denser than before.
Eventually, each part has the property that for every pair of vertices there are more than cn
common neighbors, leading to high edge-connectivity. Finally, we show that this process stops
after constantly many steps, resulting in the desired partition.

Consider the graph G′ obtained from G by contracting every part Vj of the partition P into
one vertex vj (keeping multi-edges). That is, although the number of vertices in G′ is g, the
number of parallel edges between vi and vj is same as the number of edges between Vi and Vj .
Thus, there is a one-to-one correspondence between edges in G′ and the edges between a pair
of vertices w1 ∈ Vi and w2 ∈ Vj such that i 6= j. For every i ∈ [k], let s′i (resp. t′i) denote the
vertex of G′ corresponding to the part containing si (resp. ti) in G. Notice that same pair of
vi and vj could be assigned to several pairs of si and ti. In fact, if both si and ti belong to the
same part, say Vj , then s′i = vj and t′i = vj . In this case it just means that the path must be
completely contained inside the graph G[Vj ]. Using the properties of the parts we can prove the
following claim.

Claim 1.1.1. (G, (s1, t1), . . . , (sk, tk)) is an yes-instance of Edge-Disjoint Paths if and only
if (G′, (s′1, t

′
1), . . . , (s

′
k, t
′
k)) is an yes-instance of Edge-Disjoint Paths.

Claim 1.1.1 reduces our problem to the instance (G′, (s′1, t
′
1), . . . , (s

′
k, t
′
k)). Let us now explain

how to solve this problem in G′. Recall that G′ is a graph on a finite (at most 2
α) number of

vertices. In particular it means that there is at most ρ = 2
2
α

2
α ! different paths in G′, where a

path may appear multiple times. Here, we see a path as a sequence of vertices. First, choose
the subset of vertices that appear in the path and then guess the permutation of the chosen
vertices). Thus, the number of paths is upper bounded by ρ = 2

2
α

2
α !. Therefore, a solution to

this problem consists of assigning to each of these paths an integer of value at most k, which
denotes the number of requests that will be resolved using this path. It means that the number
of possible “distribution” of the requests among these paths is upper bounded by kρ. Moreover,
once we have chosen the distribution of the requests among these paths, then testing whether
this distribution is indeed a solution requires only to count the number of times each multi-edge
is used. So in total, to find a solution to the problem in G′, we only need to check the O(kρ)
possible distributions. Since, we can test each distribution in nO(1) time, the running time of
the algorithm follows.

Our kernelization algorithm for Vertex-Disjoint Paths is more involved, though follows
the template outlined for Edge-Disjoint Paths. In particular we obtain the following result.

Theorem 1.2. Vertex-Disjoint Paths admits a vertex kernel of size O(k3) on everywhere
α-dense graphs.

One of the main technical difficulty in proving Theorem 1.2 is in adapting the proof of Lemma
1.1 for Vertex-Disjoint Paths. The main reason being that for Vertex-Disjoint Paths
we need to simulate Lemma 1.1 for vertex connectivity. That is, we need to find cut-vertices
instead of edges. However, these vertices could have neighbors in many different parts and we
cannot say that their relative degree inside a part increases, which is a critical component in the
proof of Lemma 1.1. To mitigate this situation we introduce a vertex set V0 in the partitioning,
that contains all the cut vertices. The whole difficulty lies in carrying this V0 throughout the
process of obtaining the desired partition. In particular, we prove the following decomposition
lemma.
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Lemma 1.2. For any two reals α1 and α2, between 0 and 1, there exists a constant c ≤ α2/6
such that, if G is a graph on n vertices and minimum degree α1n, then there exists a partition
P of the vertices V (G) into g ≤ 2

α1
subsets V0, · · · , Vg with the following properties:

• For all 1 ≤ i < j ≤ g, E(Vi, Vj) = ∅.
• For all 1 ≤ i ≤ g, G[Vi] is cn vertex-connected.

• |V0| ≤ α2n.

Moreover, such a partition can be found in polynomial time.

However, unlike Edge-Disjoint Paths, getting the desired decomposition in itself does
not result in the desired kernel. We need to put in significant technical work to reduce the
graph. To achieve this we prove several structural properties of Vertex-Disjoint Paths and
its interplay with the parts of P in order to get the desired kernel. We leave the details to the
corresponding section.

1.2.2 Cut-Problems

Arguably, a few of the most well-studied cut problems in the realm of Parameterized Complexity
are Edge Odd Cycle Transversal, Minimum Bisection, d-Way Cut, Multiway Cut,
and Multicut. Input to all these problems are an undirected graph G and an integer k, and
the goal is following.

Edge Odd Cycle Transversal: Does there exist a set of at most k edges such that its
deletion results in a bipartite graph?

Minimum Bisection: Does there exist a vertex partition (V1, V2), such that ||V1| − |V2|| ≤ 1,
and there are at most k edges with one end-point in V1 and the other in V2?

d-Way Cut: Does there exist a set of at most k edges such that its deletion results in at least
d connected components?

Multiway Cut: Here, we are also given a vertex subset T ⊆ V (G) (called terminals) and the
objective is to test if there exists a set of at most k edges such that after its deletion no
two terminals belong to the same connected component.

Multicut: Here, we are also given a set of request (s1, t1), . . . , (s`, t`) and the objective is to
test if there exists a set of at most k edges such that after its deletion no request belong
to the same connected component.

All the aforementioned problems are extremely well studied [19, 17, 15, 48, 42, 43, 13, 14,
36, 12] and are known to be FPT. However, for most of these problems we know that there can
not exist an algorithm with running time 2o(k)nO(1) on general graphs. Further, Edge Odd
Cycle Transversal admits a randomized polynomial kernel on general graphs [38, 39]; on
the other hand Minimum Bisection and Multicut are known not to admit a polynomial
kernel [18, 50]. The kernelization complexity of Multiway Cut is still open. In this paper we
obtain the following results about these problems on everywhere dense graphs.

Theorem 1.3. Edge Odd Cycle Transversal, Minimum Bisection, d-Way Cut, Mul-
tiway Cut, and Multicut admit O(k) vertex kernel on everywhere α-dense graphs.

Theorem 1.4. Edge Odd Cycle Transversal, and Minimum Bisection admit an al-

gorithm with running time 2O(
√
k)nO(1) on everywhere α-dense graphs. Further, d-Way Cut

admits an algorithm with running time 2O(
√
k log k)nO(1).
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These are the first subexponential time parameterized algorithms for Edge Odd Cycle
Transversal, Minimum Bisection, and d-Way Cut on everywhere α-dense graphs. The
proof of Theorem 1.3 is obtained by designing a polynomial time algorithm when the solution
size for these problems is smaller than α · n (for some α). This is similar to our kernelization
strategy for the Edge-Disjoint Paths problem. For example, if the solution for Edge Odd
Cycle Transversal is of size k ≤ α · n (for some α), then the problem can be solved in
polynomial time, and otherwise n < k/α and hence we already have a kernel at hand.

The proof of these results (Theorems 1.3 and 1.4) are similar to each other. Thus, to
illustrate our methods we focus on giving intuition for the proof of d-Way Cut. The main
ingredient of Theorems 1.3 and 1.4 is the following sampling primitive, a form of which has
been extensively used in designing PTASes and EPTASes in everywhere α-dense graphs.

Lemma 1.3 (Degree Estimator Lemma). For any constants ε1 and ε2, if U is a universe on
n elements, K is a set of subsets of U and S is a multi-set obtained by doing t(ε1, ε2) = 1

ε21ε2

independent and uniform random draws in U , then with probability at least 1/2, the number of

sets X ∈ K such that
∣∣∣ |S∩X|nt − |X|

∣∣∣ ≥ ε1n is smaller than ε2|K|.

We next show how we use Degree Estimator Lemma for our purpose. Suppose that G is a
graph on n vertices and A is a set of linear size Ω(n). We use Lemma 1.3 in order to guess the
degree of the vertices in V (G) in A without knowing the set. That is, to estimate the number of
neighbors of a vertex that belong to the set A. Indeed, let us fix some constants ε1 and ε2 and
pick uniformly at random a set S of t = t(ε1, ε2) = 1

ε21ε2
vertices from V (G). Since A is of linear

size, with constant probability, all the elements of S belong to A. If this event is satisfied, then
by applying Lemma 1.3 with U = A and K being the set of neighborhood inside A, we have

that with probability at least 1/2, the number of vertices x such that
∣∣∣ |S∩N(x)||A|

t − dA(x)
∣∣∣ ≥ ε1n

is smaller than ε2n. In other word, without knowing A, the value |S∩N(x)||A|
t provides a good

estimation of the degree in A for a large fraction of the vertices in V (G).
Let us now see how we use the aforementioned argument for d-Way Cut. Let (G, k) be

an instance of d-Way Cut, where G is a everywhere α-dense graph. Further assume that we
are looking for a solution, S, where k is small, say k ≤ αn

200 . Let (A1, . . . , Ad) be the connected
components after removing the edges in S. Since, k ≤ αn

200 and every vertex has degree at least
αn, this implies that every vertex x ∈ Ai has degree at least αn − αn

200 ≥
αn
2 in Ai, and degree

less than αn
200 in the other Aj , for j 6= i. It means that |Ai| ≥ αn

2 for every i, and thus d ≤ 2
α .

The idea now is to estimate the degree of every vertex inside each Ai in two rounds. For
the first round we sample d sets M1, . . . ,Md of t = t(α/200, α2/400) vertices each. By applying
Lemma 1.3, with constant probability (because each Ai is linear), each Mi will be a subset

of Ai such that the set Xi of vertices x for which
∣∣∣ |Mi∩N(x)||Ai|

t − dAi(x)
∣∣∣ ≥ nα/200 is smaller

than nα2/400. Assume that this is the case for every i, and let us denote X = ∪i∈[d]Xi. Since
d ≤ 2/α, we have that |X| ≤ α/200. This means that apart from this small set X, all the

other vertices x of G are such that |Mi∩N(x)||Ai|
t is a good estimate of its degree inside Ai

1. Let
us make our first guess of Ai: for every i ∈ [d], let A′i be the set of vertices of G such that
|Mi∩N(x)||Ai|

t ≥ d(x)− αn
25 . We can then show the following.

Claim 1.4.1. For every i ∈ [d], (Ai \X) ⊆ A′i.

Indeed, for every x ∈ (Ai \ X), we have that |Mi∩N(x)||Ai|
t ≥ dAi(x) − nα/200 ≥ (d(x) −

k)− nα/200 ≥ d(x)− α/n because x 6∈ Xi. Moreover, for every j 6= i,
|Mj∩N(x)||Aj |

t ≤ dAj (x) +
nα/200 ≤ nα/50 because x ∈ Ai and x 6∈ Xj .

1We assume here that |Ai| is known. In fact, an approximation to the size will be enough for our purpose.
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For our second round, we use dA′i(x) as an estimate for dAi(x). Indeed, if x ∈ Ai, then
Claim 1.4.1 implies that dA′i(x) ≥ dAi(x)−|X|, even if x belongs to X. However, since dAi(x) ≥
d(x)−α/100n, we have that dA′i(x) ≥ d(x)−α/50n. Similarly, dA′j (x) ≤ dAj (x) + |X| ≤ αn/50.

Because d(x) ≥ αn for every x ∈ G, we have the following claim.

Claim 1.4.2. For every i, Ai is exactly the set of vertices x of G such that dA′i(x) ≥ d(x) −
αn/50.

This ends the proof of a polynomial algorithm in the case k ≤ αn/100, which implies
the proof of a linear kernel. The proofs for Edge Odd Cycle Transversal, Minimum
Bisection, Multiway Cut, and Multicut are almost identical.

When k ≥ αn/100, we have to be more careful with respect to vertices that are incident to
many edges of the solution, say more than αn/200. Let us note that all of these problems admit
an exact algorithm, by doing a dynamic programming algorithm over subset and applying fast

subset-convolution, running in time 2nnO(1) [9]. Thus, if k ≥ (αn/200)2, then 2n = 2O(
√
k) and

this algorithm is a subexponential time algorithm. If k ≤ (αn/200)2, then we can show that
the set L of vertices of G that are adjacent to more than αn/200 edge of the solution is such
that |L| ≤

√
k. Now by doing essentially the same argument as in the case k ≤ αn/100 we

will be able to recover the position of every vertex x, expect for a set R ⊆ L. To conclude, the

algorithm then tries all the partition of R. This part takes |L||L| = 2O(
√
k log k), resulting in the

desired algorithm.

1.2.3 Derandomization

We first abstract out the main properties of Degree Estimator Lemma 1.3 that have been used
in several applications in [7, 28, 30, 29, 34] and several other articles.

Let U be a universe of size n and t be a constant. A random sample S of t elements of
U has the following properties:

Property A. For every subset A of the universe of Ω(n) elements, the probability that
the sample S is a subset of A is constant;

Property B. Conditioned on the sample S being a subset of A, we have that for every
subset B of A of size Ω(n), |S∩B||A|t is a good estimator of |B| with probability close
to 1.

These two properties of random samples have been successfully deployed to design random-
ized approximation schemes for a number of fundamental problems on dense structures [7, 28,
30, 29, 34]. Typically, algorithms based on this approach can be de-randomized by going over
all possible subsets S of size t, and observing that at least one of them has the desired property.
Unfortunately, this leads to an overhead of roughly nt in the running time (which typically
yields deterministic PTASes in place of randomized EPTASes). We present an efficient way to
derandomize most of the algorithms based on the procedure. Our main derandomization tool
is the following lemma.

Lemma 1.4. For any constants ε1, ε2 and ε3 smaller than 1, and U a universe on n elements,
there exists a set T of O(2100/(ε

2
1ε2)) subsets of U , such that if A is a subset of at least ε3n

elements of U and K a collection of subsets of A, then there exists a set T ∈ T such that the
number of sets X of K such that ||T ∩X| − |T ||X||A| | ≥ ε1|T | is smaller than ε2|K|. Moreover, the

set T can be computed deterministically in nO(1) time.
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Therefore, in all the proof using Lemma 1.3, we can replace the random sampling by simply
trying all the elements of the family T provided by the Lemma 1.4. The proof involves using
the known construction of pairwise (2-wise) independent permutations (see [4] for more details).
The proof can also be done via expander random walk method (see Section 3.2 of [31]).

1.3 Related Works

Over the last two decade, the design of parameterized subexponential-time algorithms for prob-
lems on sparse graphs has been extremely fruitful. However, the same could not be said about
research on dense graphs. The first problem on dense graphs shown to admit a parameter-
ized subexponential-time algorithm is the Feedback Arc Set on Tournaments (FAST)
problem [3]. The design of this algorithm exhibited a new method to develop parameterized
algorithms called chromatic coding, which is now textbook material [16]. Subsequently, there
appeared several other works on the design of parameterized subexponential-time algorithms
for problems on tournaments, see e.g. [27, 23, 35]. Afterwards, dense classes of digraphs that are
not tournaments have also been considered in the same context [46, 41]. Also, d-Correlation
Clustering is known to admit a subexponential-time parameterized algorithm [25]. When d
is not fixed, the problem is known not to admit a parameterized subexponential-time algorithm
under the Exponential Time Hypothesis (ETH) [25].

2 Preliminaries

A parameterized problem is a language L ⊆ Σ∗×N, where Σ is a fixed, finite alphabet. Let L be
a parameterized problem. For an instance (x, k) of L, k is called the parameter. A polynomial
kernel on L is an algorithm which, for any given instance (x, k) of L outputs, in polynomial
time in the size of (x, k), an instance (x′, k′) of L with the following properties:

• (x′, k′) is a yes-instance ⇐⇒ (x, k) is a yes-instance.

• |x′|, k′ ≤ h(k), where h is a polynomial function.

For further notions related to parameterized algorithm, we refer the reader to [16].
We follow the standard graph theory notations from [21]. Let G = (V (G), E(G)) be a graph

and x ∈ V (G). Then, N(x) denotes the neighborhood of x, and d(x) = |N(x)| its degree. If
A is a subset of V (G), then dA(x) = |N(x) ∩ A| denotes the degree of x inside A. If A and
B are two subsets of vertices in V (G), then E(A,B) denotes the set of edges with exactly one
endpoint in A and one endpoint in B. A set of edges S is said to be a d-cut if G−S has exactly
d connected components.

A graph G is said to be k-edge connected (reps. k-vertex connected) if for any pair of vertices
x and y in G, there exists k edge-disjoint (resp. vertex-disjoint) paths between x and y. For a
graph G and two vertices x and y, a set of edges A is said to be an (x, y)-edge cut if G−A does
not contain any path between x and y. Likewise, a set of vertices S is said to be a (x, y)-vertex
cut if G − S does not contain any path between x and y. Let us cite the celebrated Menger’s
Theorem[45].

Theorem 2.1. Let G be a graph and x, y two vertices of G. The maximum number of vertex-
disjoint (resp. edge-disjoint) paths between x and y is equal to the minimum size of a (x, y)-vertex
cut (resp. (x, y)-edge cut).

Let G be a graph and X a set of vertices, the graph obtained by contracting X and keeping
multiedges, is the graph G′ obtained from G by removing X, adding a new vertex x, and for
every v ∈ G such that v is adjacent to k vertices in X adding k multi-edges between x and v.
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Let U be a universe. Then, 2U denotes all subsets of U and
(
U
t

)
denotes all the subsets of

size t of U . For an integer k, [k] denotes the set {1, . . . , k}. For any real numbers a, b and c we
write a = b± c if b− c ≤ a ≤ b+ c. The following easy observation will be used throughout the
paper.

Observation 2.1. If c is a real in [0, 1/2] and x = 1± c, then 1
x = (1± 2c).

To construct estimators deterministically, we rely on the well known notion of k-wise inde-
pendence, in the particular setting of permutations.

Definition 2.1. Let n, k ∈ N. A family S of permutations of Sn is k-wise independent if,
for any k-tuple of distinct elements (x1, . . . , xk), the distribution (f(x1), f(x2), . . . , f(xk)) where
f ∈ S is chosen uniformly at random and the distribution (f ′(x1), f

′(x2), . . . , f
′(xk)) where

f ′ ∈ Sn is chosen uniformly at random, are such that∑
(a1,...,ak)∈[n]k

|Pr(f(x1), . . . , f(xk) = (a1, . . . , ak))− Pr(f ′(x1), . . . , f ′(xk) = (a1, . . . , ak))| = 0.

Efficient construction of a k-wise independent family of permutation are known for k = 2
and k = 3 but open for k > 4 (see [4] for more details). In particular, there exists for every n, a
family S(n) of O(n) pairwise (2-wise) independent permutations. This family will be sufficient
for our derandomization purposes.

Throughout this paper, we will make an extensive use of Chebyshev’s inequality:

Proposition 2.1. Let X be a random variable with expected value µ and variance σ2. Then
for any real number k > 0, Pr[|X − µ| ≥ kσ] ≤ 1

k2
.

3 Edge-disjoint paths in everywhere dense graphs

In this section we design a linear vertex kernel for Edge-Disjoint Paths on everywhere α-
dense graphs. We first present a polynomial time algorithm for the Edge-Disjoint Paths
problem in α-dense graphs, when the number of demands is small (but still linear) compared
to αn. Towards this, we start-by showing that highly edge-connected parts will always contain
a solution to an Edge-Disjoint Paths instance.

Lemma 3.1. Let c be a constant between 0 and 1, and G be a graph on n vertices with minimum
degree at least cn. For any pair of vertices x, y of G, if there exists a path between x and y, then
there exists a path of length at most 4/c.

Proof. Let P be a shortest path between x and y. If there exists a vertex u ∈ G such that u is
adjacent to 4 vertices of P , then two of these vertices will be at distance at least 3 in the path.
Denoting x1 and x2 these vertices, replacing the subpath of P between x1 and x2 by the path
x1ux2 gives a path between x and y shorter than P , which is a contradiction. Therefore, the
sum of the degree of the vertices of P is smaller than 4n and thus |P |cn ≤ 4n which implies
|P | ≤ c

4 .

Lemma 3.2. Let G be a graph with minimum degree αn, and cn edge-connected for some
constant c ≤ α/2. Any instance of Edge-Disjoint Paths with k ≤ αcn

8 has a solution.
Moreover, this solution can be found in polynomial time.

Proof. Let (G, (s1, t1), · · · , (sk, tk)) be an instance of the Edge-Disjoint Paths problem. For
every pair (si, ti), since G is cn-edge connected, there exists cn edge-disjoint paths P1, . . . , Pcn
between si and ti. Moreover, we can assume that all these paths are shorter than 8

α . Indeed,
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removing the edges of all but one path Pj leaves G with minimum degree at least αn− cn ≥ αn
2

and Lemma 3.1 implies that Pj can actually be taken shorter than 8
α . This means that we can

select a solution for the Edge-Disjoint Paths problem greedily using these paths. Indeed,
each path is of length smaller than 8

α , so the path selected between si and ti intersects at most
8
α of the paths between sj and tj . Since k ≤ αn

8 , there is always one path available between si
and ti.

For the proof of Lemma 3.2, we could have used a previously known result [32]. However, we
still give the proof here, as it is simple on dense graphs, and helps in a complete understanding
of the algorithm. The next lemma is an essential part of the proof. The goal is to find a partition
of the vertices of V (G) into a bounded number of parts, such that each part induces a graph
with large edge-connectivity.

Lemma 3.3. For any real α between 0 and 1, there exists a constant c ≤ α/2 such that, if G
is a graph on n vertices and minimum degree αn, then there exists a partition of the vertices
V (G) into g ≤ 2

α subsets V1, · · · , Vg such that for all i ∈ [g]:

• G[Vi] is cn edge-connected.

• G[Vi] has minimum degree αn
2 .

Moreover, such a partition can be found in polynomial time.

Proof. Let t be an integer such that α
(1−α/3)t > 2/3, and c be a sufficiently small constant such

that tc < α/6, α/2 ≥ c and for all i < t:

cn <
α2n

(1− α/3)i−1

(
1

1− α/2
− 1

1− α/3

)
We inductively build a sequence of partitions of V (G): P1, . . . ,Pt. Each Pi+1 is obtained

from Pi by applying a set of operations. Further, either a part of Pi remains a part in Pi+1 or
breaks into several parts in Pi+1. In particular, Pi+1 is a coarser partition than Pi. Let each
Pi consists of V i

1 , · · · , V i
li

as its parts. Throughout the proof these parts satisfy the following
invariants. That is, for all j ∈ [li]:

Invariant 1: G[V i
j ] has minimum degree (α− ci)n.

Invariant 2: Either G[V i
j ] is cn edge-connected; or every vertex of v ∈ V i

j has more than
α

(1−α/3)i−1 |V i
j | neighbours in G[V i

j ] (note that, α
(1−α/3)i−1 ≥ α and thus, G[V i

j ] is denser

than G).

Note that, as we chose t such that α
(1−α/3)t > 2/3, and c such that tc < α/2, if the previous

properties are satisfied, then Pt is the partition that we are looking for. Indeed, the second
condition tells us that, if G[V t

j ] is not cn-edge connected, then every vertex of V t
j has more than

2/3|V t
j | neighbors in G[V t

j ]. Since |V t
j | ≥ (α− ct)n ≥ αn/2, it means that any pair of vertices in

V t
j have more than αn/6 common neighbors in V t

j , which implies that G[V t
j ] cn-edge connected.

Moreover, since |V t
j | ≥ αn/2, this partition has less than 2

α parts.
What remains to show is that indeed there exists a sequence of partitions of V (G): P1, . . . ,Pt.

We show the existence of the partition Pi by induction on i, setting P1 = V (G) which trivially
satisfies all the properties. Suppose now that we have constructed the partition Pi = V 1

1 , · · · , V i
li

for some i < t. For each j ∈ li, we define a partition of V i
j into H1

j , . . . ,H
xj
j for some xj < (2/α)

as follows: If G[V i
j ] is cn-edge connected, then xj = 1 and H1

j = V i
j . If not, let H1

j , . . . ,H
xj
j be

the connected components of G[V i
j ] after removing the edges of a cut of size smaller than cn.

Note that every vertex has degree at least (α − ci)n − cn ≥ αn
2 after removing the cut edges,
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which implies Invariant 1. This means that the size of each component is at least αn
2 . This

means in particular that the number of components is smaller than (2/α). Moreover, let w be
a vertex in one of the connected components, Hr

j , we know that the degree of w in G[V i
j ] is

greater than α
(1−α/3)i−1 |V i

j |. Since the cut is of size cn, it means that the degree of w in G[Hr
j ]

is greater than α
(1−α/3)i−1 |V i

j | − cn. Since, there is at least one other component, we have that

|Hr
j | < |V i

j | − αn
2 < (1 − α

2 )|V i
j |. This means that the degree of w in G[Hr

j ] is greater than
α

(1−α/3)i−1 ( 1
1−α/2 |H

r
j |) − cn, which by the choice of c is greater than α

(1−α/3)i |H
r
j |. Finally, we

take Pi+1 as the union of all the Hr
j for all j ∈ [li] and r ∈ [xj ]. That is, Pi+1 consists of either a

part from Pi, or connected components of a part that has a cut of size smaller than cn. By the
above description, it follows that Pi satisfies both the invariants. This completes the proof.

Lemma 3.4. The Edge-Disjoint Paths problem can be solved in time kρnO(1) on everywhere
α-dense graphs, when k ≤ αcn

16 . Here, c is the constant defined in Lemma 3.3 and ρ = 2
2
α

2
α !.

Proof. Let (G, (s1, t1), . . . , (sk, tk)) be an instance of the Edge-Disjoint Paths problem in an
everywhere α-dense graph G of size n, where k ≤ αcn

8 . Let P = V1, . . . , Vg, g ≤ 2
α , be the

partition of V (G) obtained by applying Lemma 3.3.

Claim 3.0.1. If (G, (s1, t1), . . . , (sk, tk)) is an yes-instance of Edge-Disjoint Paths, then
there exists a path system P̃1, . . . , P̃k, connecting si to ti such that the intersection of any path
P̃j with any Vi for i ∈ [g] is a subpath (possibly empty) of P̃j.

Proof. Let (P1, . . . , Pk) be a solution. For every j ∈ [g], we say that (P1, . . . , Pk) satisfies the
property Hj if Pi ∩ Vj is a subpath of Pi for every i ∈ [k].

Suppose that the solution (P1, . . . , Pk) does not satisfy property Hj . For every i ∈ [k]
denote by hi and li, the first and the last vertex of Pi in Vj , respectively. If Pi does not
intersect Vj , then we assign hi and li to ∅. Furthermore, hi could be equal to li. Observe
that (G[Vj ], (h1, l1), . . . , (hk, lk)) is an instance of Edge-Disjoint Paths with k ≤ αcn

16 . By
Lemma 3.2, there is a solution (P ′1, . . . , P

′
k) to this problem in G[Vj ]. Let (P 1

1 , . . . , P
1
k ) denote

the solution obtained from (P1, . . . , Pk) by replacing each subpath of Pi from hi to li by P ′i .
Clearly the solution (P 1

1 , . . . , P
1
k ) satisfies property Hj . Moreover, let us show that if

(P1, . . . , Pk) satisfies property Hj′ for some j′ ∈ [g] j 6= j′, then so does (P 1
1 , . . . , P

1
k ). This

would conclude our proof of the lemma, as it means we can apply the previous procedure for
every j ∈ [g], iteratively.

Let i be an index of [k] and suppose that Pi ∩ Vj′ is a subpath of Pi. We want to show
that P 1

i ∩ Vj′ is also a subpath of P 1
i . If Pi ∩ Vj′ is empty, then so is P 1

i ∩ Vj′ as the vertices of
P 1
i \ Pi belong to Vj and j 6= j′. Suppose now that P 1

i ∩ Vj′ is a subpath and denote by ai and
bi the first and the last vertex of this path. Remember that hi and li denote the first and the
last vertex of Pi ∩ Vj . If Pi ∩ Vj is empty, then P 1

i = Pi and there is nothing to prove, so let us
assume it is not. Since the subpath of Pi between ai and bi is in Vj′ it means that hi and li do
not belong to this subpath. Therefore we are in one of the following three cases.

• hi and li appear before ai on Pi

• hi and li appear after bi on Pi

• hi appears before ai on Pi and li after bi

In the first two cases, P 1
i ∩Vj′ = Pi∩Vj′ , which is still a subpath of P 1

i . In the last case, P 1
i ∩Vj′

becomes empty. This concludes the proof.

Consider the graph G′ obtained from G by contracting every part Vj of the partition P into
one vertex vj (keeping multi-edges). That is, although the number of vertices in G′ is g, the
number of parallel edges between vi and vj is same as the number of edges between Vi and Vj .
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Thus, there is a one-to-one correspondence between edges in G′ and the edges between a pair
of vertices w1 ∈ Vi and w2 ∈ Vj such that i 6= j. For every i ∈ [k], let s′i (resp. t′i) denote the
vertex of G′ corresponding to the part containing si (resp. ti) in G. Notice that same pair of
vi and vj could be assigned to several pairs of si and ti. In fact, if both si and ti belong to the
same part, say Vj , then s′i = vj and t′i = vj . In this case it just means that the path must be
completely contained inside the graph G[Vj ].

Claim 3.0.2. (G, (s1, t1), . . . , (sk, tk)) is an yes-instance of Edge-Disjoint Paths if and only
if (G′, (s′1, t

′
1), . . . , (s

′
k, t
′
k)) is an yes-instance of Edge-Disjoint Paths.

Proof. Forward direction follows from Claim 3.0.1. Indeed, as explained before, if there is a
solution in G, then we can assume that this solution is such that the intersection of any path
with any part Vj is a subpath. Therefore, contracting the Vi along these paths create paths in
G′ and these paths are a solution to the problem in G′. Suppose now that we have a solution
P ′1, . . . , P

′
k to the Edge-Disjoint Paths problem in G′. For every i, let ui1, . . . , u

i
ri denote the

sequence of edge in P ′i . Note that each of these edge corresponds to a specific edge in G. For
every j ∈ [r1] such that vj is an inner vertex of P ′i , let us define aij ∈ V (G) and bij ∈ V (G) as

the extremities of the two edges among ui1, . . . , u
i
ri which are incident to vj . For the first vertex

vs of P ′i , we define similarly ais as si and bis is the extremity of the only edge of P ′i adjacent to
vj . Likewise, we can define ait ∈ V (G) and bit ∈ V (G) for the last vertex vt of the path. Overall,
replacing each vj by a path from aij to bij gives a path from si to ti in G. However, for every

j ∈ [g], (G[Vj ], (a
i
1, b

i
1), . . . , (a

i
k, b

i
k)) defines an instance of Edge-Disjoint Paths. Since G[Vj ]

satisfies the properties of Lemma 3.2, in polynomial time we can find a solution to our instance.
For every i ∈ [k] and j ∈ [g], let Qij denote the path from aij to bij in this solution. Finally,

for each i ∈ [k], let Pi denote the path obtained from P ′1 by replacing each vj by Qij . Thus,
P1, . . . , Pk forms a solution to the instance (G, (s1, t1), . . . , (sk, tk)), which in particular implies
that such a solution exists.

Claim 3.0.2 shows that it is enough to solve our problem on the instance (G′, (s′1, t
′
1), . . . , (s

′
k, t
′
k)).

Let us now explain how to solve this problem in G′. Recall that G′ is a graph on a finite (at most
2
α) number of vertices. In particular it means that there is at most 2

2
α

2
α ! different paths in G′,

where a path may appear multiple times2. (First, choose the subset of vertices that appear in
the path and then guess the permutation of the chosen vertices). Thus, the number of paths is

upper bounded by ρ = 2
2
α

2
α !. Therefore, a solution to this problem consists of assigning to each

of these paths an integer of value at most k, which denotes the number of requests that will be
resolved using this path. It means that the number of possible “distributions” of the requests
among these paths is upper bounded by kρ. Moreover, once we have chosen the distribution
of the requests among these paths, then testing whether this distribution is indeed a solution
requires only to count the number of times each multi-edge is used. So in total, to find a solution
to the problem in G′, we only need to check the O(kρ) possible distributions. Since, we can test
each distribution in nO(1) time, the running time of the algorithm follows.

Lemma 3.4 implies the following result.

Theorem 3.1. Edge-Disjoint Paths admits a linear vertex kernel on everywhere α-dense
graphs.

Proof. Let (G, (s1, t1), . . . , (sk, tk)) be an instance of Edge-Disjoint Paths. Further, let c be
the constant defined in Lemma 3.3. If k ≤ αcn

16 , then we apply Lemma 3.4 and solve the problem

in time kO(
2
α
!)nO(1). Based on the answer of Lemma 3.4, we either return a solution or a trivial

2Here we see a path as a sequence of vertices.
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no-instance of the problem. However, now we have that k ≥ αcn
16 , and hence n ≤ 16k

αc = O(k).
This concludes the proof.

4 Vertex-disjoint paths on everywhere dense graphs

In this section we give a polynomial kernel for Vertex-Disjoint Paths on everywhere α-
dense graphs. It would have been nice to adapt the arguments for Edge-Disjoint Paths for
Vertex-Disjoint Paths. Unfortunately, we are not able to design a linear kernel for the
Vertex-Disjoint Paths problems, using the tools developed for Edge-Disjoint Paths. We
are however able to design a cubic kernel for the Vertex-Disjoint Paths problem, with a
proof structure similar to the one used for the Edge-Disjoint Paths problem.

4.1 Decomposing the graph: A vertex partitioning

In this section we prove an analogous of Lemma 3.3 for the Vertex-Disjoint Paths problem.
The main technical difficulty in adapting the proof of Lemma 3.3 for Vertex-Disjoint Paths
lies in the fact that we need to simulate Lemma 3.3 for vertex connectivity. That is, we need to
find cut-vertices instead of edges. However, these vertices could have neighbors in many different
parts and we cannot say that their relative degree inside a part increases, which was a critical
component in the proof of Lemma 3.3. To mitigate this situation we introduce a vertex set
V0 in the partitioning, that contains all the cut vertices. The whole difficulty lies in carrying
this V0 throughout the process of obtaining the desired partition. In particular, we prove the
decomposition lemma.

Lemma 4.1. For any two reals α1 and α2, between 0 and 1, there exists a constant c ≤ α2/6
such that, if G is a graph on n vertices and minimum degree α1n, then there exists a partition
of the vertices V (G) into g ≤ 2

α1
subsets V0, · · · , Vg with the following properties:

• For all i, j ∈ [g], with i 6= j, E(Vi, Vj) = ∅.
• For all i ∈ [g], G[Vi] is cn vertex-connected.

• |V0| ≤ α2n.

Moreover, such a partition can be found in polynomial time.

Proof. Let t be an integer such that α1
(1−α1/3)t

> 2/3, and c be a sufficiently small constant such

that tc < α1/2, α1/6 ≥ c, t 2cα1
≤ α2 and for all i < t:

cn <
α2
1n

(1− α1/3)i−1

(
1

1− α1/2
− 1

1− α1/3

)
.

We inductively build a sequence of partitions of V (G): P1, . . . ,Pt. Each Pi+1 is obtained
from Pi by applying a set of operations. Further, either a part of Pi remains a part in Pi+1 or
breaks into several parts in Pi+1. In particular, Pi+1 is a coarser partition than Pi. Let each
Pi consists of V i

0 , · · · , V i
li

as its parts. Throughout the proof these parts satisfy the following
invariants. That is, for all j, j′ ∈ [li]:

Invariant 1: E(V i
j , V

i
j′) is empty.

Invariant 2: G[V i
j ] has minimum degree (α1 − ci)n.

Invariant 3: Either G[V i
j ] is cn vertex-connected; or every vertex of v ∈ V i

j has more than
α1

(1−α1/3)i−1 |V i
j | neighbours in G[V i

j ] (note that, α1

(1−α1/3)i−1 ≥ α1 and thus, G[V i
j ] is denser

than G).
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Invariant 4: |V j
0 | ≤ j 2cnα1

.

Note that, as we chose t such that α1
(1−α1/3)t

> 2/3, c such that tc < α1/2 and t 2cα1
≤ α2, if

the previous properties are satisfied, then Pt is the partition that we are looking for. Indeed,
the second condition tells that, if G[V t

j ] is not cn vertex-connected, then every vertex of V t
j has

more than 2|V t
j |/3 neighbors in G[V t

j ]. Since |V t
j | ≥ (α1 − ct)n ≥ α1n

2 , it means that any pair
of vertices have more than α1n

6 neighbors in common in G[V t
j ], which means the graph G[V t

j ] is
cn vertex-connected.

We will show the existence of the partition Pi by induction, setting P1 = V (G) which trivially
satisfies all the properties. Suppose now that we have constructed the partition Pi = V i

0 , · · · , V i
li

for some i < t. For each j ∈ li, we define a partition of V i
j into H0

j , . . . H
xj
j for some xj < (2/α1)

as follows: If G[V i
j ] is cn connected, then xj = 1 and H1

j = V i
j . If not, let H0

j be a vertex cut

of size smaller than cn and H1
j , . . . ,H

xj
j be the connected components of G[V i

j ] after removing

H0
j . Note that since every vertex has degree at least (α1 − ci)n− cn ≥ α1n

2 after removing the
cut, it means that the size of each component is at least α1n

2 . This means in particular that the
number of components is smaller than (2/α1). Moreover, let x be a vertex of one component
Hr
j , we know that the degree of x in G[V i

j ] is greater than α1

(1−α1/3)i−1 |V i
j |. Since the cut is of

size cn, it means that the degree of x in G[Hr
j ] is greater than α1

(1−α1/3)i−1 |V i
j | − cn. Moreover,

because there is at least one other component,

|Hr
j | < |V i

j | −
α1n

2
<
(

1− α1

2

)
|V i
j |.

This means that the degree of x in G[Hr
j ] is greater than α1

(1−α1/3)i−1 ( 1
1−α1/2

|Hr
j |)− cn, which by

the choice of c is greater than α1

(1−α1/3)i
|Hr

j |. Let V i+1
0 denote the union of V 0

i as well as all the Hj
0

for j ∈ [li]. Because each Hj
0 is smaller than cn, we have that |V i+1

0 | ≤ |V i+1
0 |+xjcn ≤ (i+1)2cnα1

.

Let Pi+1 be the partition of V (G) consisting of V i+1
0 and all the Hr

j for all j ∈ [li] and r ∈ [xj ],
it satisfies all the required properties.

Let us now mention the following theorem due to Bollobs and Thomason [11] which will
be useful in finding solutions to instances of Vertex-Disjoint Paths on graphs with high
vertex-connectivity (for example G[Vi], for i ≥ 1, arising in Lemma 4.1).

Theorem 4.1 ([11]). For every k, if G is a graph with vertex connectivity at least 22k, then
any instance of the Vertex-Disjoint Paths problem admits a solution in G.

4.2 The cubic vertex kernel

Let (G, (s1, t1), . . . , (sk, tk)) be an instance of the Vertex-Disjoint Paths problem, such
that G is an everywhere α-dense graph on n vertices. Let H = ∪i∈[k]{si, ti}. Let c be the
constant obtained from applying Lemma 4.1 with constants α1 = α and α2 = α/3 and let
α′ = min{c/66, α2/12}. As in the proof of Theorem 3.1, if k ≥ α′n, then n ≤ k/α′ and G itself
is a linear vertex kernel. Therefore, from now on we assume that k ≤ α′n.

Consider V0, . . . , Vg, the partition obtained by applying Lemma 4.1 to G with constants α1

and α2. Since k ≤ nα2/22, |V0| ≤ αn/6 and g ≤ 2/α, every vertex x of V0 has a component
Vj such that |N(x) ∩ Vj | ≥ (αn − |V0|) · α2 ≥ 6k. For every i ∈ [g], let Hi denote the set of
elements x of V0 such that Vi is the set of vertices such that N(x) ∩ Vi is maximum (breaking
ties arbitrarily). The next lemma can be seen as an analogous of Claim 3.0.1, with a similar
proof.

Lemma 4.2. Let (G, (s1, t1), . . . , (sk, tk)) be a yes-instance. Then, there exists a path system,
P1, . . . , Pk, between si and ti, that satisfy the following properties:
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• For every j ∈ [g] and i ∈ [k], the intersection of Vj and Pi is a subpath of Pi.

• For every i ∈ [k] and j ∈ [g] , |Pi ∩Hj | ≤ 2.

Proof. Let (P1, . . . , Pk) be a solution. For every j ∈ [g], we say that (P1, . . . , Pk) satisfies the
property Fj , if Pi ∩ Vj has following features.

• For every i ∈ [k], the intersection of Vj and Pi is a subpath of Pi.

• For every i ∈ [k], |Pi ∩Hj | ≤ 2.

Suppose (P1, . . . , Pk) does not satisfy the property Fj , for some j ∈ [g]. For every i ∈ [k],
let aij be the first vertex of Pi that belongs to either Hj or Vj . Likewise, let bij be the last vertex

of Pi that belongs to either Hj or Vj . We will define hij and lij as follows:

• If aij ∈ Vj , then hij = aij , if not hij is an element of N(aij) ∩ Vj ;

• If bij ∈ Vj , then lij = bij , if not lij is an element of N(bij) ∩ Vj ;

Note that by the definition of Hj , |N(bij) ∩ Vj | ≥ 6k when bij ∈ Hj , which means that we

can chose hij , l
i
j , for i ∈ [k], so that these vertices are pairwise disjoint. The set of pairs (hji , l

j
i ),

for i ∈ [k], together with G[Vj ] defines an instance of Vertex-Disjoint Paths with k ≤ α′n.
Since, G[Vj ] is cn vertex-connected and α′ ≤ c/66, Theorem 4.1 shows the existence of a solution

to this problem. Let P ij denote the path between hji and lji in this solution. Now for each i ∈ [k],

let P ′i be the path obtained by replacing the subpath of Pi from aji to bji by P ij and possibly the

edges aijh
i
j and bijl

i
j , if they exist. Because all the P ij are disjoint, the P ′i are also disjoint, and

by definition of the aij , b
i
j , (P ′1, . . . , P

′
k) is a solution satisfying property Fi.

Finally, let us show that if (P1, . . . , Pk) satisfies property Fj′ , for j′ ∈ [g] different from j,
then so does (P ′1, . . . , P

′
k), which would conclude our proof. Indeed, fix i ∈ [k], and let xi and

yi be the first and last vertex of the subpath Pi ∩ Vj′ . Because j 6= j′, |P ′i ∩ Vj′ | ≤ |Pi ∩ Vj′ |.
Moreover, since the the subpath of Pi between xi and yi is a path of Vj′ , it means that either
aij and bij appear before xi, or after yi on the path, or aij appears before xi and bij appears

after yi. In the former case, replacing the subpath of Pi between aij and bij does not change the
intersection with Vj′ , and in the latter case it means that P ′i ∩Vj′ is empty. Overall (P ′1, . . . , P

′
k)

still satisfies the property Fj′ , which concludes our proof.

We are now ready to describe the cubic vertex kernel. Because of Lemma 4.2, we know that
each path intersects each Vj at most once, so there will be at most k disjoint paths to find inside
each sets. Moreover, Theorem 4.1 implies that we will always be able to find such paths and it is
clear that we don’t need to keep too many vertices inside these sets, just enough to understand
the boundary with V0 and to maintain the high connectivity. Likewise, inside each set Hj , for
j ∈ [g], we know that the number of vertices used is bounded by 2k. Moreover, because two
vertices of Hj have a lot of neighbors in Vj , it is always possible to link these vertices using
paths inside G[Vj ]. For these reasons, again we don’t need to keep too many vertices inside
each Hj , just enough to understand the adjacencies with H, the other Hj′ and the other Vj′ .
Formalizing these are the goal of the following definitions.

• For any j ∈ [g], let Aj ⊆ Hj be a set of at most 8k2 vertices such that for every vertex
x ∈ H, either x ∈ Aj , |N(x) ∩Aj | ≥ 4k or N(x) ∩Hj ⊆ Aj .
• For any j ∈ [g], let Bj ⊆ Hj be a set of at most g32k3 vertices such that, for every vertex
x ∈ Aj′ for some j′ ∈ [g] (including j), then either |N(x) ∩Bj | ≥ 4k or N(x) ∩Hj ⊆ Bj .
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• For any pair i, j ∈ [g], let Hj
i,j be a set of 4k vertices of Hj − (Aj ∪ Bj) with some

neighbors in Hi − (Ai ∪Bi), or N(Hi − (Ai ∪Bi))∩ (Hj − (Aj ∪Bj)) if this set is smaller

than 4k. Let Cji,j be a minimal subset of Hj − (Aj ∪ Bj) containing Hj
i,j such that for

every vertex x ∈ H i
i,j , either |N(x) ∩ Cji,j | ≥ 4k or N(x) ∩Hj ⊆ Cji,j . Finally, let Cii,j be

a minimal subset of Hi − (Ai ∪ Bi) containing H i
i,j such that for every vertex x ∈ Hj

i,j ,

either |N(x) ∩ Cii,j | ≥ 4k or N(x) ∩Hi ⊆ Cii,j . Note that |Cji,j | ≤ 20k2.

• For every i, j ∈ [g], we define Di
j as a set of 4k vertices of Hj−(Aj∪Bj

⋃
i′∈[g]C

j
i′,j) adjacent

to some vertices of Vi, or N(Vi) ∩
(
Hj − (Aj ∪Bj

⋃
i′∈[g]C

j
i′,j)
)

is this set is smaller than

4k. We also define V j
i as a set of 4k vertices of Vi −H adjacent to some vertices of Hj ,

or N(Hj) ∩ (Vi −H) if this set is smaller than 4k. Let Eij be a minimal set of vertices in

Hj − (Aj ∪ Bj
⋃
i′∈[g]C

j
i′,j) containing Di

j and such that for every vertex x ∈ V j
i , either

|N(x) ∩ Eij | ≥ 4k or N(x) ∩Hj ⊆ Eij . Likewise we define Vi,j as a minimal set of vertices

of Vi containing V j
i such that for any x ∈ Di

j , either N(x)∩ Vi ⊆ Vi,j or |N(x)∩ Vi| ≥ 4k.

For every j ∈ [g], let H ′j denote the union of Aj , Bj , all the Cji,j and all the Eij . Note that

|H ′j | = O(k3). Consider the graph G′ obtained from G as follows:

• Remove for every j ∈ [g] all the vertices of Hj not in H ′j .

• Replace Vj by V ′j , obtained by removing all the vertices of Vj not in H or some Vj,r for
r ∈ [g] and add a clique Wj of 6k vertices adjacent to all the vertices of V ′j ∪Hj .

Note that for any j ∈ [g], because every vertex of V ′j is adjacent to every vertex of Wj , G
′[V ′j ]

is such that any instance of the Vertex-Disjoint Paths problem has a solution for k′ ≤ 6k
(at most k′ request pairs). Moreover, all the vertices of H belong to G′. We will show that G′

is the desired kernel. For this purpose let us show the following lemmas.

Lemma 4.3. If (G, (s1, t1), . . . , (sk, tk)) is a yes-instance, then (G′, (s1, t1), . . . , (sk, tk)) is a
yes-instance.

Proof. Let P1, . . . , Pk be a solution to (G, (s1, t1), . . . , (sk, tk)). Because of Lemma 4.2, we can
assume that for all j ∈ [g] and i ∈ [k], the intersection of Vj and Pi is always a subpath of Pi
and moreover |Pi ∩ Hj | ≤ 2. For any i ∈ [k] and j ∈ [g], let (hji , l

j
i ) denote the extremities of

Pi∩Hj . For any i ∈ [k], denote Pi = xi1, . . . , x
i
`i

for some integer `i. For some r ∈ [`i−1], we will

define some pair of vertices (uir, v
i
r+1) of G′, such that all the uir and vir for i ∈ [k] and r ∈ [`i]

are disjoint, apart from possibly uir = vir. The intuition here is that if xir 6∈ G′, we will try to
replace it by two vertices vir and uir of G′, where vir will play the same “role” as xir regarding
the previous vertex on the path, and uir regarding the next. For example if the vertex before
xir belongs to Hj \ G′, and the previous vertex xir−1 on the path Pi is in H, then we will pick
a vertex of Aj adjacent to xir−1 as vir. Note that by definition of Aj , if xir 6∈ Aj , it means that
|N(x) ∩ Aj | ≥ 4k, so there is always enough “space” to pick one vertex in N(x) ∩ Aj different
from all the other ui

′
r′ and vi

′
r′ . Formally:

• If xir and xir+1 belong to G′, then uir = xir and vir+1 = xir+1.

• If xir ∈ Aj and xir+1 ∈ Hj′ , then uir = xir and vir+1 is a vertex of Bj′ adjacent to xir (and
symmetrically if xir+1 ∈ Aj and xir ∈ Hj′).

• If xir ∈ H and xir+1 ∈ Hj′ , then uir = xir and vir+1 is a vertex of Aj′ adjacent to xir (and
symmetrically).
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• If xir ∈ (Hj \ Aj) and xir+1 ∈ Vj′ , then uir is a vertex of Ejj′ and vir+1 is a vertex of V ′j′

adjacent to uir (and symmetrically).

• If xir ∈ (Hj \ Aj) and xir+1 ∈ (Hj′ \ Aj′), then let uir be a vertex of Cjj,j′ and vir+1 be a

vertex of Cj
′

j,j′ such that uir and vir+1 are adjacent.

It is important to note that for every i ∈ [k] and r ∈ [`i − 1], uir and vir+1 are adjacent in G′.
Also, it is important to remember that, if xir is the first vertex of Pi ∩ Vj , then vir is a vertex of
V ′j . Likewise, if xir is the last vertex of Pi∩Vj , then uir is a vertex of V ′j . Moreover, the elements

uir and vir are not defined when xir is an internal vertex of the path Pi∩Vj . This means that the
number of vertices uir or vir defined in each V ′j is bounded by 2k. Likewise, since |Pi ∩Hj | ≤ 2

for all i ∈ [k] and j ∈ [g], it means that for each j ∈ [g], the number of uij and vij selected in H ′j
is at most 4k. Because of the choices of the sizes of the sets Ai, Bi, C

i
j,i, E

i
j and Wj , this implies

that it is possible to make the choices of all the uji and vji such that these vertices are pair-wise
disjoint. Indeed suppose for example that xir ∈ Aj and xir+1 ∈ Hj′ for some i ∈ [k], j ∈ [g] and
r ∈ [`i − 1]. Since xir ∈ G′, it means that xir+1 is not in G′. However, by definition of Bj′ , it
means that |N(xir) ∩Bj′ | ≥ 4k, so we can chose one among them different from all of the other
selected vertices ui

′
r′ and vi

′
r′ . The other cases are identical.

Next note that, if xir is a vertex of Pi∩Hj , then uir and vir are elements of H ′j . As explained,

we want to use uir and vir to replace xir in Pi. For that purpose, we need to find a path between
these two vertices, which we will do by using the fact that they both belong to H ′j and thus

have a lot of neighbors in Wj . Let us assign, for every i ∈ [k] and r ∈ [`i] such that xir ∈ H ′j , two

vertices s(xir) and l(xir) of Wj such that s(xir) is adjacent to uir and l(xir) is adjacent to vir. Once
again, since there are at most 2k vertices of Pi in each Hj and |Wj | = 6k, we can chose all these
vertices to be disjoint and avoid all the vertices of uir and vir. For any fixed j ∈ [g], consider an
instance of the Vertex-Disjoint Paths problem defined by the following requests.

• All the (s(xir), l(x
i
r)) for xir ∈ Hj for some i ∈ [k] and r ∈ [`i].

• All the (vir, u
i
r′) for some i ∈ [k] such that xir is the first vertex of Pi ∩ Vj and xir′ its last.

This define in an instance of Vertex-Disjoint Paths, with with ki ≤ 5k. By definition
of G′[V ′j ], it is possible to find a solution to this problem. Let Qir denote the path of such a

solution between s(xir) and l(xir) and P ij the one between vir and uir′ where xir is the first vertex

of Pi ∩ Vj and xir′ its last. For every i ∈ [k], consider the path P ′i of G′ obtained from Pi by:

• Replacing each xir ∈ Hj by H i
r := uir.Q

i
r.v

i
r.

• Replacing Pi ∩ Vj by the path P ji .

Claim 4.1.1. For every i ∈ [k], P ′i is a path from si to ti.

Proof. Let r be the first index such that xir ∈ Vj for some j ∈ [g]. Because each H i
q is a path

from viq to uiq and each uiq is adjacent to viq+1, we can see that the union of the H i
q, for q ≤ r,

forms a path from si to uir.
Similarly, for any maximal sequence xir1 , . . . , x

i
r2 of Pi such that none of the vertices belong

to any Vj for j ∈ [g], then the union of all the Qir, r ∈ {r1, . . . , r2} forms a path from uir1 to vir2 .
We conclude the proof by noting that for all i ∈ [k] and j ∈ [g], P ij is a path between vir and

uir′ where xir is the first vertex of Pi ∩ Vj and xir′ its last. Moreover, uir−1 is adjacent to uir and
vir′+1 is adjacent uir′ .

Moreover, by our construction, it is clear that the P ′i are disjoint, as all the (uir, v
i
r), H

i
q and

Qiq are. This concludes the proof.
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Let us now prove the other direction.

Lemma 4.4. If (G′, (s1, t1), . . . , (sk, tk)) is a yes-instance, then (G, (s1, t1), . . . , (sk, tk)) is a
yes-instance.

Proof. Let (P1, . . . , Pk) be a solution to the instance (G′, (s1, t1), . . . , (sk, tk)). The same proof
as in Lemma 4.2 would show that the intersection of every Pi with V ′j is a subpath of Pi.
Moreover, note that the only vertices of G′ that do not exists in G are the vertices of Wj . For
every i ∈ [k] and j ∈ [g], let aij denote the first vertex of Pi ∩ V ′j and bij the last. Let us define

pij and qij as follows:

• If aij (reps. bij) belongs to V ′j −Wj , then pij = aij (resp. qij = bij).

• If aij (resp. bij) belongs to Wj , then let a (resp. b) be the vertex appearing just before

(resp. just after) on P ′i . We define pij (reps. qij) as any vertex of Vj adjacent to a (reps.
b).

Note that in the second case, it means that a or b belong to Hj , and thus we can chose all the
pij and qij for i ∈ [k] and j ∈ [g] so that these vertices are disjoint. Once again, we can solve in

every Vj the instance of the Vertex-Disjoint Paths problem defined by the (pij , q
i
j) for i ∈ [k]

and j ∈ [g]. Moreover, if we note Qij the path of this solution between pij and qij and define P ′i
the path obtained from Pi by replacing each subpath Pi ∩ V ′j by Qij , then P ′i is a path between

si and ti in G. Finally, because we chose all the pij and qij to be disjoint, and because the Qij
are disjoint as well, the P ′1, . . . , P

′
k are pairwise disjoint and thus form a solution to the original

disjoint path problem in G, which concludes the proof.

Lemmas 4.3 and 4.4 imply the following theorem

Theorem 4.2. The Vertex-Disjoint Paths problem on everywhere α-dense graphs admits
a vertex kernel of size O(k3).

5 Subexponential Algorithms and Linear Vertex Kernel for Cut
Problems

In this section we give parameterized subexponential time algorithms and linear vertex kernel
for several cut problems, such as Edge Odd Cycle Transversal, Minimum Bisection,
d-Way Cut, Multiway Cut, and Multicut, on everywhere dense graphs. Our algorithm
uses random sampling akin to the one used in designing PTASes for problems on everywhere
dense graphs. We first give the sampling primitive and then use this to design our kernel and
subexponential time algorithms. Later, we show how to derandomize these algorithms.

5.1 A sampling Primitive

By abusing notation, if S is a multi-set and X a set, then |S∩X| counts the number of elements
of S (with duplicates) belonging to X.

Lemma 5.1. For any constants ε1 and ε2, if U is a universe on n elements, K is a set of
subsets of U and S is a multi-set obtained by doing t(ε1, ε2) = 1

ε21ε2
independent and uniform

random draws in U , then with probability at least 1/2, the number of sets X ∈ K such that

||S ∩X| − t(ε1,ε2)|X|
n | ≥ ε1t(ε1, ε2) is smaller than ε2|K|.
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Proof. For any set X ∈ K, |S ∩X| follows a binomial distribution with parameters t(ε1, ε2) and

p = |X|
n : Using Chebyshev’s inequality, we can show that:

Pr[||S ∩X| − pt| ≥ ε1t] ≤
p(1− p)
ε21t

≤ ε2
2
.

Let B be the set of elements X ∈ K such that ||S ∩X| − pt| ≥ ε1t. We have,

E[|B|] =
∑
X∈K

Pr[||S ∩X| − pt| ≥ ε1t] ≤
ε2|K|

2

and thus, by Markov’s inequality, we have that Pr[|B| ≥ ε2|K|] ≤ 1/2, which concludes the
proof.

5.2 Edge odd cycle transversal

In this subsection, we develop a subexponential-time parameterized algorithm for Edge Odd
Cycle Transversal on everywhere dense graphs. Then, we extract an ingredient of this proof
and use it to design a vertex kernel for the problem.

Theorem 5.1. For any fixed α > 0, there exists a 2O(
√
k/α)nO(1)-time algorithm for Edge

Odd Cycle Transversal on everywhere α-dense graphs.

Proof. Let G denote the input graph. If k ≥ (αn/200)2, then the algorithm tries all bipartitions
of V (G) and counts the number of non-crossing edges and gives an answer in time 2nnO(1) ≤
2
√

200k/αnO(1).
Suppose now k ≤ (αn/200)2 and G admits a solution S of size at most k. Let (A,B)

be the corresponding bipartition and denote by L the set of vertices adjacent to more than

αn/200 ≥
√
k edges of S. As k ≥ |L|

√
k

2 , we have that |L| ≤ 2
√
k ≤ αn/100. Let A1 = A \ L

and B1 = B \ L. Without loss of generality, we can assume that n1 = |A1| ≥ |B1|. By trying n
numbers, we also assume that the algorithm knows the value of n1.

The algorithm then picks a (multi)set M of t = t(α/200, α/200) = (200α )3 vertices in V (G),
uniformly at random. With probability at least (n1

n )t, all these vertices belong to A1 and thus,

by Lemma 5.1, the set X of vertices x such
∣∣∣ |N(x)∩M |n1

t − dA1(x)
∣∣∣ ≥ αn1

200 is smaller than αn1/200

with probability at least (n1
n )t · 12 ≥ (14)t+1. From now on suppose that it is the case and let B′

be the set of vertices of G such that |N(x)∩M |n1

t ≥ d(x)/2 + αn
25 and A′ be the set of vertices of

G such that |N(x)∩M |n1

t ≤ d(x)/2− αn
25 .

The following claim is the crux behind the correctness of our classification, namely, we will be
able to know (by just having M) for a large number of vertices to which side they should belong.

Claim 5.1. The following statements are true:

• For every x ∈ A1 \X, x ∈ A′.
• For every x ∈ B1 \X, x ∈ B′.
• For every x ∈ A \X, x 6∈ B′

• For every x ∈ B \X, x 6∈ A′

Proof of claim. Let x ∈ B1\X. Since x ∈ B1, it means that dA1(x) ≥ (d(x)−|A∩L|−αn/200) ≥
(d(x) − αn/50). Since x 6∈ X, it means that | |N(x)∩M |n1

t − dA1(x)| ≤ αn1/200, and thus
|N(x)∩M |n1

t ≥ (dA1(x) − αn/200) ≥ (d(x) − αn(1/50 + 1/200)). Moreover, since d(x) ≥ αn, we
get that x ∈ B′. The argument for x ∈ A1 \X is identical.
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Suppose now that x ∈ B \ X. Because (A,B) is an optimal partition, dA(x) ≥ d(x)/2,
which implies that dA1(x) ≥ d(x)/2 − |A ∩ L| ≥ d(x)/2 − αn/50. Thus, since x 6∈ X, we have
|N(x)∩M |n1

t ≥ d(x)/2− (1/50 + 1/200)αn, and therefore x 6∈ A′. The argument for x ∈ A \X is
identical. �

Now define SA as the set of vertices x such that |N(x) ∩ B′| ≥ d(x)/2 + αn/25 and SB as
the set of vertices x such that |N(x) ∩A′| ≥ d(x)/2 + αn/25.

Claim 5.2. A1 ⊆ SA ⊆ A and B1 ⊆ SB ⊆ B.

Proof of claim. Let x ∈ B1, which means that |N(x) ∩ A1| ≥ d(x) − |A1 ∩ L| − αn/200 ≥
(d(x) − αn/50). However, by Claim 5.3, (A1 \ X) ⊆ A′. This imply that |N(x) ∩ A′| ≥
|N(x) ∩ A1| − |X| ≥ (d(x) − (1/50 + 1/200)αn) and thus x ∈ SB. Now let x ∈ A. We know
that |N(x) ∩ A| ≤ d(x)/2, and by Claim 5.3, (A′ \ A) ⊆ X. These imply that |N(x) ∩ A′| ≤
|N(x) ∩ A| + |X| ≤ d(x)/2 + αn/200 and thus x 6∈ SB. This proves that B1 ⊆ SB ⊆ B. The
proof of A1 ⊆ SA ⊆ A is identical. �

Let R = V (G) \ (SA ∪SB). The previous claim shows that R ⊆ L, SA ⊆ A and SB ⊆ B. To
find the partition (A,B), we only need to figure out where do the vertices in R belong. However,

since |R| ≤ |L| ≤ 2
√
k, we can try all the bipartitions of R in time 22

√
k, which concludes the

proof.

When k ≤ αn/200, the set L, using the notations of the previous proof, is empty. This
means that the algorithm runs in polynomial time, when k ≤ αn/200. We summarize this in
the next lemma.

Lemma 5.2. There exists a randomized polynomial time algorithm for the Edge Odd Cycle
Transversal problem on everywhere α-dense graphs, when k ≤ αn/200.

Lemma 5.2 implies the following result.

Theorem 5.2. Edge Odd Cycle Transversal admits a linear vertex kernel on everywhere
α-dense graphs.

Proof. Let (G, k) be an instance of Edge Odd Cycle Transversal. If k ≤ αn/200, then we
apply Lemma 5.2 and solve the problem in polynomial time. Based on the answer of Lemma 5.2,
we either return a solution or a trivial no-instance of the problem. However, now we have that
k ≥ αn/200, and hence n ≤ 200k

α = O(k). This concludes the proof.

5.3 Minimum Bisection

In this subsection, we develop a subexponential-time parameterized algorithm for Minimum
Bisection on everywhere dense graphs. Then, we extract an ingredient of this proof and use
it to design a vertex kernel for the problem. The proof is analogous to Theorem 5.1.

Theorem 5.3. For any fixed α > 0, there exists a 2O(
√
k/α)nO(1)-time algorithm for Bisection

on everywhere α-dense graphs.

Proof. Let G denote the input graph. If k ≥ (αn/200)2, then the algorithm tries all bipartitions
of V (G) into equal parts and counts the number of crossing edges and gives an answer in time

2nnO(1) ≤ 2
√

200k/αnO(1).
Suppose now k ≤ (αn/200)2 and G admits a solution S of size at most k. Let (A,B)

be the corresponding bipartition and denote by L the set of vertices adjacent to more than

αn/200 ≥
√
k edges of S. As k ≥ |L|

√
k

2 , we have that |L| ≤ 2
√
k ≤ αn/100. Let A1 = A \ L
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and B1 = B \ L. Without loss of generality, we can assume that n1 = |A1| ≥ |B1|. By trying n
numbers, we also assume that the algorithm knows the value of n1.

The algorithm then picks a (multi)set M of t = t(α/200, α/200) = (200α )3 vertices in V (G),
uniformly at random. With probability at least (n1

n )t, all these vertices belong to A1 and thus,

by Lemma 5.1, the set X of vertices x such
∣∣∣ |N(x)∩M |n1

t − dA1(x)
∣∣∣ ≥ αn1

200 is smaller than αn1/200

with probability at least (n1
n )t · 12 ≥ (14)t+1. From now on suppose that it is the case and let B′

be the set of vertices of G such that |N(x)∩M |n1

t ≥ d(x)/2 + αn1
25 and A′ be the set of vertices of

G such that |N(x)∩M |n1

t ≤ d(x)/2− αn
25 .

The following claim is the crux behind the correctness of our classification, namely, we will be
able to know (by just having M) for a large number of vertices to which side they should belong.

Claim 5.3. The following statements are true:

• For every x ∈ A1 \X, x ∈ A′.
• For every x ∈ B1 \X, x ∈ B′.
• For every x ∈ A \X, x 6∈ B′

• For every x ∈ B \X, x 6∈ A′

Proof of claim. Let x ∈ B1\X. Since x ∈ B1, it means that dA1(x) ≥ (d(x)−|A∩L|−αn/200) ≥
(d(x) − αn/50). Since x 6∈ X, it means that | |N(x)∩M |n1

t − dA1(x)| ≤ αn1/200, and thus
|N(x)∩M |n1

t ≥ (dA1(x) − αn/200) ≥ (d(x) − αn(1/50 + 1/200)). Moreover, since d(x) ≥ αn, we
get that x ∈ B′. The argument for x ∈ A1 \X is identical.

Suppose now that x ∈ B \ X. Because (A,B) is an optimal partition, dA(x) ≥ d(x)/2,
which implies that dA1(x) ≥ d(x)/2 − |A ∩ L| ≥ d(x)/2 − αn/50. Thus, since x 6∈ X, we have
|N(x)∩M |n1

t ≥ d(x)/2− (1/50 + 1/200)αn, and therefore x 6∈ A′. The argument for x ∈ A \X is
identical. �

Now define SA as the set of vertices x such that |N(x) ∩ B′| ≥ d(x)/2 + αn/25 and SB as
the set of vertices x such that |N(x) ∩A′| ≥ d(x)/2 + αn/25.

Claim 5.4. A1 ⊆ SA ⊆ A and B1 ⊆ SB ⊆ B.

Proof of claim. Let x ∈ B1, which means that |N(x) ∩ A1| ≥ d(x) − |A1 ∩ L| − αn/200 ≥
(d(x) − αn/50). However, by Claim 5.3, (A1 \ X) ⊆ A′. This imply that |N(x) ∩ A′| ≥
|N(x) ∩ A1| − |X| ≥ (d(x) − (1/50 + 1/200)αn) and thus x ∈ SB. Now let x ∈ A. We know
that |N(x) ∩ A| ≤ d(x)/2, and by Claim 5.3, (A′ \ A) ⊆ X. These imply that |N(x) ∩ A′| ≤
|N(x) ∩ A| + |X| ≤ d(x)/2 + αn/200 and thus x 6∈ SB. This proves that B1 ⊆ SB ⊆ B. The
proof of A1 ⊆ SA ⊆ A is identical. �

Let R = V (G) \ (SA ∪SB). The previous claim shows that R ⊆ L, SA ⊆ A and SB ⊆ B. To
find the partition (A,B), we only need to figure out where do the vertices in R belong. However,

since |R| ≤ |L| ≤ 2
√
k, we can try all the bipartitions of R in time 22

√
k, which concludes the

proof.

When k ≤ αn/200, the set L, using the notations of the previous proof, is empty. This
means that the algorithm runs in polynomial time, when k ≤ αn/200. We summarize this in
the next lemma.

Lemma 5.3. There exists a randomized polynomial time algorithm for the Minimum Bisection
problem on everywhere α-dense graphs, when k ≤ αn/200.

Lemma 5.3 implies the following result.
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Theorem 5.4. Minimum Bisection admits a linear vertex kernel on everywhere α-dense
graphs.

Proof. Let (G, k) be an instance of Minimum Bisection. If k ≤ αn/200, then we apply
Lemma 5.3 and solve the problem in polynomial time. Based on the answer of Lemma 5.3, we
either return a solution or a trivial no-instance of the problem. However, now we have that
k ≥ αn/200, and hence n ≤ 200k

α = O(k). This concludes the proof.

5.4 Cut-problems in everywhere α-dense graphs

The arguments used for Edge Odd Cycle Transversal and Minimum Bisection can

be generalized to give a ( 1
α)O((1/α)

3) · n2 · 2
O
(√

k
α
log(

√
k
α
)

)
time algorithm for d-Way Cut on

everywhere α-dense graphs. Here, the parameter k is the size of the solution. A partition of the
vertex set (A1, . . . , Ad) of the vertices is called an optimal d-cut partition, if the total number
of edges crossing two parts is minimized.

Theorem 5.5. The d-Way Cut problem, parameterized by the size of the solution admits an

algorithm with running time ( 1
α)O((1/α)

3) · n2 · 2
O
(√

k
α
log(

√
k
α
)

)
on everywhere α-dense graphs

Proof. Let (G, k) be an input instance to the d-Way Cut problem and let (A1, . . . , Ad) be
an optimal d-cut partition such that |A1| ≥ · · · ≥ |Ad|. There exists an exact algorithm with
running time 2nnO(1) algorithm for d-Way Cut by doing a dynamic programming algorithm
over subset and applying fast subset-convolution, running in time 2nnO(1) [9]. Thus, if k ≥
(αn/200)2, then this algorithm runs in time 2O(

√
k/α), which ends our proof.

Suppose now k ≤ (αn/200)2 and G admits a solution S of size at most k. Denote by L

the set of vertices adjacent to more than αn/200 ≥
√
k edges of S. As k ≥ |L|

√
k

2 , we have

that |L| ≤ 2
√
k ≤ αn/100. Note that every part Ai of the optimal d-cut such that |Ai| ≤ αn

2
is entirely contained in L. Indeed, for every vertex x ∈ Ai, x has to be adjacent to at least
d(x)−|Ai| ≥ αn

2 vertices of the solution. Let d′ denote the maximum index such that |Ai| ≤ αn
2

for every i ∈ [d′] (recall, that we assumed |A1| ≥ · · · ≥ |Ad|). Note, and this is quite important
for our argument, that d′ ≤ 2

α . By trying at most d 2αe possibilities, we can assume that the
algorithm knows the value of d′.

The goal now will be to do sampling inside each Ai for i ∈ [d′], in order to guess the degree
of the vertices of G inside this set. For every i ∈ [d′], let ni = |Ai| and define Abi = Ai \L. Note
that if x ∈ Abi , then |N(x) \ Ai| ≤ αn/200. By trying at most 400

α possibilities for each i ∈ [d′],

so (400α )d
′ ≤ (400α )2/α in total, we can assume that the algorithm is given an integer n′i such that

|n′i − ni| ≤ αn
400 for every i ∈ [d′].

For each i ∈ [d′], the algorithm will then pick a (multi)set Mi of t = t(α/400, α2/(400)) =
(400α )3 random vertices obtained by doing independent and uniform random sample in V (G).
With probability greater than (nin )t ≥ (α2 )t, we have that Mi ⊆ Ai. This means that, by Lemma

5.1, the set Xi of vertices x such | |N(x)∩Mi|ni
t − dAi(x)| ≥ αni

400 is smaller than α2n/400, with

probability at least (nin )t · 12 ≥ (α4 )t . By doing the previous sampling at most ( 4
α)t = ( 4

α)(α/400)
3

times, we know this is the case for all i ∈ [d′] with constant probability, and let X =
⋃
i∈[d′]Xi.
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Note that |X| ≤ αn/200 and for every vertex x 6∈ X and i ∈ [d′]:∣∣∣∣ |N(x) ∩Mi|n′i
t

− dAi(x)

∣∣∣∣ ≤ ∣∣∣∣ |N(x) ∩Mi|ni
t

− dAi(x) +
|N(x) ∩Mi|n′i

t
− |N(x) ∩Mi|ni

t

∣∣∣∣
≤
∣∣∣∣ |N(x) ∩Mi|n′i

t
− dAi(x)|+ | |N(x) ∩Mi|n′1

t
− |N(x) ∩Mi|ni

t

∣∣∣∣
≤ αn

200
.

For any i ∈ [d′], let A′i denote the set of vertices of G such that
|N(x)∩Mi|n′i

t ≥ d(x)− αn
25 .

Claim 5.5.1. For every i, j ∈ [d′], i 6= j:

• For every x ∈ Abi \X, x ∈ A′i.
• For every x ∈ Abj \X, x 6∈ A′i

Proof of claim. Let x ∈ Abi \X. Since x ∈ Abi , it means that dAi(x) ≥ (d(x)− αn/200). Since

x 6∈ X, it means that | |N(x)∩Mi|n′i
t −dAi(x)| ≤ αn/200, and thus |N(x)∩M |ni

t ≥ (dAi(x)−αn/100).
Suppose now that x ∈ Abj \X. Since x ∈ Abj , it means that dAi(x) ≤ αn/200. However, since

x 6∈ X, we have that | |N(x)∩Mi|n′i
t −dAi(x)| ≤ αn/200, and thus

|N(x)∩M |n′i
t ≤ αn/100. This ends

the proof as d(x) ≥ αn. �

The previous claim implies that A′i ⊆ (Ai ∪X). Now for every i ∈ [d′], define Si to be the
set of vertices x ∈ V (G) such that |N(X) ∩A′i| ≥ d(x)− αn/50.

Claim 5.5.2. For every i ∈ [d′], Abi ⊆ Si ⊆ Ai.

Proof of claim. Suppose x ∈ Abi . By definition of Abi , it means that |N(x) ∩ Abi | ≥ |N(x) ∩
Ai| − |L| ≥ (d(x)− αn/200)− αn/100. Moreover, Claim 5.5.1 shows that (Abi \X) ⊆ A′i. This
means that for x ∈ Abi , |N(x) ∩A′i| ≥ |N(x) ∩Abi | − |X| ≥ d(x)− αn/50 and thus x ∈ Si.

Suppose now that x ∈ Aj for j 6= i. By optimality of the partition (A1, . . . , Ad), we have
that |N(x) ∩ Ai| ≤ d(x)/2. This implies that |N(x) ∩ A′i| ≤ d(x)/2 + |X| ≤ d(x)/2 + αn/200.
Since d(x) ≥ αn, it implies that x 6∈ Si. �

Let R = V (G) \ (
⋃
i∈[d′] Si). Claim 5.5.2 shows that R ⊆ L, and Si ⊆ Ai for all i ∈ [d′].

Moreover, the algorithm finds R in times ( 1
α)O((1/α)

3) · n2 with constant probability, as it only
needs to compute the degree of every vertex x ∈ G inside the Mi and then inside the A′i. This
means that, in order to find the partition (A1, . . . , Ad), the algorithm only needs to figure out
where do the vertices in R belong. Remember that |R| ≤ |L| ≤ 2

√
k and d′ ≤ 2

α , so the

algorithm will try all the ( 2
α + 1)|L| assignment of the vertices of L to the parts of A1, . . . , Al

and all the |L||L| possible partitions for the remaining vertices. Overall this gives an algorithm

in ( 1
α)O((1/α)

3) · n2 · 2
O
(√

k
α
log(

√
k
α
)

)
. This concludes the proof.

Again, when k ≤ αn/200, the set L, using the notations of the previous proof, is empty.
This means that the algorithm runs in polynomial time, when k ≤ αn/200. We summarize this
in the next lemma.

Lemma 5.4. There exists a randomized polynomial time algorithm for the d-Way Cut problem
on everywhere α-dense graphs, when k ≤ αn/200.

Lemma 5.4 implies the following result.

Theorem 5.6. d-Way Cut admits a linear vertex kernel on everywhere α-dense graphs.
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In fact Lemma 5.4 can also be proved for Multicut and Multiway Cut. Indeed, for both
of these problems if S is a solution of size k ≤ αn

200 , then every vertex belongs to the component
of G− S containing the vast majority of its neigbhors, and the exact same proof as Lemma 5.4
implies the following result.

Lemma 5.5. There exists a randomized polynomial time algorithm for the for Edge Multicut
problem and the Multiway Cut problem on everywhere α-dense graphs, when k ≤ αn/200.

Lemma 5.5 yields the following result.

Theorem 5.7. Multicut and Multiway Cut admit a linear kernel on everywhere α-dense
graphs.

6 De-randomization

In this section, we will show how to de-randomize all our applications of Lemma 5.1.

Lemma 6.1. For any constants ε1, ε2 and ε3 smaller than 1, and U a universe on n elements,
there exists a set T of 2100/(ε

2
1ε2)|S(n)| subsets of U , such that if A is a subset of at least ε3n

elements of U and K a collection of subsets of A, then there exists a set T ∈ T , T ⊆ A such that
the number of sets X of K such that ||T ∩X| − |T ||X||A| | ≥ ε1|T | is smaller than ε2|K|. Moreover,

the set T can be computed deterministically in nO(1) time.

Proof. Throughout the proof, we assume that the elements of U are ordered u1, . . . , un and
abusing notations, we will associate sets of integers of [n] with sets of elements of U .

Let t be a constant that we will fix later on and consider a random set S of elements of U
obtained by picking uniformly an element of S(n) and keeping the first t elements. Because S(n)
is a family of pairwise independent permutations, we have that for any x ∈ U , Pr[x ∈ U ] = t

n

and for any x, y ∈ U , Pr[x ∈ S ∩ y ∈ S] = t2

n(n−1) . For any element v ∈ U , let Xv be the random
variable equal to 1 if v ∈ S and 0 otherwise.

Claim 6.0.1. For any constants c1, c2 in [0, 1] and set X ⊆ U , if t ≥ 2
c21c2

, then Pr[||S ∩X| −
t|X|
n | ≥ c1t] ≤ c2

Proof. We want to apply Chebyshev’s inequality, and therefore need an upper bound on the
variance of |S ∩X| =

∑
v∈S Xv. For every v ∈ X, var(Xv) = E[(Xv)

2] − E[Xv]
2 ≤ t

n and for
every v, z ∈ X, cov(Xz, Xv) = E[XvXz] − E[Xv]E[Xz] = Pr[x, v ∈ S] − Pr[x ∈ S]Pr[v ∈ S],
which implies that

cov(Xz, Xv) =
t2

n(n− 1)
− t2

n2
=

t2

n2(n− 1)
.

Overall this implies that var(|S ∩X|) ≤ |X|tn + (t|X|)2
n2(n−1) ≤ 2t, and by Chebyshev’s inequality, we

have for any constant δ:

Pr[||S ∩X| − E[|S ∩X|]| ≥ δt] ≤ var(|S ∩X|)
(δt)2

and therefore:

Pr[||S ∩X| − t|X|
n
| ≥ tδ] ≤ 2t

(δt)2
.

Which ends the proof as t ≥ 2
c21c2

.
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Let us now fix A a set of size at least ε3n and X ⊆ A. Suppose that t ≥ 100
(ε1ε3)2ε2

. The

previous claim implies that with probability at least 1 − ε2, |S ∩ X| = t|X|
n ± (ε1ε3)t/5 and

|S∩A| = t|A|
n ±(ε1ε3)t/5. This means that |S∩A| = t|A|

n (1± (ε1ε3)n
5|A| ) and thus, using Observation

2.1 and the fact that |A| ≥ ε3n, we get:

t

n
=
|S ∩A|
|A|

(1± 2ε1
5

).

From this, we can deduce that:

ε1ε3t

5
=
ε1ε3

5
· n|S ∩A|
|A|

(1± 2ε1
5

)

≤ ε1|S ∩A|
5

(1± 2ε1
5

)

≤ ε1|S ∩A|
2

and overall:

|S ∩X| = |X||S ∩A|
|A|

± ε1|S ∩A|.

This means that for any X ∈ K, the probability that ||S ∩ X| − |X||S∩A||A| | ≥ |S ∩ A|ε1 is
smaller that ε2. By linearity of expectation, we get that the expected number of sets X ∈ K
such that ||S ∩X| − |X||S∩A||A| | ≥ |S ∩A|ε1 is smaller than ε2|K|.

Therefore, there exists a permutation S1 ∈ S(n) such that noting S the first t elements of

S1, the number of sets X ∈ K such that ||S ∩X| − |X||S∩A||A| | ≥ |S ∩ A|ε1 is smaller than ε2|K|.
For such a set, if we denote T = S ∩A, then T is a subset of A such that the number of sets X
of K such that ||T ∩X| − |T ||X||A| | ≥ ε1|T | is smaller than ε2|K|.

Finally, this means that the set T consisting of all the subsets of the first t elements of
permutations of S(n) satisfies the properties of the lemma.

Therefore, in all the proof using Lemma 5.1, we can replace the random sampling by simply
trying all the elements of the family T provided by the Lemma 6.1.

6.1 De-randomization of EPTAS

Let us now explain how to adapt the previous argument in order to provide deterministic EPTAS
for all the problems in [34].

6.1.1 Max-Cut

First, let us explain how to derandomize the Max-Cut algorithm of Goldreich et al. [30] to
a deterministic EPTAS. Their algorithm uses O(1/ε) calls of the sampling argument, which
means that we cannot simply use Lemma 6.1, O(1/ε) times, as it would yield an algorithm with
factor nO(1/ε) in the running time.

Let us briefly describe (in high level) the randomized algorithm of Goldreich at al. [30]. Let
G be an α-dense graph and (A,B) be an optimal partition for Max-Cut. Let l = O(1/ε) and
partition V (G) arbitrarily into sets V1, . . . Vl of size n/l. The goal of the algorithm is to decide
the bipartition of each Vi one after the other. The algorithm starts by picking a sample of t
vertices in V \ V1. With constant probability, this sample is a good estimator for the degree
inside A for almost all the vertices in V1. Next, Goldreich et al. [30] show, and this is the core of
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the proof, is that modifying the partition (A,B) by placing the vertices of V1 according to the
estimated degree in A provided by T only increases the value of the partition by O(ε2n2). Let
(A1, B1) be the partition obtained from (A,B) by placing the vertices of V1 as we described.
Now the algorithm will sample a new set of t vertices from V \ V2. With constant probability,
this sample is a good estimator for the degree inside A1 for almost all the vertices in V2. Let
(A2, B2) be the partition obtained from (A1, B1) by placing the vertices of V2 according to this
estimate. By repeating this procedure l times, we obtain a partition (Al, Bl) of the vertices of G
whose value differs from the optimal by at most O(ε2n2) · l = O(εn2) and this gives the desired
approximation.

The problem here is that the l samples corresponds to a different partition, and the partition
at the step j depends on all the previous samples. To avoid this problem, note that if (Ar, Br)
denotes the partition that the algorithm is trying to approximate after r steps, then Ar∩(∪i≤rVi)
corresponds to the vertices V1, . . . , Vr that the algorithm placed in A, which the algorithm knows,
and Ar ∩ (∪i>rVi) corresponds to the vertices of A ∩ (∪i>rVi), which correspond to the initial
partition. So, if we are able to find estimators for the degree in every A∩ Vi, we are able to get
an estimation of the degree of the vertices inside Ar at any step of the algorithm. Note that for
the randomised version, this does not change much, because the algorithm still has to sample l
times. However, for us it is crucial that all these samplings correspond to the same partition,
because then we can use the following lemma, whose proof is almost identical to the one of
Lemma 6.1 to obtain a set of nO(1) l-tuples, such that for any partition (A,B), there is one of
the l-tuples (S1, . . . , Sl) where each Si gives a good estimation of the degree inside Vi ∩A.

Lemma 6.2. For any constants ε1 and ε2 and `, there exists a constant t(ε1, ε2, `) such that if U
is a universe on n elements, then there exists a set T of |S(n)| ·2t(ε1,ε2,`) `-tuples of subsets of U ,
such that if (A1, . . . , A`) is a collection of disjoint subsets of U and for every i, Ki a collection of
subsets of Ai, then there exists a `-tuple (T1, . . . , T`) ∈ T such that for each i ∈ [`], the number

of sets X of some Ki such that ||Ti ∩ X| − |Ti||X||Ai| | ≥ ε1
|X||Ti|
|Ai| is smaller than ε2

∑
i∈[`] |Ki|.

Moreover, the set T can be computed deterministically in nO(1) time.

Lemma 6.2 directly derandomizes the algorithm of Goldreich at al. [30].

6.1.2 Other problems

In [30], they show how to adapt the algorithm to solve Min-Bisection as well as Max-
Bisection on α-dense graphs. Our derandomization result can be used there directly as well to
provide deterministic EPTASes for these problems. We can also derandomize the EPTASes for
d-Way Cut and d-Multiway Cut on α-dense graphs and d-Correlation Clustering on
general graphs given in [34], as they either rely on a generalization of the Max-Cut algorithm,
or use only a constant number of times the sampling argument (independent of ε). We also note
that, by first running the algorithm from Max-Cut and then using the ideas of [34] in order to
solve the case where the solution is small, one can show this existence of an EPTAS for Edge
Odd Cycle Transversal on α-dense graphs. This algorithm can be made deterministic using
our method.

7 Conclusion

Inspired by the success of designing of PTASes and EPTASes for computationally intractable
problems on everywhere dense graphs (every vertex has minimum degree at least αn, for some
fixed constant α > 0), in this paper we undertook a study for computationally intractable prob-
lems on dense graphs in the realm of Parameterized Complexity on dense graphs. We obtained
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linear kernels for Edge-Disjoint Paths, Edge Odd Cycle Transversal, Minimum Bisec-
tion, d-Way Cut, Multiway Cut and Multicut on everywhere dense graphs. Additionally,
we obtained a cubic kernel for Vertex-Disjoint Paths on everywhere dense graphs. In ad-
dition to kernelization results, we obtained subexponential-time parameterized algorithms for
Edge Odd Cycle Transversal, Minimum Bisection, and d-Way Cut. Finally, we showed
how all of our results (as well as EPASes for these problems) can be de-randomized. Studying
other NP-hard problems on dense graphs is an interesting research avenue. We conclude our
paper with some concrete open problems.

1. Does Vertex-Disjoint Paths admit a linear vertex kernel on everywhere α-dense graphs?

2. Does Edge-Disjoint Paths and Vertex-Disjoint Paths admit an algorithm with
running time 2O(k)nO(1) on everywhere α-dense graphs?

Acknowledgments. We thank one of the referee of a different version of this paper for sketch-
ing a proof based on the random walk on expanders for Lemma 6.1.
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A Definition of the studied problems

We now define all the problems mentioned in the paper.

Edge-Disjoint Paths Parameter: k
Input: A graph G and a set of request pairs (s1, t1), . . . , (sk, tk).
Question: Does there exist a set of paths P1, . . . , Pk, between si and ti, such that they
are pairwise edge disjoint?

Vertex-Disjoint Paths Parameter: k
Input: A graph G and a set of request pairs (s1, t1), . . . , (sk, tk).
Question: Does there exist a set of paths P1, . . . , Pk, between si and ti, such that they
are pairwise vertex disjoint?

Edge Odd Cycle Transversal Parameter: k
Input: A graph G and an integer k.
Question: Does there exists S ⊆ E(G) of size at most k such that G− S is bipartite?

Minimum Bisection Parameter: k
Input: A graph G and an integer k.
Question: Does there exists a partition (A,B) of V (G) such that ||A| − |B|| ≤ 1 and
E(A,B) ≤ k?

Multiway Cut Parameter: k
Input: A graph G, a set T ⊆ V (G) and an integer k.
Question: Does there exists a set S ⊆ E(G) of size at most k such that every vertex of
T lies in a different connected component of G− S?

Multicut Parameter: k
Input: A graph G, a set of pairs (si, ti)

`
i=1 and an integer k.

Question: Does there exists S ⊆ E(G) of size at most k such that for every i ∈ [`],
vertices si and ti lie in different connected components of G− S?

d-Way Cut Parameter: k
Input: A graph G and an integer k.
Question: Does there exists a set S ⊆ E(G) of size at most k such that G − S has at
least d connected components?
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