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Abstract12

In this paper, we introduce a directed variant of the classical Bandwidth problem and study it13

from the view-point of moderately exponential time algorithms, both exactly and approximately.14

Motivated by the definitions of the directed variants of the classical Cutwidth and Pathwidth15

problems, we define Digraph Bandwidth as follows. Given a digraph D and an ordering σ16

of its vertices, the digraph bandwidth of σ with respect to D is equal to the maximum value of17

σ(v)−σ(u) over all arcs (u, v) of D going forward along σ (that is, when σ(u) < σ(v)). The Digraph18

Bandwidth problem takes as input a digraph D and asks to output an ordering with the minimum19

digraph bandwidth. The undirected Bandwidth easily reduces to Digraph Bandwidth and thus,20

it immediately implies that Directed Bandwidth is NP-hard. While an O?(n!)1 time algorithm21

for the problem is trivial, the goal of this paper is to design algorithms for Digraph Bandwidth22

which have running times of the form 2O(n). In particular, we obtain the following results. Here, n23

and m denote the number of vertices and arcs of the input digraph D, respectively.24

Digraph Bandwidth can be solved in O?(3n · 2m) time. This result implies a 2O(n) time25

algorithm on sparse graphs, such as graphs of bounded average degree.26

Let G be the underlying undirected graph of the input digraph. If the treewidth of G is at27

most t, then Digraph Bandwidth can be solved in time O?(2n+(t+2) logn). This result implies28

a 2n+O(
√
n logn) algorithm for directed planar graphs and, in general, for the class of digraphs29

whose underlying undirected graph excludes some fixed graph H as a minor.30

Digraph Bandwidth can be solved in min{O∗(4n · bn),O∗(4n · 2b log b logn)} time, where b31

denotes the optimal digraph bandwidth of D. This allow us to deduce a 2O(n) algorithm in32

many cases, for example when b ≤ n
log2 n .33

Finally, we give a (Single) Exponential Time Approximation Scheme for Digraph Bandwidth.34

In particular, we show that for any fixed real ε > 0, we can find an ordering whose digraph35

bandwidth is at most (1 + ε) times the optimal digraph bandwidth, in time O∗(4n · (d4/εe)n).36
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23:2 Exact and Approximate Directed Bandwidth

1 Introduction41

The Bandwidth problem is a famous combinatorial problem, where given an undirected42

graph G on n vertices, the goal is to embed its vertices onto an integer line such that43

the maximum stretch of any edge of G is minimized. More formally, given a graph G44

on n vertices and an ordering σ : V (G) → [n], the bandwidth of σ with respect to G is45

max(u,v)∈E(G){|σ(u)− σ(v)|}. In the Bandwidth problem, given a graph G, the goal is to46

find an ordering σ : V (G) → [n], which has minimum bandwidth with respect to G. The47

bandwidth problem has found applications in an array of fields including, but not limited48

to, the design of faster matrix operations computation on sparse matrices, VLSI circuit49

design, reducing the search space of constraint satisfaction problems and problems from50

molecular biology [22]. In many of the real world applications, a fundamental principle51

that the Bandwidth problem captures is that of delays that occur as a result of allocation52

of tasks on the time interval that have dependencies among them. An ordering in many53

scenarios represent the allocation of tasks/objects on a time-line/one-dimensional hardware,54

and the stretch of an edge captures the delay/effort/expense incurred to reach the other end55

of the edge.56

One restriction on the kind of models captured by Bandwidth is that, the models57

cannot be tuned to allow for asymmetry or bias. More specifically, what happens when the58

connections available between the tasks/objects are unidirectional? What happens when59

there is a bias in terms of delay/expense based on the direction of communication on the60

time-line/one-dimensional hardware? The above inquisitivities lead to our first contribution61

to this article, which is the concept of Digraph Bandwidth2. Given a directed graph D on62

n vertices and an ordering σ : V (D)→ [n], the digraph bandwidth of σ with respect to D is63

the maximum stretch of the forward arcs in the ordering, that is, max(u,v)∈E(D)
σ(u)<σ(v)

{σ(v)−σ(u)}.64

The Digraph Bandwidth problem takes as input a digraph D and outputs an ordering65

σ : V (D)→ [n] with the least possible digraph bandwidth with respect to D.66

Observe that, with the introduction of directions in the input graph, Digraph Band-67

width allows us to capture one-way dependencies, that can help in modelling scenarios where68

the links available for modelling the communication are one-directional. Also, by allowing69

to care only about the stretch of the forward arcs in the ordering, one can model channels70

where communication in one direction is cheaper/easier than the other. The later scenarios71

can occur while modelling an uphill-downhill communication, where the cost of going up is72

a matter of real concern whereas, the cost of going down is almost negligible. For a more73

explicit scenario which can be modelled by Digraph Bandwidth, but not necessarily by74

Bandwidth, refer to Appendix A.75

Note that Digraph Bandwidth is indeed a generalization of the notion of undirected76

bandwidth, as for any graph G, if ←→G denotes the digraph obtained from G by replacing each77

edge of G by one arc in both direction, then the bandwidth of G is equal to the directed78

bandwidth of ←→G . We would like to remark here that on the theoretical front, the way we79

lift the definition of bandwidth in undirected graphs to directed graphs, by considering the80

stretches of only the forward arcs, is not something unique that we do for Bandwidth. The81

idea of only considering arcs going in one direction for “optimizing some function” is very82

common to the directed setting. The simplest such example is the notion of a directed cut. If83

D is a digraph andX,Y are two disjoint subsets of vertices ofD, then the directed cut ofX and84

2 We choose the name Digraph Bandwidth over the more conventional Directed Bandwidth to avoid
clash of names from literature (which will be discussed later).
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Y , dcut(X,Y ), is defined as the set of arcs (u, v) in E(D), where u ∈ X and v ∈ Y . Another85

closely related notion is the notion of Directed Cutwidth introduced by Chudnosky et86

al. [5]. A digraph D on n vertices has cutwidth at most k if there exists an ordering of the87

vertices σ such that for every i ∈ [n− 1], dcut({σ(1), . . . , σ(i)}, {σ(i+ 1), . . . , σ(n)}) is at88

most k. Note that our notion of directed bandwidth is a stronger notion than cutwidth, as89

for any ordering σ, the cutwidth associated to σ is at most the digraph bandwith of σ. There90

is also a similar notion of Directed Pathwidth [5]. Observe that similar to Directed91

Cutwidth and Directed Pathwidth, Digraph Bandwidth is 0 on directed acyclic92

graphs (dags).93

We would like to remark that ours is not the first attempt in generalising the definition of94

bandwidth for digraphs. A notion of bandwidth for directed graphs appeared in 1978 in the95

paper by Garey et al. [16]. But the notion was defined only for dags. In their problem, which96

they call Directed Bandwidth (DAG-BW), given a dag D, one is interested in finding a97

topological ordering (a linear ordering of vertices such that for every directed arc (u, v) from98

vertex u to vertex v, u comes before v in the ordering) of minimum bandwidth. Note that99

this is very different from our notion of Digraph Bandwidth which is always 0 for dags.100

Algorithmic Perspective101

Bandwidth is one of the most well-known and extensively studied graph layout problems [17].102

The Bandwidth problem is NP-hard [25] and remains NP-hard even on very restricted103

subclasses of trees, like caterpillars of hair length at most 3 [24]. Furthermore, the bandwidth104

of a graph is NP-hard to approximate within a constant factor for trees [3]. Polynomial-105

time algorithms for the exact computation of bandwidth are known for a few graph classes106

including caterpillars with hair length at most 2 [2], cographs [29], interval graphs [20] and107

bipartite permutation graphs [19]. A classical algorithm by Saxe [26] solves Bandwidth in108

time 2O(k)nk+1, which is polynomial when k is a constant. In the realm of parameterized109

complexity, Bandwidth is known to be W[t]-hard for all t ≥ 1, when parameterized by110

the bandwidth k of the input graph [4]. However, on trees it admits a parameterized111

approximation algorithm [12] and an algorithm with running time 2O(k log k)nO(1) on AT-112

free graphs [18]. Unger showed in [27] that the problem is APX-hard. The best known113

approximation algorithm for this problem is due to Krauthgamer et al. [21] and it provides114

an O(log3 n) factor approximation.115

The Bandwidth problem is one of the test-bed problems in the area of moderately116

exponential time algorithms and has been studied intensively. Trying all possible permutations117

of the vertex set yields a simple O∗(n!) time algorithm while the known algorithms for the118

problem with running time 2O(n) are far from straightforward. The O∗(n!) barrier was broken119

by Feige and Kilian [13] who gave an algorithm with running time O?(10n). This result120

was subsequently improved by Cygan and Pilipczuk [6] down to O?(5n). After a series of121

improvements, the current fastest known algorithm, due to Cygan and Pilipczuk [9, 7] runs in122

time O?(4.383n). We also refer the readers to [8] for the best known exact algorithm running123

in polynomial space. For graphs of treewidth t, one can design an algorithm with running124

time 2nnO(t) [1, 7]. On the other hand, Feige and Talwar [14] showed that the bandwidth of a125

graph of treewidth at most t can be (1+ε)-approximated in time 2O(logn(t+
√

n
ε )). Vassilevska126

et al. [28] gave a hybrid algorithm which after a polynomial time test, either computes127

the bandwidth of a graph in time 4n+o(n), or provides γ(n) log2 n log logn-approximation in128

polynomial time for any unbounded γ. Moreover, for any two positive integers k ≥ 2, r ≥ 1,129

Cygan and Pilipczuk presented a (2kr− 1)-approximation algorithm that solves Bandwidth130

for an arbitrary input graph in O(k
n

(k−1)r nO(1)) time and polynomial space [7]. Finally, Fürer131

CVIT 2016
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et al. [15] gave a factor 2-approximate algorithm for Bandwidth running in time O(1.9797n).132

DAG-BW, as defined by Garey et al. [16] for dags, was shown to admit a polynomial time133

algorithm for testing if a dag has bandwidth at most 2. Also, it was proved that the problem134

to determine if the directed bandwidth of a dag is at most k, for any k > 2, is NP-hard even135

in the case of oriented trees. This notion of directed bandwidth reappeared in [23], where it136

was studied for dense digraphs.137

Our Results138

The main objective of this paper is to introduce a directed variant of the Bandwidth139

problem for general digraphs and study it from the view point of moderately exponential140

time algorithms, both exactly and approximately. Throughout the remaining, n,m denote141

the number of vertices and arcs in the input digraph, respectively. For many linear layout142

problems on graphs on n vertices, beating even the trivial O?(n!) algorithm asymptotically143

remains a challenge. In this article we design 2O(n) time algorithms for Digraph Bandwidth.144

Below we mention the challenges that Digraph Bandwidth imposes when we try to apply145

the techniques used in the design of 2O(n) algorithm for Bandwidth, and how we bend our146

ways to overcome them to design the desired algorithms.147

The 2O(n) time algorithms for Bandwidth that exist in literature (cited above), all follow148

a common principle of bucket-then-order. Suppose one is interested in checking whether the149

input graph has an ordering of bandwidth b. The bucket-then-order procedure is a 2-step150

procedure, where in the first step, instead of directly guessing the position of the vertex in151

the ordering, for a range of consecutive positions (called buckets) of size O(b), one guesses the152

set of vertices that will occupy these positions in the final ordering. This process of allocating153

a set of vertices to a range of consecutive positions is called bucketing. Since one can always154

assume that the graph is connected, once a bucket for the first vertex is guessed using n155

trials, its neighbours only have a choice of some c buckets for a small constant c depending156

on the constant in the order notation of the size of the bucket. This, makes the bucketing157

step run in time 2O(n). The outcome of the first step is a collection of bucketings which158

contains a bucketing that is “consistent” with the final ordering. In the second step, given159

such a consistent bucketing, one can find the final ordering using either a recursive divide160

and conquer technique or a dynamic programming procedure or a measure and conquer kind161

of an analysis.162

In the case of Digraph Bandwidth, finding a bucketing that is consistent with the final163

ordering becomes a challenge as even the information that a vertex is placed in some fixed164

bucket does not decrease the options of the number of buckets in which its neighbours can165

be placed. This is because there could be some out-neighbours (resp. in-neighbours) of it166

that need to be placed before (resp. after) it thereby contributing to backward arcs, which167

eventually results in the need for allocating them to far off buckets. We cope up with this168

challenge of bucketing in two ways - both of which lead to interesting algorithms that run169

in 2O(n) time in different cases. As a first measure of coping up, we take the strategy of170

“kill what cause you trouble”. Formally speaking, it is the set of backward arcs in the final171

ordering that have unbounded stretch and hence, make the bucketting process difficult. One172

way to get back to the easy bucketting case is to guess the set of arcs that will appear as173

backward arcs in the final ordering. Having guessed these arcs, one can remove them from174

the graph and preserve the information that the arcs which remain all go forward the final175

ordering. This problem becomes similar to the DAG-BW problem defined on dags by Garey176

et al. [16]. We show that one can do the bucketing tricks similar to the undirected case here177

to design a 2O(n) algorithm for this problem (Theorem 1.1). This together with the initial178
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guessing of the backward arcs gives Theorem 1.2.179

I Theorem 1.1. DAG-BW on dags can be solved in O?(3n) time.180

I Theorem 1.2. Digraph Bandwidth can be solved in O?(3n · 2m) time.181

Note that even though the 2m in the running time of Theorem 1.2 looks expensive, it182

already generates an algorithm better that O?(n!) for any digraph that has at most o(n logn)183

arcs. In particular, this implies an exact algorithm with running time 2O(n) whenever184

|E(D)| = O(|V (D)|), for example for digraphs with bounded average degree.185

We will now briefly explain about our second way of dealing with the bucketing phase.186

As discussed earlier, getting a hold over the arcs which will go backward in the final ordering,187

eases out the remaining process. In this strategy, instead of guessing the arcs that goes188

backward by a brute force way (that takes 2m), we exploit the fact that guessing a partition189

of the vertex set into two parts, left and right - which corresponds to the first n/2 vertices in190

the final ordering and the last n/2 vertices in the final ordering, also gives hold on some if not191

all backward arcs in the final ordering. We place this simple observation into the framework192

of a divide and conquer algorithm to get a bucketting that is not necessarily “consistent”193

with the final ordering, but is not too far away to yield a “close enough” approximation to194

the optimal ordering. This result is formalized in Theorem 1.3. Effectively, the result states195

that one can find an ordering whose digraph bandwidth is at most (1 + ε) times the optimal196

in time O?(1/ε)n. Note that, this result is in contrast with the result of Feige and Talwar [14]197

for undirected bandwidth where they gave an exponential time approximation scheme that198

run in time which had a dependence on the treewidth of the graph(2O(logn(t+
√

n
ε ))). As a199

side result of our strategy, we can also design an algorithm for solving Digraph Bandwidth200

optimally on general digraphs in time O?(2O(n) · OPTn) or O?(2O(n) · 2OPT logOPT logn),201

where OPT is the optimal digraph bandwidth of the input digraph. This result is stated in202

Theorem 1.4. Note that, on one hand where O(OPTn) is easy to get for the undirected case203

(because fixing the position of one vertex in the ordering leaves only 2 ·OPT choices for its204

neighbours), it is not trivial for the directed case. Also, observe that Theorem 1.4 gives a205

2O(n) algorithm whenever b ≤ n/log2 n.206

I Theorem 1.3 ((Single) Exponential Time Approximation Scheme). For any real number207

ε > 0, for any digraph D, one can find an ordering of digraph bandwidth at most (1 + ε)208

times the optimal, in time O∗(4n · (d4/εe)n).209

I Theorem 1.4. Digraph Bandwidth can be solved in min{O∗(4n ·bn),O∗(4n ·2b log b logn)}210

time, where b is the optimal digraph bandwidth of the input digraph.211

Our last result is based on the connection of the Bandwidth problem with a subgraph212

isomorphism problem. Amini et al. [1] viewed the Bandwidth problem, on undirected213

graphs, as a subgraph isomorphism problem, and using an inclusion-exclusion formula with214

the techniques of counting homomorphisms on graphs of bounded treewidth, they showed215

that an optimal bandwidth ordering of a graph on n vertices of treewidth at most t can be216

computed in time O?(2t logn+n) and space O?(2t logn). Using this approach and by relating217

Digraph Bandwidth via directed homomorphisms to directed path-like-structures, we218

obtain the following result.219

I Theorem 1.5 (3). Let D be a digraph on n vertices and D′ be the underlying undirected220

3 The proof of this theorem is deferred to the appendix.

CVIT 2016



23:6 Exact and Approximate Directed Bandwidth

graph. If the treewidth of D′ is at most t, then Digraph Bandwidth can be solved in time221

O?(2n+(t+2) logn).222

Observe that Theorem 1.5 provides O?(2n+O(
√
n logn)) algorithm for directed planar223

graphs and for digraph whose underlying undirected graph excludes some fixed graph H as a224

minor. This algorithm in fact, yields a 2O(n) time algorithm even when the treewidth of the225

underlying undirected graph of the given digraph is O(n/ logn). Notice that Theorem 1.2226

gives 2O(n) time algorithm for digraphs of constant average degree, while Theorem 1.5 will227

not apply to these cases as these digraphs could contain expander graphs of constant degree228

whose treewidth of the underlying undirected graph could be n/c, for some fixed constant229

c. On the other hand Theorem 1.5 could give 2O(n) time algorithm for digraphs that have230

O(n2/ logn) arcs but treewidth is O(n/ logn). Thus, Theorems 1.2 and 1.5 give 2O(n) time231

algorithm for different families of digraphs.232

2 Preliminaries233

The standard notation about sets and functions has been deferred to the Appendix. For234

positive integers i, j, [i] = {1, · · · , i} and [i, j] = {i, · · · , j}. For any set X, by X = (X1, X2)235

we denote an ordered partition of X, that is X1 ∪X2 = X, X1 ∩X2 = ∅ and, (X1, X2) and236

(X2, X1) are two different partitions of X. For any functions f1 : X1 → Y1 and f2 : X2 → Y2,237

we say that f1 is consistent with f2 if for each x ∈ X1 ∩X2, f1(x) = f2(x). If f1 and f2 are238

consistent, then f1 ∪ f2 : X1 ∪X2 → Y1 ∪ Y2 is defined as (f1 ∪ f2)(x) = fi(x), if x ∈ Xi. For239

any set V of size n, we call a function σ : V → [n] as an ordering of V ). Given an ordering240

σ of V (D), an arc (u, v) ∈ E(D) is called a forward arc in σ if σ(u) < σ(v), otherwise it is241

called a backward arc. For a natural number b ∈ N, we call σ as a b-ordering of D if for any242

forward arc (u, v) ∈ E(D), σ(v)− σ(u) ≤ b, that is, if it has digraph bandwidth at most b.243

Given a set V and an integer b, a b-bucketing of V is a function B : V → [p, q], such that244

p, q ∈ N and for each i ∈ [p, q − 1], |B−1(i)| = b and |B−1(q)| ≤ b. Note that, if |V | is a245

multiple of b, then B−1(q) = b and (q − p + 1) · b = |V |. If for each i ∈ [p, q], |B−1(i)| ≤ b,246

we call B a partial b-bucketing of V . Note that, for any b, every b-bucketing is a partial247

b-bucketing. For a (partial) b-bucketing B : V → [p, q], we say that an element v ∈ V is248

assigned the i-th bucket of B if B(v) = i and B(v) is called the bucket of v. Also, b is called249

the size of the bucket B(v). If B(u) = i and B(v) = j and j > i, then the number of buckets250

between the buckets of u and v is equal to j − i− 1. Also, the number of elements of V in the251

buckets between i and j is (j − i− 1) · b. In explanations, we sometimes drop b and call B a252

(partial) bucketing to mean that it is a b-bucketing for some b that should be clear from the253

context. Given a set V , an integer b and an ordering σ of V , one can associate a b-bucketing254

with σ which assigns the first b elements in σ the 1-st bucket, the next b-elements the next255

and so on. This is formalized below. Given a set V , an integer b and an ordering σ of V , we256

say a b-bucketing B respects σ if B : V → [d|V |/be] is defined as follows. For any x ∈ [|V |], if257

x = ib+ j for some i ∈ N such that j < b, then B(σx) = i+ 1 if j > 0, and B(σx) = i if j = 0.258

In the upcoming sections, the proofs marked with ? can be found in the Appendix.259

3 Exact Algorithm for Directed Bandwidth for dags260

The goal of this section is to prove Theorem 1.1. The algorithm follows the ideas of Cygan261

and Pilipczuk [10]. We give the details here for the sake of completeness and to mention the262

little details where we deviate from the algorithm of [10]. Throughout this section, without263

loss of generality, we can assume that the input digraph D is weakly connected, as otherwise,264



P. Jain et al. 23:7

one can solve the problem on each of the weakly connected components of D and concatenate265

the orderings obtained from each of them, in any order, to get the final ordering. Also,266

instead of working on the optimization version of the problem, we work on the decision267

problem, where together with the input digraph D, one is given an integer b, and the goal is268

to decide whether there exists a topological ordering of V (D) of bandwidth at most b. It is269

easy to see that designing an algorithm for this decision version with the desired running270

time is enough to prove Theorem 1.1. In the following, we abuse notation a little and call271

(D, b) as an instance of DAG-BW.272

Throughout the remaining section, we call a topological ordering of D of bandwidth b as273

a b-topological ordering. A b-bucketing of V (D) is called a b-topological bucketing if for all274

(u, v) ∈ E(D), either B(u) = B(v) or B(v) = B(u)+1. Our algorithm, like the algorithm of [10],275

has two phases : Bucketing and Ordering. The Bucketing phase of the algorithm is276

described by Lemma 3.1.277

I Lemma 3.1. (?) Given an instance (D, b) of DAG-BW, one can find a collection B, of278

(b+ 1)-topological bucketings of V (D) of size at most 2n−1 · dn/b+1e, in time O?(2n), such279

that for every b-topological ordering σ of D, there exists a bucketing B ∈ B such that B280

respects σ.281

In the Ordering phase, given a (b+ 1)-topological bucketing B, the algorithm finds a282

b-topological ordering σ of D, if it exists, such that B respects σ. From Lemma 3.1, the family283

B guarantees the existence of a (b+ 1)-topological bucketing B of the final desired ordering,284

if it exists. To execute this step, we use the idea of finding a sequence of lexicographically285

embeddibe sets using dynamic programming as used in [10]. To define lexicographically286

embeddible set, the authors first defined the notion of lexicographic ordering of slots. We use287

the same definition in this paper.288

I Definition 3.2 (Lexicographic ordering of slots). Given an integer b, let bucket : [n] →289

dn/(b+1)e be a function such that bucket(i) = di/(b+1)e and pos : [n]→ [b+ 1] be a function290

such that pos(i) = ((i− 1) mod (b+ 1)) + 1. We define the lexicographic ordering of slots291

as the lexicographic ordering of (pos(i), bucket(i)), where i ∈ [n].292

For the Bandwidth problem, the authors of [10] proceed as follows. Given a graph293

G = (V,E), and a (b + 1)-bucketing, B of V (G), they prove that there exists an ordering294

σ of G such that B respects σ if and only if there exists a sequence of subsets of V (G),295

∅ ⊂ S1 ⊂ · · · ⊂ Sn, |Si| = i, for all i ∈ [n], such that each Si satisfies the following properties:296

(i) for each Si, there is a mapping γSi
: Si → [n] such that bucket(γSi

(v)) = B(v), and the set297

{(pos(γSi(v)), bucket(γSi(v))) | v ∈ Si} is the set of first |Si| elements in the lexicographic298

ordering of slots, and (ii) if u ∈ Si and v /∈ Si, then B(v) ≤ B(u). They call such a set Si299

as a lexicographically embeddible set. They then obtain γSi+1 by extending γSi
as follows.300

If v ∈ Si ∩ Si+1, then γSi+1(v) = γi(v), otherwise (pos(γSi+1(v)), bucket(γSi+1(v))) is the301

|Si+1|th element in the lexicographic embedding of slots. Recall that there is only one vertex302

v in Si+1 \ Si. Furthermore, if v has a neighbor u in Si, then B(v) ≤ B(u). If B(v) = B(u),303

then since bucket size is at most b+ 1, |γ(v)− γ(u)| ≤ b. If B(v) < B(u), then by construction304

of γSi+1 , pos(γSi+1(v)) > pos(γSi+1(u)). Now, again since each bucket size is at most b+ 1,305

|γ(v) − γ(u)| ≤ b. Therefore, γSi
can be extended to γSi+1 . Thus, γSn

will yield the final306

ordering. Hence, the goal reduces to finding a sequence S1 ⊂ · · · ⊂ Sn, |Si| = i, for all i ∈ [n],307

such that each Si is a lexicographically embeddible set. We will call such a sequence as a308

lexicographically embeddible sequence (les, in short).309

We proceed in a similar way for Directed Bandwidth. We first note that one cannot310

use the same definition of lexicographically embeddible set as defined above due to the311
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following reason. Suppose that Si is a lexicographical embeddible set. Consider a vertex312

u ∈ Si. Suppose that there exists a vertex v /∈ Si that is an in-neighbor of u, then v cannot313

belong to the bucket of u as it will not lead to the topological ordering using the method314

defined above. Also, if v is an out-neighbor of u, then since we are working with topological315

bucketing, v does not belong to the bucket that precedes the bucket of u. Hence, v belongs316

to the bucket of u. We also want γ as a topological ordering. Therefore, we redefine the317

notion of lexicographically embeddible set for Directed Bandwidth as follows.318

I Definition 3.3 (Lexicographically embeddible set for digraphs). Given a (b+ 1)-topological319

bucketing B, of V (D), we say that S ⊆ V (D) is a lexicographically embedibble set if the320

following condition holds.321

(C1) For each arc (u, v) ∈ E(D) such that u ∈ S and v /∈ S, B(u) = B(v).322

(C2) For each arc (u, v) ∈ E(D) such that v ∈ S and u /∈ S, B(u) = B(v)− 1.323

(C3) There exists a b-topological ordering γ : S → [n] such that for all v ∈ S, bucket(γ(v)) =324

B(v), and (pos(γ(v)), bucket(γ(v))) belongs to the first |S| elements in the lexicographic325

ordering of slots. We refer γ as a partial b-topological ordering that respects lexicographic326

ordering of slots.327

given a (b+ 1)-topological bucketing B of V (D), to find a b-topological ordering σ such328

that B respects σ,329

I Lemma 3.4. (?) Given a (b + 1)-topological bucketing B of V (D), the following are330

equivalent. (i) There exists a b-topological ordering σ of the digraph D such that the unique331

(b+1)-bucketing induced by σ, that is Bσ, is B. In other words, Bσ(v) = B(v), for all v ∈ V (D),332

(ii)There exists a les, ∅ ⊂ S1 ⊂ · · · ⊂ Sn = V .333

Due to Lemma 3.4, our goal is reduced to find a les. Cygan and Pilipczuk [10] find334

les using dynamic programming over subsets of the vertex set of given graph. We use a335

similar dynamic programming approach with appropriate modification because of the revised336

definition of a lexicographically embeddible set. In the dynamic programming table, for each337

S ⊆ V (D), c[S] = 1, if and only if S is a lexicographically embeddible set. To compute the338

value of c[S], we first find a vertex v ∈ S such that S \ {v} is a lexicographically embeddible339

set, that is, c[S \ {v}] = 1, and v satisfies the following properties : (i) for all the arcs340

(v, u) ∈ E(D) such that u /∈ S, B(v) = B(u); (ii) for all the arcs (u, v) ∈ E(D) such that341

u /∈ S, B(u) = B(v)−1; and (iii) B(v) = ((|S|−1) mod dn/(b+1)e) + 1. We compute the value342

of c[S] for every subset S ⊆ V (D). Note that if c[V (D)] = 1, then V (D) is a lexicographically343

embeddible set. Also, we can compute les by backtracking in the dynamic programming344

table.345

I Lemma 3.5. (?) Given an instance (D, b) of DAG-BW, and a (b+ 1)-topological bucketing346

B of V (D) that respects some b-topological ordering of D (if it exists), one can compute a les347

in time O?(2n).348

Note that using Lemmas 3.1, 3.4 and 3.5, one can solve DAG-BW in O?(4n) time. The349

desired running time of O?(3n) in Theorem 1.1 can be proved by careful analysis of two350

steps in the algorithm as done in Theorem 12 of [10]. Since the proof of this is the same as351

Theorem 12 of [10], we defer the proof here.352
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4 Exact Algorithm for Digraph Bandwidth via Directed353

Bandwidth354

We call an ordering of the vertex set of a digraph a b-ordering if its digraph bandwidth is at355

most b. In order to prove Theorem 1.2 observe the following. Let (D, b) be an instance of (the356

decision version of) Digraph Bandwidth. If it is a Yes instance, then let σ be a b-ordering357

of D. Let R be the set of backward arcs in σ. Note that σ is a topological ordering of D−R.358

If we guess the set of backward arcs R in a b-ordering of D (which takes time 2m), then the359

goal is reduced to finding a b-topological ordering, σ, of D −R such that if (u, v) ∈ R, then360

σ(u) > σ(v). In fact, one can also observe that it is sufficient to find a b-topological ordering,361

ρ, of D−R such that for all (u, v) ∈ R either ρ(u) > ρ(v) or ρ(v)− ρ(u) ≤ b. We claim that362

we can find the required ordering of D −R using the algorithm for Directed Bandwidth363

for dags given in Section 3. Suppose that σ is a b-ordering of D. Let Bσ be a (b+1)-bucketing364

that respects σ. Let R be the set of backward arcs in σ. Since σ is a b-topological ordering365

of D − R, using Lemma 3.1, Bσ belongs to the collection of (b + 1)-bucketings B. Now,366

using Lemmas 3.5 and 3.4, we obtain a b-topological ordering ρ of D −R that respects Bσ.367

Note that ρ is a b-ordering of D, as for each arc (u, v) 6∈ R, ρ(v)− ρ(u) ≤ b because ρ is a368

b-topological ordering of D −R. Also, if (u, v) ∈ R, then observe that if Bσ(u) 6= Bσ(v), then369

since both σ and ρ respect Bσ and (u, v) is a backward arc in σ, thus, (u, v) is a backward370

arc in ρ too, that is, ρ(u) > ρ(v). Otherwise, if (u, v) 6∈ R and Bσ(u) = Bσ(v), then since ρ371

respects Bσ and the size of the buckets of Bσ is (b+ 1), therefore, |ρ(u) > ρ(v)| ≤ b. Thus,372

the algorithm of Theorem 1.2 runs the algorithm for DAG-BW for each R ⊆ V (D), to obtain373

the desired running time.374

5 (Single) Exponential Time Approximation Scheme for Digraph375

Bandwidth376

The goal of this section is to prove Theorems 1.3 and 1.4. Let (D, b) be an instance of (the377

decision version of) Digraph Bandwidth. The algorithm relies on an interesting property378

of a b-bucketing that respects a b-ordering of D. Let σ be a b-ordering of D and let B be a379

b-bucketing of V (D) that respects σ. An interesting property of such a bucketing B is that380

if (u, v) ∈ E(D), then either B(u) > B(v) or B(v) ≤ B(u) + 1. This is because the size of381

each bucket in B is b and σ is a b-ordering of D. Let us call this property of a b-bucketing382

useful. What we saw in the previous section is that if we somehow have a bucketing that383

respects σ, then one can design an algorithm to fetch σ from this bucketing. In this section,384

instead of seeking for a bucketing that respects σ we seek for a bucketing with the above385

mentioned useful property. Observe that, while the existence of such a bucketing with this386

useful property might not necessarily imply the existence of some b-ordering of D, but having387

such a bucketing with, for example buckets of size b, definitely yields a 2b-ordering of D.388

This is because, given such a bucketing one can assign positions to vertices in the ordering389

by choosing any arbitrary ordering amongst the vertices that belong to the same bucket390

and concatenating these orderings in the order of the bucket numbers. By changing the391

bucket size in the described bucketing, one can yield an ordering of digraph bandwidth at392

most (1 + ε) times the optimal. This procedure, as we will see, also give an optimal digraph393

bandwidth ordering when we use the bucket sizes to be 1. Below we give the description of394

the algorithm used to find a bucketing with the useful property.395

We begin by formulating the useful property of a bucketing described above. Since396

the size of buckets is uniform in a bucketing, instead of defining the property in terms of397
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bucket numbers, we describe it in terms of the number of vertices that can appear between398

the two buckets corresponding to the end points of a forward arc in the ordering. Such399

a shift in definition helps us to get slightly better bounds in our running time. For any400

positive integers b, s and a digraph D, given X ⊆ V (D) and a (partial) b-bucketing of X,401

say B : X → [p, q] for some p, q ∈ N, we say that the external stretch of B is at most s if402

for each arc (u, v) ∈ E(D[X]), either B(u) ≥ B(v), or (B(v)− B(u)− 1) · b ≤ s. Recall that403

B(u)− B(v)− 1 denote the number of buckets between the bucket of u and the bucket of v.404

Our major goal now is to prove Lemma 5.1.405

I Lemma 5.1. Given a digraph D and positive integers b, s, there is an algorithm, that runs406

in time min{O∗(4n · (ds+1/be)n),O∗(4n · (ds+1/be)2(b+s) logn)}, and computes a b-bucketing of407

V (D), B : V (D)→ [d|V (D)|/be], of external stretch at most s.408

We give a recursive algorithm for Lemma 5.1 (Algorithm 1). Since Algorithm 1 is recursive,409

the input of the algorithm will contain a few more things in addition to D, b, s to maintain410

the invariants at the recursive steps. We give the description of the input to Algorithm 1 in411

Definition 5.2.412

IDefinition 5.2 (Legitimate input for Algorithm 1). The input (D, b, s, first, last, left-bor(V (D)),413

right-bor(V (D)), Bin) is called legitimate for Algorithm 1 if the following holds. Let δ =414

ds+1/be.415

(P1) D is a digraph, b, s are positive integers and |V (D)| = 2η · b · δ, where η ≥ 0 is a positive416

integer.417

(P2) first and last are positive integers such that last− first+ 1 = 2η, where η is such that418

|V | = 2η · b · δ.419

(P3) left-bor(V (D)), right-bor(V (D)) ⊆ V (D),420

(P4) Bin : left-bor(V (D)) ∪ right-bor(V (D))→ [first, last] is a partial b-bucketing such that421

for each v ∈ left-bor(V (D)), Bin(v) ∈ [first, first+δ−1], for each v ∈ right-bor(V (D)),422

Bin(v) ∈ [last− δ + 1, last] and the external stretch of Bin is at most s.423

Observe that δ− 1 represents the number of buckets that can appear between the buckets424

of u and v in any b-bucketing of external stretch at most s, where the bucket of u precedes425

the bucket of v and (u, v) ∈ E(D). We would like to remark that the condition of (P1) is426

not serious as we could have worked without it. We state it like the way we do for the sake427

of notational and argumentative convenience in the proofs. All it states is that the number428

of vertices is a power of 2 multiplied by b and δ. The first and last in (P2) represents the429

bucket number of the first and last buckets in the bucketing to be outputted. The relation430

between first and last in (P2) is there to ensure that there are enough buckets to hold the431

vertices of D. At any recursive call, the sets left-bor(V (D)) and right-bor(V (D)) represent432

the sets of vertices whose buckets have already been fixed in the previous recursive calls. The433

set left-bor(V ) represents the set of vertices in V that have an in-neighbour to the vertices434

that have been decided to be placed in the buckets before the bucket numbered first in435

the earlier recursive calls. Similarly, right-bor(V ) represents the set of vertices in V that436

have an out-neighbour to the vertices that have been decided to be placed in the buckets437

after the bucket numbered last in the earlier recursive calls. Thus, in order to give the final438

bucketing of external stretch at most s, it is necessary that left-bor(V ) are placed in the439

first δ buckets and right-bor(V ) are placed in the last δ buckets. This is captured in (P4).440

The next definition describes the properties of the bucketing that would be outputted by441

Algorithm 1.442
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I Definition 5.3 (Look-out bucketing for a legitimate instance). Given a legitimate instance443

I = (D, b, s, first, last, left-bor(V (D)), right-bor(V (D)), Bin), we say a bucketing B is a444

look-out bucketing for I, if B is a b-bucketing Bout : V → [first, last] of external stretch at445

most b that is consistent with Bin.446

Observe that, for the algorithm of Lemma 5.1, a call to Algorithm 1 on (D, b, s, 1, |V |/b, ∅, ∅, φ)447

is enough. The formal proof of correctness for the same can be found in the Appendix. To448

give the formal description of Algorithm 1, we will use the following definition.449

I Definition 5.4 (B validates a partition (X1, X2)). For any integers p, q and X ′ ⊆ X, let450

B : X ′ → [p, q] be a partial bucketing of X ′. Let (X1, X2) be some partition of X. We say451

that B validates (X1, X2) if the following holds. Let r = b(p+q)/2c. For each v ∈ X1 ∩X ′,452

B(v) ∈ [p, r] and for each v ∈ X2 ∩X ′, B(v) ∈ [r + 1, q].453

Algorithm 1 Algorithm for computing b-bucketing of external stretch at most s
Input: I = (D, b, s, first, last, left-bor(V ), right-bor(V ), Bin) such that I is legitimate for
Algorithm 1.
Output: A look-out bucketing for I, if it exists.
1: Let V = V (D) and δ = ds+1/be.
2: if |V | = b · δ then
3: return any b-bucketing B : V → [first, last] that it consistent with Bin
4: Let mid = (first+last−1)/2.
5: for each partition (L,R) of V such that |L| = |R| and Bin validates (L,R) do
6: Let borL = {v ∈ L | there exists u ∈ R, (v, u) ∈ E(D)}.
7: Let borR = {v ∈ R | there exists u ∈ L, (u, v) ∈ E(D)}.
8: Let B be the collection of partial b-bucketings, B : borL ∪ borR → [mid− δ + 1,mid+ δ],

such that for each v ∈ borL, B(v) ∈ [mid − δ + 1,mid], for each v ∈ borR, B(v) ∈
[mid+ 1,mid+ δ], external stretch of B is at most s and B is consistent with Bin.

9: for each B ∈ B do
10: Define Bnewin : left-bor(V ) ∪ borL ∪ borR ∪ right-bor(V ) → [first, last], such that for

each v ∈ left-bor(V ) ∪ right-bor(V ), Bnewin (v) = Bin(v) and, for each v ∈ borL ∪ borR,
Bnewin (v) = B(v).

11: Let BnewLin : left-bor(V ) ∪ borL → [first,mid] be such that BnewLin = Bnewin |L.
12: Let BnewRin : borR ∪ right-bor(V )→ [mid+ 1, last] be such that BnewRin = Bnewin |R.
13: Define left-bor(L) = left-bor(V ) and right-bor(L) = borL.
14: Define left-bor(R) = borR and right-bor(R) = right-bor(V ).
15: Let IB

L be the instance (D[L], b, s, first,mid, left-bor(L), right-bor(L), BnewLin ).
16: Let IB

R be the instance (D[R], b, s,mid, last, left-bor(R), right-bor(R), BnewRin ).
17: if IB

L and IB
R are legitimate inputs for Algorithm 1 then

18: if Algorithm 1(IB
L) ! = NO and Algorithm 1(IB

R) ! = NO then
19: return Algorithm 1 (IB

L) ∪ Algorithm 1 (IB
R)

20: return NO

For the formal description of Algorithm 1 refer to the pseudocode. We give the informal454

description of Algorithm 1 here. (Figure 1 for the same can be found in Appendix ). In a455

legitimate instance when the number of vertices is b · δ, the number of buckets is δ. Recall456

that δ = ds+1/be. Note that in this case, every b-bucketing of the vertex set has external457

stretch at most s. This is because the number of buckets between any two buckets is at most458
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δ − 2 and hence, the number of vertices that appear in the buckets between any two buckets459

is at most (δ − 2) · b ≤ s.460

When the number of vertices is larger, the algorithm first guesses which vertices will be461

assigned a bucket from the first half buckets of the final bucketing (this corresponds to the462

set L) and which will be assigned the last half (this corresponds to the set R). Since the final463

bucketing has to be consistent with Bin, from the description of Bin in Definition 5.2, the464

vertices of left-bor(V ) should belong to the first half buckets and the vertices of right-bor(V )465

should belong to the last half buckets. Thus, the algorithm only considers those partitions466

(guesses) which Bin validates (Line 5).467

Fix a guessed partition (L,R) of V . The set borL represents the set of vertices in L that468

have an out-neighbour in R. Similarly, the set borR represents the set of vertices in R with469

an in-neighbour in L. Since in any b-bucketing of external stretch at most s, the number of470

buckets that can appear between the buckets of the end points of a forward arc is at most471

δ − 1, the vertices of borL can only be placed in the δ buckets closest to the middle bucket472

and before it. Similarly, the vertices of borR can only be placed in the δ buckets closest to473

the middle bucket and after it. The algorithm goes over all possible partial b-bucketings of474

these vertices in the described buckets, that are consistent with Bin, and themselves have475

external stretch at most δ (Line 8).476

For a fixed partial b-bucketing enumerated above, the algorithm recursively finds a477

bucketing of the L vertices in the first half buckets and the bucketing of the R vertices in478

the last half buckets that is consistent with Bin and the partial b-bucketing of the borL and479

borR vertices guessed. This final bucketing is then obtained by combing the two bucketings480

from the two disjoint sub-problems (Lines 9 to 19).481

I Lemma 5.5. (?) Algorithm 1 on a legitimate input (D, b, s, first, last, left-bor(V ), right-bor(V ),482

Bin), runs in time min{O∗(4n · ds+1/ben),O∗(4n · ds+1/be2(b+s) logn)}, and returns a look-out483

bucketing for I, if it exists.484

Theorem 1.3 (resp. Theorem 1.3) can be proved by setting bucket size to be dbε/2e (resp. 1)485

and external stretch b− 1 as parameters in the algorithm of Lemma 5.1. The full proofs are486

deferred to the Appendix.487

6 Conclusion488

In this paper we gave exponential time algorithm for the Digraph Bandwidth problem,489

that either solved the problem exactly or computed it approximately. In particular, our490

results imply that whenever b ≤ n
log2 n

or, the treewidth of the underlying undirected digraph491

is O( n
logn ) or, the number of arcs in the digraph are linear in the number of vertices, then492

there exists a 2O(n) time algorithm for solving Digraph Bandwidth. Some important493

questions that remain open about Digraph Bandwidth are the following.494

Does Digraph Bandwidth admit an algorithm with running time 2O(n) on general495

digraphs?496

Another interesting question is the complexity of the Digraph Bandwidth problem,497

when b is fixed. Recall that, in the undirected case, Bandwidth can be solved in time498

O(nb+1) [26]. When b = 0, the problem is equivalent to checking if the input is a dag,499

which can be done in linear time. For b = 1, we are able to design an O(n2) time500

algorithm. For b = 2, the problem seems to be extremely complex, and in fact, we will be501

surprised if the problem turns out to be polynomial time solvable. Overall, finding the502

complexity of Digraph Bandwidth, for a fixed b ≥ 2, is an interesting open problem.503
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A A potential scenario that could be modelled by Digraph562

Bandwidth563

Consider the following scenario. Suppose a factory is being set up at a hilly terrain and its564

different departments need to be placed at different places on an uphill. Each department565

manufactures particular kinds of tools and there are interdependencies with respect to566

tools among departments, that is, a department may need a tool which is manufactured by567

some other department. Suppose that electric vehicles are used to transport the tools from568

one department to another. Most of the electric vehicles (with few exceptions) can cover569

approximately 100 miles in a charge which is even less while going uphill. Also, recharging570

vehicle takes time. On the other hand, while going downhill, either the vehicle consumes less571

power, or does not consume any power, or even recharge vehicle, depending on the steepness572

of the hill. Therefore, if the department v requires tools from the department u, then the573

factory owner would like to locate v either downhill from u, or not very far from u to save574

the energy consumption. This can be modelled as Digraph Bandwidth as follows. In the575

digraph D, each vertex represents a department and an arc from u to v means that u requires576

deliveries from v. Let u and v be two vertices in the digraph D. Then, we have an arc577

from u to v in the digraph D if the department v uses tools manufactured by department u.578

Interpret an ordering of vertices from left to right as locations of department from downhill579

to uphill, that is, the first vertex in the ordering corresponds to the bottommost department580

at the hill and the last vertex in the ordering corresponds to the topmost department at the581

hill. Clearly, if directed bandwidth of D is at most b, then if the department u needs tools582

from the department v, and u is uphill from v, then u is at most b distance away from v583

(considering unit distance between the departments).584

B Some More Preliminaries585

Sets and Functions: We denote the set of natural numbers by N. For i, j ∈ N, [i] and586

[i, j] denote the sets {1, · · · , i} and {i, · · · , j}, respectively. For any set X, by X = (X1, X2)587

we denote an ordered partition of X, that is X1 ∪ X2 = X, X1 ∩ X2 = ∅ and, (X1, X2)588

(X2, X1) are two different partitions of X. Let f : X → Y be a function. For y ∈ Y ,589

f−1(y) = {x ∈ X | f(x) = y}. The function f is called injective if for each x, y ∈ X,590

f(x) = f(y) implies x = y. The function f : ∅ → Y is denoted by φ. For S ⊆ X, f |S : S → Y591

is a function such that for s ∈ S, we have f |S(s) = f(s). For any functions f1 : X1 → Y1 and592

f2 : X2 → Y2, we say that f1 is consistent with f2 if for each x ∈ X1 ∩X2, f1(x) = f2(x). If593

f1 and f2 are consistent, then f1 ∪ f2 : X1 ∪X2 → Y1 ∪ Y2 is defined as (f1 ∪ f2)(x) = fi(x),594

if x ∈ Xi.595

Digraphs: Consider a digraph D. By V (D) and E(D), we denote the set of vertices and596

(arcs) edges in D, respectively. Throughout the paper, n = |V (D)| and m = |E(D)|. A597

digraph D is called weakly connected, if the underlying undirected graph is connected. For598

any (u, v) ∈ E(D), u is an in-neighbour of v and v is an out-neighbour of u. For any set V of599

size n, we call a function σ : V → [n] as an ordering of V ). Given a function σ, we call σ(u) as600

the position of u in σ. Given an ordering σ of V (D), an arc (u, v) ∈ E(D) is called a forward601

arc in σ if σ(u) < σ(v). For a natural number b ∈ N, we call σ as a b-ordering of D if for any602

forward arc (u, v) ∈ E(D), σ(v)− σ(u) ≤ b. An ordering σ of V (D) is called a topological603

ordering if every arc (u, v) ∈ E(D) is a forward arc in σ. A digraph D is called a directed604

acyclic graph (DAG), if D has a topological ordering. Let σ be an ordering of V (D). By σi,605

we denote the vertex σ−1(i). Given two orderings σ1 : V (D1)→ [n1] and σ2 : V (D2)→ [n2],606
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we define the concatenation of σ1 and σ2 as the ordering σ1 ·σ2 : V (D1)∪V (D2)→ [n1 +n2]607

where σ1(u).608

I Definition B.1 (Tree decomposition). A tree decomposition of a graph G is a pair T =609

(T,X), where T is a rooted tree and X = {Xt | t ∈ V (T )}. Every node t of T is assigned a610

subset Xt ⊆ V (H) such that following conditions are satisfied:611 ⋃
t∈V (T )

Xt = V (G), i.e. each vertex in G is in at least one bag;612

For every edge uv ∈ E(G), there is t ∈ V (T ) such that u, v ∈ Xt;613

For every vertex v ∈ V (G) the graph T [{t ∈ V (T ) | v ∈ Xt}] is a connected subtree of T .614

The width of tree decomposition T is maxt∈V (T ) |Xt| − 1, The treewidth of a graph G is the615

minimum possible width of a tree decomposition of G.616

C Missing algorithm and proofs of Section 3617

C.1 Description of the algorithm of Lemma 3.1618

In this section, we give the pseudocode of the algorithm to construct a collection of (b+ 1)-619

topological bucketings (Algorithm 2). In Algorithm 2, B(v) = ? denotes that we have not620

assigned a bucket to v. In Step 3 of Algorithm 2, queue is an ordered set. In Step 18 of621

Algorithm 2, we add a vertex at the end of ordered set queue. In Step 20 of Algorithm 2, we622

remove the first element of queue.623

C.2 Proof of Lemma 3.1624

Suppose that (D, b) is a YES instance of DAG-BW. Let σ be a b-topological ordering of (D, b).625

Let Bσ be the unique bucketing induced by σ. We compute a collection B, of (b+1)-bucketings626

of D using Algorithm 2. We claim that at each iteration of the algorithm, there exists a627

bucketing B ∈ B such that if B(v) 6= ?, then B(v) = Bσ(v). We prove it by induction on the628

number of iterations. Note that in the first iteration of the algorithm, B contains all possible629

(b + 1)-bucketings of v. Therefore, there exists a bucketing B ∈ B such that B(v) = Bσ(v).630

Now, let X be a set of vertices whose bucket has been decided till (i+ 1)th iterations of the631

algorithm. Let x be a vertex that is placed at the (i+1)th iteration of the algorithm. Let q be632

the element of queue corresponding to which we execute Step 6 of the algorithm for x. Note633

that if x ∈ N+(q), then x ∈ {Bσ(q), Bσ(q) + 1}, otherwise x ∈ {Bσ(q), Bσ(q)− 1}. Note that634

we have constructed all these bucketings for x in Step 9 to 17 of the algorithm. By induction635

hypothesis, there exists B ∈ B such that B(u) = Bσ(u) for all u ∈ X \ {x}. Hence, there exists636

B ∈ B such that B(u) = Bσ(u) for all u ∈ X. Note that since D is a weakly connected digraph,637

when queue = ∅, there does not exist v ∈ V (D) such that B(v) = ?, B ∈ B. Now, we prove638

that |B| = O?(2n). Note that in Step 2 of the algorithm, we construct n/(b+1) bucketings for639

v. Then, for each u ∈ V (D) \ {v}, we construct at most two (b+ 1)-bucketings. Therefore,640

|B| ≤ 2n−1 · n/(b+1). Since each step of the algorithm can be executed in polynomial time,641

the running time of the algorithm is O?(2n) time. J642

C.3 Proof of Lemma 3.4643

Suppose that there exists a b-topological ordering σ of the digraph D such that Bσ(v) = B(v),644

for all v ∈ V (D). Let Υslots be the lexicographic ordering of slots. Let i ∈ [n]. We define the645

set Si as follows.646

Si = {v ∈ V (D) | (pos(σ(v)), bucket(σ(v))) belongs to the first i elements in Υslots}647
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Algorithm 2 Algorithm for computing a collection of (b+1)-bucketing of a weakly connected
digraph
Input: A weakly connected digraph D.
Output: A collection of (b+ 1)-bucketings of D.
1: Let v be an arbitrary vertex of D.
2: B =

{
B : V (D) →

[⌈
|V (D)|/(b+1)

⌉]
∪
{
?
}
| B(v) ∈

[⌈
|V (D)|/(b+1)

⌉]
and B(w) = ?,∀w ∈

V (D) \ {v}
}
. . B is a collection of all possible (b+ 1)-bucketings for v.

3: queue = (v)
4: while queue 6= ∅ do
5: Let q be the first element of queue.
6: for each vertex w ∈ N+(q) ∪N−(q) do
7: B′ = ∅. . Initialize an empty collection of (b+ 1)-bucketings.
8: for each B ∈ B do
9: B′ = B . Initialize a (b+ 1)-bucketing as B
10: B′(w) = B(q) . place w in the same bucket as that of q
11: B′ = B′ ∪ {B′} . add (b+ 1)-bucketing B′ in the collection B′
12: B′′ = B . Initialize a new (b+ 1)-bucketing B′′ as B
13: if w ∈ N+(q) then
14: B′′(w) = B(q) + 1 . place w in the bucket succeeding the bucket of q.
15: else
16: B′′(w) = B(q)− 1 . place w in the bucket preceding the bucket of q.
17: B′ = B′ ∪ {B′′} . add newly constructed bucket B′′ in the collection B′
18: queue = queue ∪ (w)
19: B = B′ . reinitialize B as B′
20: Remove q from queue . all the out(in)-neighbours of q are placed in the buckets
21: Remove all those bucketings from B that are not (b+ 1)-topological bucketing.
22: return B

Clearly, |Si| = i. We claim that Si is a lexicographically embeddible subset. We first prove648

(C1). Consider an arc (u, v) ∈ E(D) such that u ∈ Si and v /∈ Si. For the contradiction,649

suppose that B(u) 6= B(v). Since u ∈ Si and v /∈ Si, by the definition of Si, pos(σ(u)) ≤650

pos(σ(v)). Since B is a topological bucketing and B(u) 6= B(v), B(u) = B(v)− 1. Moreover,651

since B is a (b + 1)-bucketing, we obtained that σ(v) − σ(u) ≥ b + 1, a contradiction to652

the fact that σ is a b-ordering. Now, we will prove (C2). Consider an arc (u, v) ∈ E(D)653

such that v ∈ Si and u /∈ Si. For the contradiction, suppose that B(u) 6= B(v)− 1. Since σ654

is a b-topological ordering, and B is (b + 1)-bucketing, we have that either B(u) = B(v) or655

B(u) = B(v) − 1. Thus, B(u) = B(v). Moreover, since v ∈ Si and u /∈ Si, by the definition656

of Si, we infer that pos(σ(v)) < pos(σ(u)). Hence, σ(v) < σ(u), a contradiction to the fact657

that σ is a topological ordering of D. Note that σ|Si
is a b-topological ordering that satisfies658

(C3) by the construction of Si.659

Now, suppose that there exists a les, ∅ ⊂ S1 ⊂ · · · ⊂ Sn = V . We construct an ordering σ660

as follows. Let v ∈ Si \Si−1. We set σ(v) = k, where (pos(k), bucket(k)) is at ith position in661

Υslots. We claim that σ is a b-topological ordering of the digraph D such that for all v ∈ V (D),662

Bσ(v) = B(v). Since each Si is a lexicographically embeddible set, if a vertex v ∈ Si \ Si−1,663

then B(v) = ((i − 1) mod n/(b+1)) + 1. Therefore, Bσ(v) = B(v), for all v ∈ V (D) by the664

construction of σ. Now, we show that σ is a topological ordering of D. For the contradiction,665

suppose that (u, v) ∈ E(D) such that σ(u) = p, σ(v) = q and q < p. Since q < p, either666
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pos(q) ≤ pos(p) or bucket(q) < bucket(p). Suppose that pos(q) ≤ pos(p). Then, there667

exists a lexicographical embeddible set S such that v ∈ S and u /∈ S. Therefore, by condition668

(C2), B(u) = B(v) − 1. Hence, Bσ(u) < Bσ(v) as Bσ = B. Since q < p, Bσ(v) ≤ Bσ(u), a669

contradiction. Now, suppose that pos(q) > pos(p). Then, there exists a lexicographical670

embeddible set S such that u ∈ S and v /∈ S. Then, by condition (C1), B(u) = B(v). Since671

q < p and pos(q) > pos(p), we have that bucket(q) < bucket(p). Since by the definition of672

B and bucket, Bσ(w) = B(w) = bucket(σ(w)), for all w ∈ V (D), we have that B(v) < B(u),673

a contradiction. Therefore, σ is a topological ordering. Now, we prove that σ is a b-ordering.674

Let (u, v) ∈ E(D). Since σ is a topological ordering of V (D), σ(u) < σ(v). If Bσ(u) = Bσ(v),675

then σ(v)− σ(u) ≤ b. Now, suppose that Bσ(u) 6= Bσ(v). Since σ is a topological ordering676

and σ(u) < σ(v), Bσ(u) < Bσ(v). If pos(u) > pos(v), then σ(v)− σ(u) ≤ b. Now, suppose677

that pos(u) ≤ pos(v). Then, there exists a lexicographical embeddible set S such that u ∈ S678

and v /∈ S. Since Bσ = B, we have that B(u) < B(v). Moreover, since (u, v) ∈ E(D), this679

contradicts that S is a lexicographically embeddible set (condition (C1) does not hold).680

C.4 Proof of Lemma 3.5681

We find les using a dynamic programming algorithm. We define our dynamic programming
table as follows. For each subset S ⊆ V (D), c[S] is 1, if S is a lexicographically embeddible
set, otherwise 0. We compute c[S] for all 2n subsets of V (D). Base case of our algorithm
is c[∅] = 1. Clearly, ∅ is vacuously a lexicographically embeddible set. Now, for recursive
computation, let S ⊆ V (D). We compute c[S] using the following formula.

c[S] = ∨v∈S(c[S \ {v}] ∧ In(v) ∧ Out(v) ∧ SB(v))

In the above formula, In(v) = 1 if for all the arcs (v, u) ∈ E(D) such that u /∈ S, B(v) = B(u),682

otherwise 0; Out(v) = 1 if for all the arcs (u, v) ∈ E(D) such that u /∈ S, B(u) < B(v),683

otherwise 0; and SB(v) = 1 if B(v) is equal to ((|S| − 1) mod n/(b+1)) + 1, otherwise 0. Note684

that In(v) and Out(v) indicates whether condition (C1) and condition (C2) are satisfied for685

the incoming and outgoing arcs incident on v. Now, we prove that c[S] = 1 if and only if S686

is a lexicographically embeddible set, where S ⊆ V (D). In the forward direction, suppose687

that c[S] = 1. This implies that there exists v ∈ S such that c[S \ {v}] = 1, In(v) = 1,688

Out(v) = 1 and SB(v) = 1. Note that by the definition of In(v) and Out(v) and the fact689

that S \ {v} is a lexicographically embeddible set, conditions (C1) and (C2) in Definition690

3.3 are satisfied by S. Since c[S \ {v}] = 1, there exists an ordering, ρ : S \ {v} → [n]691

that respects lexicographic ordering of slots. We define a function γ : S → [n] such that692

γ(u) = ρ(u) for all u ∈ S \ {v} and γ(v) = k, where (pos(k), bucket(k)) is |S|th element693

in the lexicographic ordering of slots. Since bucket(ρ(u)) = B(u), for all u ∈ S \ {v} and694

SB(v) = 1, we obtained that bucket(γ(u)) = B(u), for all u ∈ S. Now, we argue that γ is695

a topological ordering. Consider an arc (x, y) ∈ E(D) such that x, y ∈ S. Suppose that696

x ∈ S \ {v}. If y ∈ S \ {v}, then since ρ is a topological ordering, γ(x) < γ(y). Suppose697

that y /∈ S \ {v}, that is, y = v. Since S \ {v} is a lexicographically embediddble set,698

using condition (C1), B(x) = B(v). Hence, by the construction of γ, γ(x) < γ(v). Now,699

suppose that x /∈ S \ {v}, that is, x = v. This implies that y ∈ S \ {v}. Since S \ {v}700

is a lexicographically embeddible set, B(v) = B(y) − 1 (condition (C2) in Definition 3.3).701

Hence, γ is a topological ordering. Now, we prove that γ is a b-ordering. Consider an arc702

(x, y) ∈ E(D) such that x, y ∈ S. If x, y ∈ S \ {v}, then |γ(x)− γ(y)| ≤ b as ρ is a b-ordering.703

Suppose that x = v. Since y ∈ S \ {v} and S \ {v} is a lexicographically embeddible set,704

using condition (C2) in Definition 3.3, B(v) = B(y)− 1. Therefore, by the construction of γ,705

pos(γ(v)) > pos(γ(y)). Hence, |γ(x)− γ(y)| ≤ b. Now, suppose that y = v. Recall that we706
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are considering arc (x, v). Since x ∈ S \ {v}, using condition (C1) in Definition 3.3, we have707

that B(v) = B(x). Since B is a (b+1)-bucketing, we obtained that |γ(v)−γ(x)| ≤ b Hence, S is708

a lexicographically embeddible set. This completes the proof in the forward direction. In the709

backward direction, suppose that S is a lexicographically embeddible set. Then, there exists710

an ordering ρ : S → [n] that respects lexicographic ordering of slots. Let v be the vertex in711

S for which (pos(ρ(v)), bucket(ρ(v))) is largest among all the vertices in S. We claim that712

c[S \ {v}] = 1, In(v) = 1, Out(v) = 1 and SB(v) = 1. Note that since S is a lexicographically713

embeddible set, In(v) = 1, Out(v) = 1 and SB(v) = 1. Now, we prove that S \ {v} is a714

lexicographically embeddible set. We first prove (C1). Suppose that (u, u′) ∈ E(D) such715

that u ∈ S \ {v} and u′ ∈ V (D) \ (S \ {v}). For the contradiction, suppose that B(u) 6= B(u′).716

If u′ 6= v, then since u′ /∈ S, this contradicts that S is a lexicographically embeddible717

set. Now, suppose that u′ = v. Since B is a topological bucketing and B(u) 6= B(v),718

B(u) < B(v). By the choice of v, (pos(ρ(u)), bucket(ρ(u))) < (pos(ρ(v)), bucket(ρ(v))).719

Therefore, pos(ρ(u)) ≤ pos(ρ(v)). Hence, ρ(v)− ρ(u) ≥ b+ 1, a contradiction to that ρ is a720

b-ordering. Now, we prove condition (C2). Suppose that there exists an arc (u, u′) ∈ E(D)721

such that u′ ∈ S \ {v} and u ∈ V (D) \ (S \ {v}). For the contradiction suppose that722

B(u) ≥ B(u′). Since B is topological bucketing, B(u) ≤ B(u′). Therefore, B(u) = B(u′). If723

u 6= v, then this contradicts that S is a lexicographically embeddible set. Suppose that724

u = v. As argued above pos(ρ(u′)) ≤ pos(ρ(v)). Moreover, since B(v) = B(u′), we obtained725

that pos(ρ(u′)) < pos(ρ(v)). Since, (v, u′) ∈ E(D), this contradicts that ρ is a topological726

ordering. Note that ρ|S\{v} is a b-topological ordering that satisfies condition (C3). J727

D Missing Proofs of Section 5728

δ.b δ.bδ.bb

s

first mid −
δ + 1

mid mid+ 1 mid+ δ last
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u vu′ v′

||

Figure 1 The buckets of Algorithm 1

I Lemma D.1. Let I = (D, b, s, first, last, left-bor(V (D)), right-bor(V (D)), Bin) be a le-729

gitimate instance for Algorithm 1. If Algorithm 1 returns a bucketing, then it is a look-out730

bucketing for I.731

Proof. Recall, from Line 1 of Algorithm 1 that V = V (D) and δ = ds+1/be. Since I is a732

legitimate instance of Algorithm 1, |V | = 2η · b · δ, for some positive integer η ≥ 0. We prove733

the lemma by induction on η. When η = 0, |V | = b · δ. In this case, since the total number of734

buckets in the instance I is last− first+ 1 = δ (from (P2) of Definition 5.2), a b-bucketing735

of V always exists. Also, the external stretch of any b-bucketing is at most (δ − 2) · b ≤ s.736

Thus, a look-out bucketing for I always exists.737

Henceforth, η > 1. Observe from the pseudo-code of Algorithm 1 that, it returns a738

bucketing only at Line 3 and at Line 19. Since η > 1, |V | > b · δ, it remains to prove that739

the bucketing returned at Line 19 is a look-out bucketing for I. Observe, again from the740
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pseudo-code of Algorithm 1, that a bucketing is returned at Line 19 only when the following741

conditions hold.742

1. At Line 5 there exists a partition, say (L,R) of V , such that |L| = |R|, Bin validates743

(L,R).744

2. During the run of the iteration of for loop at Line 5 for the (L,R) described above, at745

Line 9 there exists B ∈ B such that the instances IB
L and IB

R defined at Lines 15 and 16746

are legitimate and, Algorithm 1(IB
L) ! = NO and Algorithm 1(IB

R) ! = NO.747

Let BLout = Algorithm 1(IB
L) and BRout = Algorithm 1(IB

L). Since |L| = |R| and |V | = 2η · b · δ,748

we have that |L| = |R| = 2η−1 · b · δ. Thus, from the induction hypothesis, BLout is a look-749

out bucketing for IB
L and BRout is a look-out bucketing for IB

R. We remain to show that750

Bout = BLout ∪ BRout is a look-out bucketing for I. We prove this below.751

Bucketing: Since BLout : L→ [first,mid] and BRout : R→ [mid+1, last] are b-bucketings, and752

L∩R = ∅, L∪R = V , [first,mid]∩ [mid+1, last] = ∅ and [first,mid]∪ [mid+1, last] =753

[first, last], Bout : V → [first, last] is a b-bucketing of V .754

Consistent: We now prove that Bout is consistent with Bin. Since I is a legitimate instance,755

from (P4) of Definition 5.2, for each v ∈ left-bor(V ), Bin(v) ∈ [first, first+ δ − 1] and756

for each v ∈ right-bor(V ), Bin(v) ∈ [last− δ + 1, last]. Since IB
L and IB

R are legitimate757

instances, left-bor(L) ⊆ L and right-bor(R) ⊆ R. Also, for each v ∈ left-bor(L),758

BnewLin (v) ∈ [first, first + δ − 1] and for each v ∈ right-bor(R), BnewRin (v) ∈ [last − δ +759

1, last]. Since BLout (respectively BRout) is a look-out bucketing for IB
L (respectively IB

R), BLout760

(respectively BRout) is consistent with BnewLin (respectively BnewRin ). Since, Bout = BLout∪BRout,761

and left-bor(L) = left-bor(V ) and right-bor(R) = right-bor(V ) (from the construction762

in Lines 13 and 14), we have that, for v ∈ left-bor(V ), Bout(v) ∈ [first, first + δ − 1]763

and v ∈ right-bor(V ), Bout(v) ∈ [first+ δ − 1, last]. Thus, Bout is consistent with Bin.764

External Stretch: Consider any arc (u, v) ∈ E(D).765

1. If u, v ∈ L (respectively u, v ∈ R), then since Bout = BLout ∪ BRout and the external766

stretch of BLout (respectively BRout) is at most s, we have that either Bout(u) ≥ Bout(v)767

or (Bout(v)− Bout(u)− 1) · b ≤ s.768

2. If u ∈ R and v ∈ L, then since Bout = BLout ∪ BRout, Bout(u) ≥ Bout(v).769

3. If u ∈ L and v ∈ R. In this case, first observe, from the construction of borL and770

borR in Lines 6 and 7 of Algorithm 1, that u ∈ borL and v ∈ borR. Since B ∈ B (from771

Line 9), from Line 8, B is a partial b-bucketing of borL ∪ borR of external stretch at772

most s and B(u) < B(v), therefore, (B(v)− B(u)− 1) · b ≤ s. Since B is consistent with773

Bin (from Line 8), and Bin is consistent with Bout (as proved above), we conclude that774

(Bout(v)− Bout(u)− 1) · b ≤ s.775

J776

I Lemma D.2. Let I = (D, b, s, first, last, left-bor(V (D)), right-bor(V (D)), Bin) be a legit-777

imate instance for Algorithm 1 such that a look-out bucketing for I exists. Then, on input I,778

Algorithm 1 does not return NO.779

Proof. Recall that V = V (D) and δ = ds+1/be. Since I is a legitimate instance, |V | = 2η ·b ·δ,780

η ≥ 0 is a positive integer. We prove this lemma by induction on η. When η = 0, Algorithm 1781

always returns a look-out bucketing of I (Line 3). Henceforth, η ≥ 1. From the pseudo-code782

of Algorithm 1, to prove the lemma it is enough to prove the following.783

1. There exists a partition of V = (L,R), |L| = |R| such that Bin validates (L,R),784
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2. The family B constructed at Line 8 (during the iteration of the for loop at Line 5 for785

(L,R)) contains a B such that the following holds.786

(Q1) B is a partial b-bucketing of borL ∪ borR, B : borL ∪ borR → [mid− δ + 1,mid+ δ],787

(Q2) For each v ∈ borL, B(v) ∈ [mid − δ + 1,mid] and for each v ∈ borR, B(v) ∈ [mid +788

1,mid+ δ],789

(Q3) the external stretch of B is at most s,790

(Q4) B is consistent with Bin,791

(Q5) The instances IB
L and IB

R defined at Lines 15 and 16 are legitimate, and792

(Q6) Algorithm 1(IB
L) ! = NO, and Algorithm 1(IB

R) ! = NO.793

Let Bopt : V → [first, last] be a look-out bucketing for I. Let mid = (first+last−1)/2.794

Since I is a legitimate instance, from (P2) of Definition 5.2, last−first+1 = 2η ·δ. Therefore,795

mid = (first+last−1)/2 = first+2η−1 ·δ−1. Thus, mid is an integer. Let L =
⋃
i∈[mid] B−1

opt(i)796

and R =
⋃
i∈[mid+1,last] B−1

opt(i). Clearly, (L,R) is a partition of V . Also, |L| = |R| because797

Bopt is a b-bucketing of V and |V | is divisible by b.798

B Claim D.3. Bin validates (L,R).799

Proof. Since I is a legitimate instance, from (P4) of Definition 5.2, for each v ∈ left-bor(V ),800

Bin(v) ∈ [first, first+ δ − 1] and for each v ∈ right-bor(V ), Bin(v) ∈ [last− δ + 1, last].801

From (P2) of Definition 5.2, last−first+1 = 2η ·δ. Since η ≥ 1 andmid = (first+last−1)/2,802

we have that first + δ − 1 ≤ mid < last − δ + 1. Since Bopt is consistent with Bin, from803

the description of Bin in (P4) of Definition 5.2, and from the construction of L and R, we804

have that, for each v ∈ left-bor(V ), v ∈ L and for each v ∈ right-bor(V ), v ∈ R. Thus, Bin805

validates (L,R). C806

Consider the execution of Lines 6 to 8 during the iteration of the for loop for the (L,R)807

constructed above. Consider the sets borL = {v ∈ L | there exists u ∈ R such that (v, u) ∈808

E(D)} and borR = {v ∈ R | there exists u ∈ L such that (u, v) ∈ E(D)}.809

B Claim D.4. For each v ∈ borL, mid − δ + 1 ≤ Bopt(v) ≤ mid, and for each v ∈ borR,810

mid+ 1 ≤ Bopt(v) ≤ mid+ δ.811

Proof. From the construction of L and R and the fact that borL ⊆ L and borR ⊆ R, we have812

that, for each v ∈ borL, Bopt(v) ≤ mid, and for each v ∈ borR, Bopt(v) ≥ mid+ 1. We now813

prove that for each v ∈ borL, Bopt(v) ≥ mid − δ + 1. The proof of Bopt(v) ≤ mid + δ for814

v ∈ borR follows using symmetric arguments.815

Let Bopt(v) = i. Suppose, for the sake of contradiction, that i ≤ mid− δ. Since v ∈ borL,816

there exists u ∈ R such that (v, u) ∈ E(D). Let Bopt(u) = j. Since u ∈ R, j ≥ mid+ 1. Since817

the external stretch of Bopt is at most s and Bopt(u) < Bopt(v), we have that (j− i− 1) · b ≤ s.818

Since i ≤ mid− δ and j ≥ mid+ 1, we have that (j− i− 1) ≥ δ. Thus, we have that δ · b ≤ s,819

that is ds+1/be · b ≤ s, which is a contradiction. C820

Define a partial b-bucketing B : borL ∪ borR → [mid − δ + 1,mid + δ] as follows: for821

each v ∈ borL ∪ borR, B(v) = Bopt(v). Then Claim D.4 proves (Q1) and (Q2). Since, the822

stretch of Bopt is at most s and Bopt is consistent with Bin, from the construction of B, (Q3)823

and (Q4) follow. Consider the execution of the for loop at Line 9 for the partial bucketing824

B constructed above. Let IB
L and IB

R be the instances as constructed at Lines 15 and 16825

respectively.826

B Claim D.5. IB
L and IB

R are legitimate instances of Algorithm 1.827
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Proof. We will prove the claim for IB
L. The claim for IB

R follows from symmetric arguments.828

Recall that IB
L = (D[L], b, s, first,mid, left-bor(L), right-bor(L), BnewLin ). The following829

points prove that IB
L is a legitimate instance.830

1. Since |V | = 2η · b · δ, η ≥ 1 and |L| = |V |/2, |L| = 2η−1 · b · δ.831

2. Since I is a legitimate instance, from (P2) of Definition 5.2, we have that last−first+1 =832

2η · δ. Since, mid = (first+last−1)/2, we have that mid− first+ 1 = 2η−1 · δ.833

3. Recall the construction of left-bor(L) and right-bor(L) from Line 13: left-bor(L) =834

left-bor(V ) and right-bor(L) = borL. Since left-bor(V ) ⊆ L because Bin validates (L,R),835

and borL ⊆ L by definition, we have that left-bor(L), right-bor(L) ⊆ L.836

4. Recall, from Lines 10 and 11, that BnewLin = Bnewin |L, where Bnewin = B∪Bin. First note that,837

since B is a function from borL ∪ borR, Bin is a function from left-bor(V ) ∪ right-bor(V )838

and left-bor(L) = left-bor(V ), right-bor(L) = borL, we have that BnewLin is a function839

from left-bor(L)∪ right-bor(L). Since B is consistent with Bopt (from the construction of840

B) and Bin is consistent with Bopt (because Bopt is a look-out bucketing for I), we have841

that Bnewin = B∪ Bin is consistent with Bopt. Thus, since Bopt is a b-bucketing of V and has842

external stretch at most s, we have that the BnewLin is a partial b-bucketing and has external843

stretch at most s. Also, since BnewLin is consistent with Bin and left-bor(L) = left-bor(V ),844

we have that for each v ∈ left-bor(L), BnewLin (v) ∈ [first, first + δ − 1]. Similarly,845

since BnewLin is consistent with B, right-bor(L) = borL and for each v ∈ borL, B(v) ∈846

[mid− δ+ 1,mid], we have that, for each v ∈ right-bor(L), BnewLin (v) ∈ [mid− δ+ 1,mid].847

This proves that BnewLin satisfies (P4) of Definition 5.2.848

C849

B Claim D.6. Algorithm 1 (IB
L) ! = NO and Algorithm 1(IB

R) ! = NO.850

Proof. We will prove the claim for IB
L. The claim for IB

R follows from symmetric arguments.851

We will now show that Bopt|L is a look-out bucketing of IB
L. The proof of the claim then852

follows from induction hypothesis.853

Since Bopt is a b-bucketing, so is Bopt|L. From the construction of L, Bopt|L : L →854

[first,mid]. Since BnewLin = Bnewin |L, where Bnewin = B ∪ Bin, and Bout is consistent with Bin855

and B, we conclude that Bopt|L is consistent with BnewLin . Since the external stretch of Bopt is856

at most s, so is the external stretch of Bopt|L. C857

Claims D.5 and D.6 prove (Q5) and (Q6). This finishes the proof of the lemma. J858

I Lemma D.7. On a legitimate input (D, b, s, first, last, left-bor(V (D)), right-bor(V (D)),859

Bin), Algorithm 1 returns a look-out bucketing for I, if it exists.860

Proof. The proof follows from Lemma D.1 and D.2. J861

I Lemma D.8. Algorithm 1 on a legitimate input (D, b, s, first, last, left-bor(V ), right-bor(V ),862

Bin), runs in time min{O∗(4n · ds+1/ben),O∗(4n · ds+1/be2(b+s) logn)}, where n is the number863

of vertices of D.864

Proof. Recall that δ = ds+1/be. We begin by analysing the size and the time taken to compute865

the family B at Line 8 for a fixed partition (L,R) of V . For this, we can safely assume that866

|V | = 2η · b · δ where η ≥ 1. Recall that Bin : left-bor(V ) ∪ right-bor(V )→ [first, last]. Let867

bL = |borL \ left-bor(V )| and let bR = |borR \ right-bor(V )|. Observe that the number of868

functions from borL ∪ borR that map each vertex of borL in the range [mid− δ + 1,mid] and869
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map each vertex of borR in the range [mid+1,mid+δ] and are consistent with Bin is δbL ·δbR .870

Thus, the size of the family B at the iteration of the for loop at Line 5 corresponding to871

(L,R) is at δbL · δbR . Also, the time taken to compute such a family is O(δbL · δbR).872

Since I is a legitimate instance, from (P2) in Definition 5.2, last− first+ 1 = 2η · b · δ.873

Since η ≥ 1, we have that first+ δ − 1 < last− δ + 1. Thus, from (P4) of Definition 5.2,874

left-bor(V ) ∩ right-bor(V ) = ∅.875

Again, for a fixed partition (L,R) of V considered during an iteration of the for loop at876

Line 5, consider the instances IB
L and IBR constructed at Lines 15 and 16, for any B ∈ B at877

Line 9. Let I be the input instance. Let us denote by u the number of vertices that are not in878

left-bor(V )∪ right-bor(V ), that is, u = |V (D) \ (left-bor(V )∪ right-bor(V ))|. We call these879

vertices the unplaced vertices for I. Similarly, let uL (respectively uR) denote the number of880

unplaced vertices for IB
L (respectively IB

R), that is uL = |L \ (left-bor(L) ∪ right-bor(L))|881

(respectively uR = |R \ (left-bor(R) ∪ right-bor(R))|).882

B Claim D.9. u = uL + uR + bL + bR.883

Proof. For ease of notation, let x1 = |left-bor(V )| and let x2 = |right-bor(V )|. Since884

left-bor(V )∩ right-bor(V ) = ∅, we have that u = |V | − (x1 +x2). Also, uL = |L| − (bL +x1)885

and uR = |R| − (bR + x2). Since |V | = |L|+ |R| (because |V | is a power of 2 and (L,R) is a886

partition of V ), we have that u = uL + uR + bL + bR. C887

Running time analysis 1: We are now equipped to analyse the running time of Algorithm 1.888

Let T (n, u) denote the time taken by Algorithm 1 on input I, where the number of vertices889

in the digraph in the instance is n and the number of unplaced vertices is u. In the following,890

c is some fixed constant. From Lines 2 to 3, we have that T (b · δ) ≤ c. Since the time taken891

to execute Lines 6 to 8 is at most O(|B|+ n) ≤ c · (|B|+ n), and for a fixed partition (L,R),892

|B| ≤ δbL+bR , we have the following recurrence.893

T (n, u) ≤
∑

V=(L,R),
|L|=|R|

c · (δbL+bR + n) + δbL+bR(T (n/2, uL) + T (n/2, uR)) (1)894

By induction on n, we can prove that for any u ≤ n, T (n, u) = O∗(4n · δn).895

Running time analysis 2: One can do the running time analysis of the algorithm a little896

differently to get a different running time. The crucial point of this analysis is the fact that897

in each iteration of the for loop at Line 5, if the set constructed at Line 8 is not empty, that898

is the for loop at Line 9 is executed, then the sizes of the sets borL and borR are bounded.899

This is formalized below.900

B Claim D.10. Consider any arbitrary iteration of the for loop at Line 5. Let (L,R) be the901

partition considered during this iteration. Then if B 6= ∅, then |borL|, |borR| ≤ b+ s.902

Proof. For the sake of contradiction, suppose that |borL| > b+ s− 1 (symmetric arguments903

hold for bounding the size of borR). Since B 6= ∅, there exists a b-bucketing B : borL∪ borR →904

[mid− δ + 1,mid+ δ] such that for each v ∈ borL, B(v) ∈ [mid− δ + 1,mid] and for each905

v ∈ borR, B(v) ∈ [mid+ 1,mid+ δ]. Let v ∈ borL be the vertex such that B(v) is minimum.906

Let B = i. Then all the vertices of borL appear in the buckets numbered i to mid. Since907

v ∈ borL, there exists a vertex u ∈ R such that (v, u) ∈ E(D), and the external stretch of B908

is at most s, the number of vertices that appear in the buckets numbered from i+ 1 to mid909

is at most s. Since the size of each bucket is b, the total number of vertices that appear in910

the buckets numbered between i and mid is at most b+ s. Thus, the size of the set borL is911

at most b+ s. C912
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Since an alternate (and easier) bound on the size of the family B constructed at Line 8913

is δ|borL|+|borR|, from Claim D.10, we conclude that || ≤ δ2(b+s). Let T (n) denote the time914

taken by the algorithm to solve an instance I where the digraph has n vertices. Let c be915

some fixed constant. Then, we have the following recurrence.916

T (n) ≤ c · δ2(b+s) · 2T (n/2) + cn (2)917

By induction on n, one can prove that T (n) = O∗(4n · δ2(b+s)·logn). J918

I Lemma 5.5. (?) Algorithm 1 on a legitimate input (D, b, s, first, last, left-bor(V ), right-bor(V ),919

Bin), runs in time min{O∗(4n · ds+1/ben),O∗(4n · ds+1/be2(b+s) logn)}, and returns a look-out920

bucketing for I, if it exists.921

Proof. The proof of the lemma follows from Lemmas D.7 and D.8. J922

D.1 Proofs of Lemma 5.1 and Theorems 1.3 and 1.4923

Proof of Lemma 5.1. Given a digraph D and positive integers b, s, create an instance924

I = (D, b, s, 1, |V |/b, ∅, ∅, φ). Note that if |V | = 2η · b · δ, where δ = ds+1/be and η ≥ 0, then925

clearly I is a legitimate instance of Algorithm 1 and the proof of the lemma follows from926

Lemmas D.7 and D.8. In the other case, when the number of vertices is not as described927

above, then it is not difficult to see that an additional set of isolated vertices (at most928

the same number as the original number of vertices) can be added to the digraph without929

changing the solution or the running time of Algorithm 1 (beyond a multiplicative factor of930

2). J931

Lemma 5.1 forms the basis of the proofs of both Theorem 1.4 and Theorem 1.3. We give the932

proofs of these theorems below.933

Proof of Theorem 1.4:934

Let (D, b) be an instance of Digraph Bandwidth. Then run the algorithm of Lemma 5.1935

on the instance where the digraph is D, the bucket size is 1 and the external stretch is b− 1.936

The algorithm of Lemma 5.1 then returns a 1-bucketing of V (D) of external stretch at most937

b − 1, if it exists. Observe that such a bucketing of V (D) is also an ordering of V (D) of938

directed bandwidth at most b, and vice-versa. Thus, the proof of the theorem follows from939

Lemma 5.1.940

We now ready to prove Theorem 1.3.941

I Lemma D.11. Let D be a digraph, b be a positive integer and ε > 0 be a real. Then, there942

is an algorithm, that given (D, b, ε), runs in time O∗(4n · (d4/εe)n), and either concludes that943

the directed bandwidth of D is strictly greater than b, or outputs an ordering whose directed944

bandwidth is at most (1 + ε) · b.945

Proof. If b < 4/ε, run the algorithm of Theorem 1.4 on the instance (D, b). Note that it takes946

time O∗4n · (d4/εe)n. Henceforth, we are in the case when b ≥ 4/ε. Let b′ = bbε/2c. Then use947

the algorithm of Lemma 5.1 on the instance containing the digraph D, bucket size b′ and948

external stretch b− 1. Note that, db/bb′ce ≤ d4/εe, whenever b ≥ d4/εe. We now prove that if949

D has directed bandwidth at most b, then the algorithm of Lemma 5.1 does not report NO.950

B Claim D.12. If the directed bandwidth of D is at most b, then there is a b′-bucketing of951

V (D) of external stretch at most b− 1.952
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Proof. Let σ be an ordering of D of directed bandwidth at most b. Consider the unique953

b′-bucketing induced by σ, say B. We show that the external stretch of B is at most b− 1.954

For this, consider any arc (u, v) ∈ E(D) such that B(u) < B(v). Then, σ(u) < σ(v). Let955

B(u) = i and B(v) = j. For the sake of contradiction, suppose that (j − i− 1) · b′ ≥ b. From956

the construction of B, we have that σ(u) ∈ [(i− 1) · b′, i · b] and σ(v) ∈ [(j− 1) · b′, j · b]. Thus,957

σ(v)− σ(u)− 1 ≥ (j − i− 1) · b′ ≥ b, that is, σ(v)− σ(u) ≥ b+ 1, which contradicts that the958

directed bandwidth of σ is at most b. C959

Thus, from Claim D.12, we conclude that, if the algorithm of Lemma 5.1 reports NO,960

then the directed bandwidth of D is strictly greater than b. Otherwise, let Bout be the961

b-bucketing outputted by the algorithm of Lemma 5.1. For each i ∈ [1, B|V |b′], let σi be962

some ordering of B−1
out(i). Let σ = σ1 · . . . · σns/b.963

B Claim D.13. The bandwidth of σ is at most (1 + ε) · b.964

Proof. Consider any arc (u, v) ∈ E(D) such that σ(u) < σ(v). Let Bout(u) = i and Bout(v) = j.965

Then σ(v)− σ(u) ≤ (j − i− 1) · b′ + |B−1
out(i)|+ |B−1

out(i)|. Since, the external stretch of B is at966

most b− 1, we have that (j − i− 1) · b′ ≤ b. Thus, σ(v)− σ(u) ≤ b+ 2 · b′ = b+ 2 · bb·ε/2c ≤967

b+ b · ε = (1 + ε) · b. C968

This proves the lemma. J969

Proof of Theorem 1.3970

Recall D is the input digraph and ε > 0 is a real. We initial b = 0. Then run the algorithm of971

Lemma D.11 on the instance (D, b, ε). If the algorithm outputs an ordering then we output972

the same ordering, otherwise we increment b by 1 are repeat this procedure. Let OPT denote973

the directed bandwidth of D. Then, for some b ≤ OPT , algorithm of Lemma D.11 returns974

an ordering whose bandwidth is at most (1 + ε) · b ≤ (1 + ε) ·OPT . This proves the theorem.975

E Exact Algorithm for Digraph Bandwidth via Directed976

Homomorphisms977

The goal of this section is to prove Theorem 1.5. Towards this, we give a reduction from978

Digraph Bandwidth to a subgraph homomorphism problem for digraphs. Given two979

digraphs D and H, a directed homomorphism from D to H is a function h : V (D)→ V (H),980

such that if (u, v) ∈ E(D), then (h(u), h(v)) ∈ E(H). A directed homomorphism that is981

injective is called an injective directed homomorphism. For any positive integers n, b such982

that b ≤ n, we denote by P bn the directed graph on n vertices such that V (P bn) = [n] and983

E(P bn) = Ef]Eb, where Eb = {(i, j) : i > j, i, j ∈ [n]} and Ef = {(i, i+j) : i ∈ [n−1], j ∈ [b]}.984

In the following lemma, we build the relation between Digraph Bandwidth of D and985

injective homomorphism from D to P bn.986

I Lemma E.1. For any digraph D and an integer b, D has bandwidth at most b if and only987

if there is an injective homomorphism from D to P bn.988

Proof. In the forward direction, suppose that D has digraph bandwidth at most b. Let σ be989

a b-ordering of D. Let f : V (D) → V (P bn) be a function such that f(u) = σ(u). We claim990

that f is an injective homomorphism. Since σ is an ordering of D, f is an injective function.991

We prove that it is also a homomorphism. Consider an arc (u, v) ∈ E(D). If σ(u) < σ(v),992

then since σ is a b-ordering, σ(v)− σ(u) ≤ b. Therefore, (f(u), f(v)) ∈ Ef . If σ(u) > σ(v),993
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then (f(u), f(v)) ∈ Eb. Hence, (f(u), f(v)) ∈ E(P bn). In the backward direction, suppose994

that there exists an injective homomorphism from D to P bn. Let f : V (D) → V (P bn) be995

a function. Then, we claim that σ = (f−1(1), · · · , f−1(n)) is a b-ordering of D. Suppose996

not, then there exists an arc (u, v) ∈ E(D) such that σ(v) − σ(u) > b. Let u = f−1(j)997

and v = f−1(k). Note that σ(u) = j and σ(v) = k. Therefore, j < k. Since k − j > b,998

(j, k) /∈ E(P bn), a contradiction that f is an injective homomorphism. J999

For any two digraphs D and H, let inj(D,H) denote the number of injective homomor-1000

phisms from D to H and let hom(D,H) denote the number of homomorphisms from D to1001

H. Then the following lemma holds from Theorem 1 in [1].1002

I Lemma E.2 (Theorem 1, [1]). Suppose that D and H be two digraphs such that |V (D)| =1003

|V (H)|. Then,1004

inj(D,H) =
∑

W⊆V (D)

(−1)|W |hom(D \W,H).

Now, we state the following known result about the number of homomorphisms between two1005

given digraphs D and H.1006

I Lemma E.3 (Theorem 3.1, 5.1 [11]). Given digraphs D and H together with a tree1007

decomposition of D of width tw, hom(D,H) can be computed in time O(nhtw+1 min{tw, h}),1008

where n = |V (D)| and h = |V (H)|.1009

Using Lemmas E.2 and E.3, we get the following result.1010

I Lemma E.4. Given digraphs D and H together with a tree decomposition of D of width1011

tw, inj(D,H) can be computed in time O(2nnhtw+1 min{tw, h}), where n = |V (D)| and1012

h = |V (H)|.1013

Proof of Theorem 1.5. The proof follows from Lemmas E.1 and E.4. J1014
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