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Abstract
In the past decade, the design of fault tolerant data structures for networks has become a central
topic of research. Particular attention has been given to the construction of a subgraph H of a
given digraph D with as fewest arcs/vertices as possible such that, after the failure of any set F

of at most k ≥ 1 arcs, testing whether D − F has a certain property P is equivalent to testing
whether H − F has that property. Here, reachability (or, more generally, distance preservation)
is the most basic requirement to maintain to ensure that the network functions properly. Given
a vertex s ∈ V (D), Baswana et al. [STOC’16] presented a construction of H with O(2kn) arcs
in time O(2knm) where n = |V (D)| and m = |E(D)| such that for any vertex v ∈ V (D): if
there exists a path from s to v in D − F , then there also exists a path from s to v in H − F .
Additionally, they gave a tight matching lower bound. While the question of the improvement of
the dependency on k arises for special classes of digraphs, an arguably more basic research direction
concerns the dependency on n (for reachability between a pair of vertices s, t ∈ V (D))—which are
the largest classes of digraphs where the dependency on n can be made sublinear, logarithmic or
even constant? Already for the simple classes of directed paths and tournaments, Ω(n) arcs are
mandatory. Nevertheless, we prove that “almost acyclicity” suffices to eliminate the dependency
on n entirely for a broad class of dense digraphs called bounded independence digraphs. Also, the
dependence in k is only a polynomial factor for this class of digraphs. In fact, our sparsification
procedure extends to preserve parity-based reachability. Additionally, it finds notable applications
in Kernelization: we prove that the classic Directed Feedback Arc Set (DFAS) problem as
well as Directed Edge Odd Cycle Transversal (DEOCT) (which, in sharp contrast to DFAS,
is W[1]-hard on general digraphs) admit polynomial kernels on bounded independence digraphs.
In fact, for any p ∈ N, we can design a polynomial kernel for the problem of hitting all cycles of
length ` where (` mod p = 1). As a complementary result, we prove that DEOCT is NP-hard on
tournaments by establishing a combinatorial identity between the minimum size of a feedback arc
set and the minimum size of an edge odd cycle transversal. In passing, we also improve upon the
running time of the sub-exponential FPT algorithm for DFAS in digraphs of bounded independence
number given by Misra et at. [FSTTCS 2018], and give the first sub-exponential FPT algorithm for
DEOCT in digraphs of bounded independence number.
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1 Introduction

In most real-life applications, even the most reliable networks are highly prone to unexpected
failures of a small number of links that connect their nodes. In the past decade, the design of
fault tolerant data structures for networks has become a central topic of research [7, 9, 14, 53,
50, 12, 17, 18, 19, 11, 28, 51, 52]. Generally, the scenario under study concerns the design of
a structure that, after the failure of any set F of at most k ≥ 1 arcs (representing links) in a
given digraph D (representing a network), should provide a fast answer to certain types of
queries that address the properties of D−F . The most common queries of this form address
the reachability between two vertices, or, more generally, the length of a shortest path existent,
if any, between them. Indeed, reachability (or, more generally, distance preservation) is the
most basic requirement to maintain to ensure that the network functions properly. In this
context, particular attention has been given to the case where the data structure should consist
of a subgraph or a minor of D with as fewest arcs/vertices as possible [7, 53, 9, 11, 8, 51, 14].
Then, queries can be answered by standard means as the usage of BFS or Dijkstra’s algorithm.
In particular, these simple data structures are of interest as they also double as sparsifiers.
The study of various graph sparsifiers—such as flow-sparsifiers [42] which are closely related
to the aforementioned data structures—is a fundamental, active area of research in computer
science and structural graph theory [24, 5, 32, 42, 16].

More concretely, in the Fault-Tolerance (S, T )-Reachability problem (or FTR(S, T )
for short), we are given a digraph D, two (not necessarily disjoint) terminals sets S, T ⊆ V (D),
and a positive integer k. The objective is to construct a subgraph H of D with minimum
number of arcs/vertices such that, after the failure of any set of at most k arcs in D, the
following property is preserved for any two vertices s ∈ S and t ∈ T : if there still exists a
directed path from s to t in D, then there also still exists a directed path from s to t in H.
Clearly, a trivial lower bound on the number of arcs in H is m = Ω(n2). For the case where
|S| = 1 and T = V (D), Baswana et al. [9] presented a construction of a subgraph H with
O(2kn) arcs in time O(2knm) where n = |V (D)| and m = |E(D)|. Additionally, they gave
a tight matching lower bound: for any n, k ∈ N where n ≥ 2k, there exists a digraph on n
vertices where H must have Ω(2kn) arcs.

Naturally, the question of the improvement of the dependency on k arises for special
classes of digraphs. However, an arguably more radical research direction to pursue concerns
the dependency on n.

Which are the largest classes of digraphs for which FTR(S, T ) admits subgraphs whose
size dependency on n can be made sublinear, logarithmic or even constant?
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At first glance, when we consider the simplest sparsest digraph existent, this pursuit seems
futile. Indeed, already in the case where S = {s}, T = {t}, k = 1 and D is a directed path
from s to t, the only solution is to choose H = D. At second glance, when we consider the
simplest densest digraph existent, again we reach a dead-end: for S, T and k as before, define
D as the tournament obtained by adding, to a directed path s = v1 → v2 → . . .→ vn = t,
all arcs going from vi to vj for every j + 1 < i; then, to construct H, we must select the
entire path.

We show that “almost acyclicity” suffices to eliminate the dependency on n entirely for a
broad class of dense digraphs called bounded independence number digraphs. Furthermore,
one can achieve a polynomial dependence in terms of k for this digraph class.

To step beyond the strict confinement of tournaments where all relations (arcs) between
the input entities (vertices) must be both present and known, Fradkin and Seymour [36]
initiated the study of bounded independence digraphs. Formally, for any integer α ≥ 1, the
class of α-bounded independence digraphs, denoted by Dα, is defined as follows.

Dα = {D | D is a digraph and the maximum size of an independent set in D is at most α}.

For this class of digraphs, Fradkin and Seymour [36] studied the k-Disjoint Paths problem,
and showed that it admits a polynomial time algorithm for any fixed value of k. Observe
that Dα is hereditary, and for α = 1, it coincides with the class of tournaments. Furthermore,
even for α = 2, it contains digraphs with a linear fraction of vertex pairs that have no arc
between them—thus, it can accommodate the lack of a large number of links/relations.

Our main technical contribution is the following combinatorial lemma.

I Lemma 1.1. Given a digraph D ∈ Dα, positive integers k and `, and S ⊆ V (D) such that
every strongly connected component of D − S has at most ` vertices, the Fault-Tolerance
(S, S)-Reachability (FTR(S, S)) problem admits a solution H on |S|2(k`)O(4α`

2
) vertices.

Furthermore, such a solution H can be found in polynomial time.

In particular, when D− S is acyclic, ` = 1. Thus, if |S| and ` are independent of n (such
as the case where |S| = |T | = ` = 1 discussed earlier), the dependency on n is eliminated.
(We remark that a solution for Fault-Tolerance (S, T )-Reachability where S 6= T is
subsumed by a solution for Fault-Tolerance (S ∪ T, S ∪ T )-Reachability.) Note that
we extend the class of digraphs dealt with beyond acyclicity at two fronts: enabling S to be
a modulator, thus D − S rather than D should be “almost acyclic”; enabling the strongly
connected components to be of size that is (“small” but) larger than 1.

In fact, our result generalizes to parity reachability. More precisely, in the Fault-
Tolerance (S, T )-Parity Reachability problem, we are given a digraph D, two terminal
sets S, T ⊆ V (D), positive integers k and p, and a non-negative integer r. The objective is
to construct a subgraph H of D with as few arcs/vertices as possible, such that, after the
failure of any set of at most k arcs in D, the following property is preserved for any two
vertices s ∈ S and t ∈ T : if there exists a directed path from s to t in D whose length q
satisfies (q mod p = r), then there also exists a directed path from s to t in H whose length
q′ satisfies (q′ mod p = r). For this problem, we prove the following combinatorial lemma.

I Lemma 1.2. Given a digraph D ∈ Dα, positive integers k, `, p, a non-negative integer
r, and S ⊆ V (D) such that every strongly connected component of D − S has at most `
vertices, the Fault-Tolerance (S, S)-Parity Reachability problem admits a solution
H on (|S|α`pk)O(4α`

2
) vertices. Furthermore, such a solution H can be found in polynomial

time.
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1.1 Applications in Kernelization
Directed Feedback Arc Set. From the perspective of Parameterized Complexity, with
the exception of Directed Multicut, the Directed Feedback Arc/Vertex Set
(DFA/VS) problem is the most well studied parameterized problem on digraphs. (On
general digraphs, the vertex and arc versions of the problem are equivalent [25].) Formally,
this problem is defined as follows.

Directed Feedback Arc Set (DFAS) Parameter: k

Input: A digraph D and a non-negative integer k.
Question: Does there exist S ⊆ E(D) of size at most k such that D − S is a DAG?

We remark that this problem is among Karp’s 21 original NP-complete problems [39].
Already a decade ago, the DFAS problem has been shown to be fixed-parameter tractable
(FPT) parameterized by the solution size k [20]. Specifically, Chen et al. [20] developed
an algorithm that solves DFAS in time O(k!4kk4mn), based on the powerful machinery
of important separators [25]. Since then, the quest to assert the existence of a polynomial
kernel for this problem has been unfruitful. Over the years, it has been repeatedly posed
as a major challenge in the subfield of Kernelization [25, 30, 47, 46] (also see [1] for a
number of workshops and schools where it was posed as an open problem). In fact, the two
specific problems whose polynomial kernelization complexity is completely unknown and
their resolution is raised most frequently are DFAS and Multiway Cut [25, 30]. At the
front of parameterized algorithms, the recent work by Lokshtanov et al. [44] improved upon
the polynomial factor of the aforementioned algorithm by the design of an O(k!4kk5(m+n))-
time algorithm. It is known that unless the Exponential Time Hypothesis (ETH) is false,
parameterized by the treewidth tw of the underlying undirected graph, DFAS cannot be
solved in time 2o(tw log tw) · nO(1). However, it is unknown whether DFAS is solvable in time
2o(k log k) · nO(1). In this regard, the only lower bound known is of 2Ω(k) · nO(1) under the
ETH [25, 44].

Particular attention has been given to the parameterized complexity of DFAS on tour-
naments. The classical complexity (NP-hardness) of DFAS on tournaments has a curious
history. More than two decades ago, this problem was conjectured to be NP-hard by
Bang-Jensen and Thomassen [6]. In 2008, Ailon et al. [2] proved that this problem does
not admit a polynomial-time algorithm unless NP⊆BPP. Later, the reduction of Ailon et
al. [2] was derandomized independently by Alon [3] and Charibt et al. [15], to prove that
DFAS on tournaments is NP-hard. With respect to Parameterized Complexity, Alon et
al. [4] proved that DFAS on tournaments admits a sub-exponential time parameterized
algorithm (with running time 2O(

√
k log2 k) · nO(1)), to which end they introduced the method

of chromatic coding. Later, the log2 k factor in the exponent was shaved in independent
works by Feige [33] and Karpinski and Schudy [40]. Fomin and Pilipczuk [35] presented a
general approach, based on a bound on the number of k-cuts in transitive tournaments, to
achieve the same running time for DFAS on tournaments. Based on this approach, Misra et
al. [48] developed a sub-exponential time parameterized algorithm for DFAS on digraphs in
Dα, with running time 2O(α2√k log(αk)) · nO(α). Yet, the (arguably more) intriguing question
of the existence of a polynomial kernel for DFAS on digraphs in Dα remained unsolved.
On tournaments, Bessy et al. [10] have proved that DFAS admits a linear-vertex kernel
(improving upon polynomial kernels given in [4, 29]). Based on our combinatorial lemma
(Lemma 1.1), we establish the following theorem.

I Theorem 1.3. DFAS on Dα admits a kernel of size kO(4α).
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Figure 1 A directed edge odd cycle transversal (in blue) that is not a directed feedback arc set.

In addition to its rich history in theoretical studies, the elimination of directed feedback
loops is highly relevant to rank aggregation, Voting Theory, the resolution of inconsistencies
in databases, and the prevention of deadlocks [57, 10, 38, 41, 20, 34]. While in a wide-variety
of applications, most relations between the entities in a network are both present and known,
it is generally unrealistic (in real-world partial and noisy data) that all relations will be so.
Then, the usage of a bounded independence digraphs naturally comes into play. In passing,
using Theorem 1.3, we also improve the running time for DFAS on digraphs in Dα, given by
Misra et al. [48], by eliminating the dependence of α in the exponent of n. That is, we have
the following theorem.

I Theorem 1.4. DFAS on Dα can be solved in 2f(α)
√
k log k · nO(1), where f(α) is some

function of α and n is the number of vertices in D.

Directed Edge Odd Cycle Transversal. The Directed Edge Odd Cycle Transver-
sal (DEOCT) problem is the parity-based version of DFAS, formally defined as follows.
(On general digraphs, the vertex and arc versions of the problem are equivalent [45]).

Directed Edge Odd Cycle Transversal (DEOCT) Parameter: k

Input: A digraph D and a non-negative integer k.
Question: Does there exist S ⊆ E(D) of size at most k such thatD−S has no odd cycle?

Observe that a tournament has no directed cycle if and only if it has no directed triangle
(a cycle on three vertices). In turn, this simple observation implies that, given a tournament
D, any subset S of the vertices of D has the following property: D − S is a DAG if and
only if it has no directed odd cycle. Thus, the vertex versions of DFAS and DEOCT on
tournaments are equivalent. However, for DFAS and DEOCT the situation is not so clear.
Indeed, it is not difficult to come up with a tournament D and a subset of arcs S of D such
that D − S is not a DAG, yet it has no directed odd cycle (see, e.g., Fig. 1). Nonetheless,
we are able to prove that given a tournament D and a subset S of the arcs of D such that
D − S has no directed odd cycle, there exists a subset of arcs S′ of D such that D − S′ is a
DAG and |S′| ≤ |S|. In particular, we thus establish the following result.

I Theorem 1.5. DEOCT on tournaments is NP-hard.

The question of the parameterized complexity of DEOCT was explicitly stated as an
open problem [26] for the first time in 2007, immediately after the announcement of the
first parameterized algorithm for DFAS. Since then, the problem has been re-stated several
times [22, 23, 47, 46]. Recently, Lokshtanov et al. [45] proved that DEOCT is W[1]-hard.
Specifically, this means that DEOCT is highly unlikely to be FPT or admit a kernel of any
size (even exponential in k). Based on the parity-based generalization of our combinatorial
lemma (Lemma 1.2), we establish a polynomial kernel for DEOCT on Dα, which stands in
sharp contrast to its aforementioned status on general digraphs.
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I Theorem 1.6. DEOCT on Dα admits a kernel of size (αk)O(44α3
).

In fact, we present combinatorial results stronger than Lemma 1.2 that yield a polynomial
kernel for a more general version of DEOCT, where instead of hitting directed odd cycles,
the objective is to hit directed cycles whose length ` satisfies (` mod p = 1) for an integer
p ∈ N given as input.1

Modulo p Directed Cycle Transversal (mod(p)-DCT) Parameter: k

Input: A digraph D and non-negative integers k and p.
Question: Does there exist S ⊆ E(D) of size at most k such that D − S has no cycle
of length 1 mod p?

I Theorem 1.7. mod(p)-DCT on Dα admits a kernel of size (pαk)O(4α
3p2

).

Having Theorem 1.6 at hand, we also show how to employ the general approach of Fomin
and Pilipczuk [35] to derive a sub-exponential time parameterized algorithm for DEOCT on
digraphs in Dα.

I Theorem 1.8. DEOCT on Dα admits an algorithm with running time 2O(f(α)
√
k log k) ·

nO(1), where f(α) is a function of α and n is the number of vertices in D.

1.2 Towards the proof of Lemmas 1.1 and 1.2: Cut Preserving Sets
and Parity Reserving Sets

The most central notion in this paper is of a cut preserving set. Informally, for a digraph D,
a pair of vertices s, t and an integer k, a set Z ⊆ V (D) is called a k-cut preserving set2 for
(s, t) in D if it preserves all (s, t)-arc cuts of size at most k. That is, A is an (s, t)-arc cut
with at most k arcs in D if and only if A is a such a cut in D[Z]. Observe that the graph
induced on such a k-cut preserving set Z is a candidate solution for FTR({s}, {t}) problem.
Clearly V (D) is a k-cut preserving set for any pair of vertices s, t. The intent is to have such
a set of “small” size. Towards this, let us discuss some properties that suffice for Z to be a
k-cut preserving set for (s, t) in D.

Since Z ⊆ V (D), any (s, t)-arc cut of D is an (s, t)-arc cut of D[Z]. For the other
direction, we need the property that, for any A ⊆ E(D) of size at most k, the existence of an
(s, t)-path in D−A implies the existence of an (s, t)-path in D[Z]−A. Let us now see which
properties suffice to imply the above property. We begin with a special case. Suppose there
is a “large” flow from s to t in D. In particular, suppose there are at least k + 1 internally
vertex-disjoint (s, t)-paths in D. Then, in Z it is enough to keep the vertices of some k + 1
vertex-disjoint (s, t)-paths, as no arc set of size at most k can hit all these paths. The more
involved case occurs when the flow from s to t in D is at most k. Consider any (s, t)-path P
in D. Ideally (if we did not have a size constraint on Z) we would have preserved all the
vertices of P in Z. Clearly, this can be expensive in terms of the size of Z. Nevertheless,
we can merge the ideas above (the “large-flow idea” and the “keep-full-path idea”) to get
the desired result. To see this, let P be a (s, t)-path in D. Let Z be a set of vertices such
that, either all the vertices of P are in Z or if the vertices of a (u, v)-subpath of P are not

1 Note that a fundamental difference between this result and Lemma 1.2 is that the latter only works for
any modulo and not just 1. The reason for this is explained in Section 6.

2 This is not the way it is defined later. However, for the sake of exposition, we start with this definition
and refine it to have properties that also guarantee this property implicitly.
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in Z, then there are k + 1 internally vertex-disjoint (u, v)-paths in D[Z]. That is, if the
vertices of a subpath are missing in Z, then Z contains a witness of a large flow for the
endpoints of this subpath. Observe that such a set Z suffices to be a k-cut preserving set
for (s, t) in D. This is because if P is an (s, t)-path in D −A(A ⊆ E(D) and |A| ≤ k), then
either all the vertices of P are in Z or for any missing (u, v)-subpath of P , since there are
k + 1 vertex-disjoint (u, v)-paths in D[Z], at least one still remains in D[Z]−A. Thus, in
D[Z]−A, one can find an (s, t)-path: for the missing subpaths of P in Z, there exists some
(other) path between the same endpoints in D[Z] − A which together yield an (s, t)-walk
(and hence an (s, t)-path) in D[Z]−A. These properties are formalized in Definition 3.1.

1.2.1 About Computing k-Cut Preserving Sets
Next we give an intuition for how one can compute such k-cut preserving sets for a digraph
D ∈ Dα, each of whose strongly connected component has size at most `. For exposition
purposes, consider (for now), only the case where D is acyclic (i.e. ` = 1). With a certain
technical argument, the general case reduces to this one. Moreover, we use the definition of
a k-cut preserving set from the beginning of this section for this illustration as it allows us
to convey our ideas in a clearer manner.

The proof will use induction on α. As the base case, consider the case when α = 1, that
is, D is a transitive tournament. As D is transitive, there exists a topological ordering of
the vertices of D. Consider the set S of vertices between s and t in this ordering. Note that
any path from s to t only uses vertices in S. So, either S is smaller than k + 1, and then
S ∪{s, t} is a k-cut preserving set for (s, t), or it can be seen that there is no arc-cut for (s, t)
of size at most k. In the latter case, the union of {s, t} and any subset of k + 1 vertices of S
is a k-cut preserving set for (s, t); indeed, in the subgraph induced by the union there is still
no arc-cut for (s, t) of size at most k.

Now, let us hint at how the inductive step of the proof works. First, we note that, if
P1, . . . , Pk+1 are k + 1 internally vertex-disjoint (s, t)-paths, then Z = ∪i∈[k+1]Pi is a k-cut
preserving set for the pair (s, t), because there is no arc-cut of (s, t) in both D and D[Z]
of size at most k. Moreover, since D is acyclic and D ∈ Dα, if these paths exist, then
Observation 2.1 implies that we can assume that all these paths are shorter than 2α+ 1 and
thus |Z| ≤ k(2α+ 1).

The last argument means that we can assume the existence of a (s, t)-vertex cut of size
at most k. For simplicity, suppose that {c1, c2} is a minimal (s, t)-vertex -cut. Since {c1, c2}
is a vertex cut, any path from s to t in D can be decomposed as a path from s to ci, a path
from ci to cj and then a path from cj to t, where i and j are two indices (possibly equal) in
{1, 2}. Here, we mean that none of the three paths contains ci (or cj) as an internal vertex.
For i ∈ {1, 2}, let Si be the union of the set of vertices of the paths from s to ci that intersect
{c1, c2} only on the last vertex, and Ti be the union of the set of vertices of the paths from
ci to t that intersect {c1, c2} only on the first vertex. Finally, for distinct i, j ∈ {1, 2}, let
Ci,j be the union of the set of vertices of the paths from ci to cj . Because of the last remark
on how any path from s to t can be decomposed, taking the union of six k-cut preserving
sets-namely, for each i, j ∈ {1, 2}, i 6= j, for (s, ci) in D[Si], (ci, t) in D[Ti] and (ci, cj) in
D[Ci,j ]- gives a k-cut preserving set for (s, t) in D. Now, the question is how to use the
induction hypothesis to find a k-cut preserving set for each of these pairs. Consider first
the digraph induced by the vertices in S1. Because {c1, c2} is a minimal (s, t)-vertex cut,
the only vertices of S1 that can possibly have “outgoing arcs towards” t in S1 are s and c1.
Moreover, since {c1, c2} is a minimal (s, t)-vertex cut, there exists a path from c1 to t in D
and thus t is reachable from any vertex of S1. However, since D is acyclic, this means that
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there is no arc from t to any of the vertices of S1, else we would get a closed walk and thus a
cycle. This implies that D[S1 \ {s, c1}] ∈ Dα−1 as any independent set of S1 \ {s, c1} can be
extended with t. We cannot apply the induction hypothesis to find a k-cut preserving set for
(s, c1) in S1 because the independence number of D[S1] could be equal to α, however the
above shows the spirit of the arguments that will be used to find subgraphs with smaller
independence number where we can apply the induction hypothesis. A similar argument
would also give that the independence number of D[T1 \ {c1, t}] is at most α − 1 as any
independent set can be extended using s.

The previous argument does not apply to C1,2, because the vertices of C1,2 can be adjacent
to s or t (some vertices of C1,2 can be adjacent to s and some can be adjacent to t). This
is the case that requires a stronger and more technical definition for a k-cut preserving set.
In particular, we need to understand what happens to the vertices of D that are on a path
from s to t but do not belong to a k-cut preserving set for this pair.

1.2.2 Preserving Length Modulo p

As explained earlier, our method allows us not only to preserve the existence of a path
after the removal of k arcs, but the existence of a path of certain length modulo p. The
argument follows the same lines as what we just described, but need the following additional
observation. Suppose s and t are two vertices of a digraph D ∈ Dα and there exists p2α

vertex-disjoint (s, t)-paths in D. By the pigeonhole principle, pα of those paths must have
the same length modulo p. Let P1, . . . , Ppα denote those paths and X denote the set of
vertices appearing just after s along those paths. X is a set of size of size pα, and because
the largest independent set of D is at most α, it means that the chromatic number of D[X]
is at most p. By Gallai-Roy Theorem [37, 56], there exists a path P of length p− 1 in D[X].
Using this path and the Pi, we are able to find a path of any length modulo p from s to t
(see the proof of Lemma 2.2 for all details). This implies that if s and t are two vertices
with more than p2α+ k vertex-disjoint paths from s to t, then preserving exactly p2α+ k of
these paths is enough for our purpose. Indeed, after the removal of k arcs, there will still be
p2α vertex-disjoint (s, t) paths and thus a path of every parity. The rest of the argument is
identical.

1.3 Deriving Polynomial Kernels for DFAS and DEOCT

Let us now briefly explain how to derive a polynomial kernel for DFAS when the input
digraph belongs to Dα, from our result on fault-tolerant subgraphs. First note that if D ∈ Dα
then every induced cycle in D has length at most 2α+ 1. Let (D, k) be an instance of DFAS,
and consider a maximal set of arc disjoint induced cycles in D. If this set consists of more
than k cycles, then any solution to (D, k) has to pick one arc per cycle, and (D, k) is a NO
instance. If not, let S be the union of these cycles. S is a set of less than (2α+ 1) · k vertices
such that D − S is acyclic. Therefore, we can apply our result to find a solution H to the
problem of Fault-Tolerance (S, S)-Reachability of size at most |S|2kO(4α) . We claim that H
is the desired kernel. Indeed, suppose that A is a set of arcs such that H −A is acyclic, but
D−A contains a cycle. By construction of S, this cycle must use vertices of S. However, we
know that if a path exists between two vertices of S in D −A, then such a path also exists
in H −A. This implies the existence of a closed walk in H −A, a contradiction.

Using arguments similar as above, together with our Lemma 1.2, one can design a
polynomial kernel for DEOCT.
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More related works.

In addition to the results mentioned above, let us mention a few more related works. Fault
tolerant data-structures for various graph theory problems, and more generally dynamic
graph data-structures, are well-studied. A seminal work of Nagamochi and Ibaraki [49]
provides a fault-tolerant reachability subgraph of size O(nk) for k-edge faults in an undirected
graph on n-vertices, for any choice of sources and sinks. As we mentioned earlier, Baswana
et.al. [9] give a single source fault tolerant reachability subgraph of size O(2kn) for k vertex
or edge faults. A simpler algorithm for this problem was presented in [43], using important
separators [25]. Bodwin and Greg [13] provided a characterization of graph families for which
distance preservers for p pairs with O(n + p) edges is guaranteed to exist. A few results
are also known about fault tolerant reachability data-structures. Patrascu and Thorup [54]
present a data structure of size O(m), that can process any set F of k edge faults in a
graph G in O(k log2 n log logn) time, and subsequently answer reachability queries for pairs
of vertices in G − F in time O(log logn). For vertex failures, in recent work Duan and
Pettie [31] present a data structure of size O(mk logn), which can process any set of k edge
faults in O(k3 log3 n) time, and then answer reachability queries in O(k) time. They also
present an improved randomized algorithm.

Roadmap to the paper

Section 2 contains introduction to some basic terminology and notation, and also some
offhand observations and propositions that will be used throughout. Section 3 contains the
algorithm to compute k-cut preserving sets. Section 4 contains some applications of the
result in Section 3. More specifically, it contains the proof of Lemma 1.1 and Theorem 1.3.
Section 5 contains the definitions of k-parity preserving sets together with an algorithm
to compute them. Section 6 them applies the result of Section 5 to prove Lemma 1.2 and
Theorem 1.7. Section 7 proves Theorem 1.5. Section 8 proves Theorems 1.4 and 1.8.

2 Preliminaries

For standard notations and terminology that is not defined here, we refer to [27].
Sets: For positive integer i, j, [i] denotes the set {1, . . . , i} and [i, j] denote the set {i, i+
1, . . . , j}. For a set S, S2 denotes the set of ordered pairs of S, that is S2 = {(u, v) | u ∈
S, v ∈ S}.
Digraphs: For a digraph D, V (D) denotes the vertex set of D and E(D) denotes the arc set
of D. For any X ⊆ V (D) (resp. X ⊆ E(D)), D−X denotes the digraph obtained by deleting
the vertices (resp. edges) of X. For any v ∈ V (D), N+

D (v) (resp. N−D (v)) denotes the set of
out-neighbours (resp.in-neighbours) of v in D, that is N+

D (v) = {u ∈ V (D) | (v, u) ∈ E(D)}
(resp. N−D (v) = {u ∈ V (D) | (u, v) ∈ E(D)}). Whenever the digraph D is clear from the
context, we drop the subscript D in N+

D (v) (resp. N−D (v)). For any X,Y ⊆ V (D), E(X,Y )
denotes the set of arcs of D with tail in X and head in Y , that is, E(X,Y ) = {(u, v) ∈
E(D) | u ∈ X, v ∈ Y }. A digraph D is called strongly connected if for each u, v ∈ V (D) there
is a path from u to v and, a path from v to u in D. A set X ⊆ V (D) is called a strongly
connected component of D if D[X] is a strongly connected digraph and for each X ′ ⊇ X,
D[X ′] is not a strongly connected digraph. A tournament is a digraph where there is exactly
one arc between each pair of vertices. A digraph with no cycles is called a directed acyclic
graph (dag). A tournament with no cycles is called a transitive tournament.
Paths: A path P is a graph such that there exists an ordering (v1, . . . , vq) of its vertex set
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V (P ) such that E(P ) = {(vi, vi+1) | i ∈ [q − 1]}. Such a path is called a (v1, vq)-path, v1, vq
are called the end-points of P and v2, . . . , vq−1 are called the internal vertices of P . A path
P is even (resp. odd) if the number of arcs/edges in it is even (resp. odd). We say that P is
a path in the digraph D if P is a subgraph of D. We say that P is an induced path in D if P
is an induced subgraph of D. For paths P and P ′, by P ◦P ′ we denote the composition of P
and P ′, that is, the path obtained by appending P ′ after P . For paths P, P1, P2, . . . , Pq such
that P = P1 ◦P2 ◦ . . . ◦Pq, we say that P1 ◦P2 ◦ . . . ◦Pq is a partition of P . For a digraph D
and X ⊆ V (D), we say that a (u, v)-path P in D is X-free if none of the internal vertices of
P are from X. The X-based partition of P in D is the partition P = P1 ◦ . . . ◦ Pq such the
union of the end-points of Pi, i ∈ [q], is exactly the set (X ∩ V (P ))∪ {u, v}. A semi-X-based
partition of P , P = P1 ◦ . . . ◦ Pq, is such that the end-points of the paths Pi, i ∈ [q], are
a subset of (X ∩ V (P )) ∪ {u, v}. Paths {P1, . . . , Pq} are internally vertex-disjoint if for all
distinct i, j ∈ [q], the sets of internal vertices of Pi and Pj are disjoint.
Vertex and Arc Cuts: For a digraph D and u, v ∈ V (D), a (u, v)-arc cut is a set of arcs
of D, say X, such that D −X has no (u, v)-path. A (u, v)-vertex cut is a set of vertices of
D, say Y , such that D − Y has no (u, v)-path and u, v 6∈ Y if (u, v) 6∈ E(D).

2.1 Simple Results and Observations
We first give some simple results concerning the class Dα that will be used throughout the
paper.

I Observation 2.1. Let D ∈ Dα. The length of the shortest cycle in D is at most 2α+ 1.
Also, the length of any induced path in D is at most 2α+ 1.

I Lemma 2.1. If D ∈ Dα, then |E(D)| ≥ (nα − 1)n2 .

Proof. The proof follows from Turan’s theorem [27], which states that any graph on n

vertices that does not contain a clique of size α+ 1 has at most (1− 1
α )n

2

2 edges. J

The next lemma allows us to prove the existence of paths of any length modulo some
integer p between a pair of vertices with large connectivity.

I Lemma 2.2. Let D ∈ Dα be a digraph and p be a positive integer. For s, t ∈ V (D), if P is
a collection of p2α internally vertex-disjoint (s, t)-paths in D, then for each i ∈ {0, . . . , p−1},
there exists a (s, t)-path of length i mod p in D[V (P)].

Proof. By the pigeonhole principle, there exist pα paths in P of the same length (without
loss of generality, say 0) modulo p. Let P1, . . . , Ppα denote these paths. For each j ∈ [pα], let
vj be the vertex of Pj that appear after s in Pj . Since ∪i∈[pα]Pi is a collection of internally
vertex-disjoint paths, the set X = {v1, . . . , vpα} is a set of pα vertices. Since D[X] ∈ Dα, it
means that χ(D[X]) ≥ p and thus, by Gallai-Roy Theorem [37, 56], there exists a path of
length p− 1 in D[X]. Without loss of generality, let P = (v1, v2, . . . , vp) be this path. Then
for each i ∈ [2..p], consider the path Qi obtained as follows. Let R1 be the (s, v1)-subpath
of P1, that is R1 is the arc (s, v1). Let R2 be (v1, vi)-subpath of P and let R3 be the
(vi, t)-subpath of Pi. Then, Qi = R1 ◦R2 ◦R3. Clearly, length of Qi is i− 1 mod p. J

The following proposition relates the absence of directed cycles in a strongly connected
digraph with its absence in its undirected counterpart. This will be crucially used during the
NP-hardness proof of DEOCT on tournaments.

I Proposition 2.3. If D is a strongly connected digraph with no odd directed cycles, then
the underlying undirected graph of D has no odd cycles, that is, it is bipartite.
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Proof. For the sake of contradiction, suppose that D is not bipartite, that is, it contains an
undirected odd cycle, say C. Let C = (v0, . . . , vt−1). If for all i ∈ [t− 1], (vi, vi+1) ∈ E(D)
(here addition is modulo t), then C is also a directed odd cycle in D, which is a contradiction.
Otherwise, consider any pair vi, vi+1, such that (vi+1, vi) ∈ E(D). Since D is a strongly
connected digraph, there is path, say Pi from vi to vi+1 in D. If Pi is an even path then
Pi together with the arc (vi+1, vi) is an odd cycle in D (which is again a contradiction).
Otherwise, for all pairs vi, vi+1 such that (vi+1, vi) ∈ E(D), there is an odd (vi, vi+1)-path
Pi. For each pair vi, vi+1 such that (vi+1, vi) ∈ E(D), replace the arc (vi+1, vi) ∈ E(D) with
the path Pi, in C, to obtain a directed closed odd walk. Since every directed closed odd
walk contains a directed odd cycle, we conclude that D contains an odd cycle, which is a
contradiction. J

3 Finding Small k-Cut Preserving Sets

We give the precise definition of a k-cut preserving set here.

I Definition 3.1 (k-Cut Preserving Set). For digraph D, an ordered pair (u, v) of vertices
of D and a positive integer k, {u, v} ⊆ Z ⊆ V (D) is a k-cut preserving set for (u, v) in D
if the following holds. For any (u, v)-path P in D, there exists a semi-Z-based partition
P1 ◦ . . . ◦ Pd of P with the following two properties. For each i ∈ [d], Pi is an (si, ti)-path in
D with si, ti ∈ Z. Moreover, either V (Pi) ⊆ Z or there exists a list Li of k + 1 internally
vertex-disjoint (V (D) \ Z)-free (si, ti)-paths. A list Li with the above property is called a
replacement kit for Pi in Z. Such a semi-Z-based partition of P is called a Z-replacement
witness for P .

Before moving to the computational aspects of a k-cut preserving set, we give the following
lemma that can be considered as the main utility of k-cut preserving sets, and relate to the
intuition we gave in the previous section.

I Lemma 3.2. Let D be a digraph, u, v ∈ V (D) and Z be a k-cut preserving set for (u, v)
in D. For any set A ⊆ E(D) of at most k arcs, if there exists a (u, v)-path in D −A, then
there also exists one in D[Z]−A.

Proof. Consider some A ⊆ E(D) such that |A| ≤ k. Suppose there exists a (u, v)-path P
in D −A . Since Z is a k-cut preserving set for the pair (u, v), there exists a semi-Z-based
partition P = P1 ◦ . . . ◦ Pd such that for each j ∈ [d], Pj is an (sj , tj)-path, sj , tj ∈ Z and,
either V (Pj) ⊆ Z, in which case Pj is a path in D[Z] − A, or there exist k + 1 internally
vertex- disjoint (sj , tj)-paths in D[Z]. In the later case, at least one of the k + 1 paths is in
D[Z]− A (because |A| ≤ k). This implies the existence of a walk from u to v (and hence
also a (u, v)-path) in D[Z]−A. This concludes the proof. J

The main goal of this section is to prove the following lemma.

I Lemma 3.3 (k-Cut Preserving Lemma). Let D be an acyclic digraph, and u, v ∈ V (D)
be such that N−(u) = N+(v) = ∅. Additionally, let D − {u, v} ∈ Dα. Then there exists
a k-cut preserving set for (u, v) in D of size at most f(α), where f(1) = k3 + 5k2 + 3k
and for α > 1, f(α) = k2g(α) + 2kh(α), g(α) = (2k + (k + kf(α − 1))2)f(α − 1) and
h(α) = (k2 + k)g(α) + kf(α− 1). Moreover, such a set can be found in time nO(1), where
n = |V (D)|.

Note that V (D) is always a k-cut preserving set for any pair of vertices (u, v) in D, for any
k. We now define a notation, for the sake of convenience, that will be used throughout this
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section. For any digraph D, u, v ∈ V (D) and X ⊆ V (D), let verD(u, v;X) denote the union
of the sets of vertices of all X-free (u, v)-paths in D. Observe that verD(u, v;X)∩X ⊆ {u, v}.
We begin by making an observation that forms the base line for computing small sized k-cut
preserving sets using an appropriate induction.

I Observation 3.1. Let D be a digraph, u, v ∈ V (D), Z ⊆ V (D) and k be a positive integer.
Let P be a (u, v)-path in D, and P = P1 ◦ . . . ◦ Pd be a semi-Z-based partition of P . If
for each i ∈ [d], there is a Zi-replacement witness for Pi in Di, for some Zi ⊆ Z and Di

subgraph of D, then there is a Z-replacement witness for P .

Proof. For each i ∈ [d], let PI = Pi,1◦. . .◦Pi,ci be a Zi-replacement witness for Zi inDi. Then,
consider the semi-Z-based partition P = P1,1◦ . . .◦P1,c1 ◦P2,1◦ . . .◦P2,c2 ◦ . . .◦Pd,1◦ . . .◦Pd,cd .
Then, for each i ∈ [d] and j ∈ [ci], either V (Pi,j) ⊆ Zi ⊆ Z, or there exists a list Zi,j
containing k + 1 internally vertex-disjoint (V (Di) \ Zi)-free (xi,j , yi,j)-paths in Di such that
Pi,j is a (xi,j , yi,j)-path. Since Zi ⊆ Z and Di is a subgraph of D, the paths in Li,j are
(V (D) \ Z)-free and exist in D. J

Next, we give two lemmas (Lemmas 3.4 and 3.5) that basically use Observation 3.1 in a
more concrete setting required to prove the k-Cut Preserving Lemma by induction on the
size of the maximum independent set in the digraph.

I Lemma 3.4. Let D be a digraph, u, v ∈ V (D) and k be a positive integer. Let C
be some (u, v)-vertex cut in D. For each c ∈ C, let Z(u, c) (resp. Z(c, v)) be a k-cut
preserving set for (u, c) (resp. (c, v)) in D[verD(u, c;C)] (resp. D[verD(c, v;C)]). For each
(c, c′) ∈ C2, c 6= c′, let Z(c, c′) be a k-cut preserving set for (c, c′) in D[verD(c, c′;C)]. Then,
Z :=

⋃
c∈C(Z(u, c) ∪ Z(c, v)) ∪

⋃
(c,c′)∈C2,c 6=c′ Z(c, c′) is a k-cut preserving set for (u, v) in

D.

Proof. First observe, from the definition of a k-cut preserving set and the construction
of Z, that C ⊆ Z. Consider any (u, v)-path P in D. Let P = P1 ◦ . . . ◦ Pq be the C-
based partition of P . Since C ⊆ Z, P1 ◦ . . . ◦ Pq is a semi-Z-based partition of P . Then
P1 is a C-free (u, c1)-path in D for some c1 ∈ C, Pq is a C-free (c2, v)-path in D for
some c2 ∈ C, and for each i ∈ [2, q − 1], Pi is a C-free (cji , cji′)-path in D, for some
cji , cji′ ∈ C, ji 6= ji

′. Thus, P1 is a (u, c1)-path in D[verD(u, c1;C)], Pq is a (c2, v)-path in
D[verD(c2, v;C)], and for each i ∈ [2, q − 1], Pi is a (cji , cji′)-path in D[verD(cji , cji′ ;C)].
Since Z(u, c1),Z(c2, v),∪i∈[2,q−1]Z(cji , cji′) ⊆ Z, we are done by Observation 3.1. J

I Lemma 3.5. Let D be a digraph, u, v ∈ V (D), and k be a positive integer. Let C be
some (u, v)-vertex cut in D. For each c ∈ C, let Z(u, c) (resp. Z(c, v)) be a k-cut preserving
set for (u, c) (resp. (c, v)) in D[verD(u, c;C)] (resp. D[verD(c, v;C)]). Let X = N−D (v) ∩⋃
c∈C Z(c, v). For each (a, b) ∈ (C∪X)2, a 6= b, let Z(a, b) be a k-cut preserving set for (a, b)

in D[verD(a, b;C ∪N−D (v))]. Then, Z :=
⋃
c∈C(Z(u, c)∪Z(c, v))∪

⋃
(a,b)∈(C∪X)2,a6=bZ(a, b)

is a k-cut preserving set for (u, v) in D.

Proof. First observe that {u, v} ∪ C ∪X ⊆ Z. Let Y = N−D (v) \X. We begin by defining
some special types of paths (see Figure 2).

1. A path P is of Type (u,�) (resp. (�, v)) if it is a C-free (u, c)-path (respectively (c, v)-
path) in D for some c ∈ C.

2. A path P is of Type (�,�) if it is a (C ∪N−D (v))-free (a, b)-path in D for some (a, b) ∈
(C ∪X)2.



W. Lochet et al. 13

u v

c1

c2 y

P1

P2

P3

Figure 2 (c1, c2) is a (u, v) vertex-cut, the green parts correspond to the Z(ci, v) and the blue
vertices are the vertices of X. P1 is a path of Type (u,�), P2 is a path of Type (�,�) and P3 is a
path of Type (�,�, v) with y ∈ Y .

3. A path P is of Type (�,�, v) if it is a (c, v)-path in D for some c ∈ C and there exists
y ∈ V (P ) ∩ Y such that the (c, y)-subpath of P is C-free.3

We now begin with the proof of the lemma. Let P be some (u, v)-path. We need to show
that there is a Z-replacement witness for P . Let P = P ′1 ◦ . . . ◦ P ′q be the (C ∪X)-based
partition of P . If P is not Y -free, that is, V (P )∩ Y 6= ∅, let s′ ∈ [q] be the least integer such
that V (P ′s′ ] ∩ Y 6= ∅. If P is Y -free, let s′ = q. Let s ≤ s′ be the largest integer such that Ps
is an (a, b)-path, where a ∈ C and b ∈ C ∪X ∪ {v}. WE first show that such a s always
exists. From the definition of s′, either there exists some y ∈ Y in V (P ′s′) or v ∈ V (P ′s′). In
the later case, since C is a (u, v)-vertex cut, there exists c ∈ C such that c appears on P .
Since P = P ′1 ◦ . . . ◦ P ′q is a C ∪ X-based partition of P , there exists s ≤ s′ such that Ps
is a (a, b)-path where a ∈ C. In the former case again, since y ∈ Y ⊆ N−D (v) and C is a
(u, v)-vertex cut using previous arguments the existence of the desired s is guaranteed.

Consider the partition P = P1 ◦ . . . ◦ Ps, such that Pi = P ′i , if i < s and Ps =
P ′s ◦ P ′s+1 ◦ . . . ◦ P ′q. Observe that, since C ∪X ⊆ Z, P = P1 ◦ . . . ◦ Ps is a semi-Z-based
partition of P .

B Claim 3.6. P1 is a Type (u,�) path, for each i ∈ [2, s− 1], Pi is a Type (�,�) path and,
Ps is either a Type (�, v) or Type (�,�, v) path.

Proof. Recall that P = P ′1 ◦ . . . ◦ P ′q is the (C ∪X)-based partition of P . Thus, we have the
following.

1. For each i ∈ [q], P ′i is (C ∪X)-free path.
2. For each i ∈ [2, q − 1], P ′i is a (a, b)-path, where (a, b) ∈ (C ∪X)2.
3. Since C is a (u, v)-vertex cut in D and X ⊆ N−D (v), P ′1 is a (u, c)-path for some c ∈ C.
4. From the choice of s, for each i ∈ [s− 1], V (P ′i ) ∩ Y = ∅. Since for i ∈ [s− 1], Pi = P ′i

and X ∪ Y = N−D (v), Pi is (C ∪N−D (v))-free.

Thus, from Points 2 and 4, for each i ∈ [s− 1], Pi is of Type (�,�). Also, from Points 3
and 4, P1 is of Type (u,�). We now show that Ps is of Type (�, v) or (�,�, v). From the

3 Specifically, if there exists y ∈ V (P )∩ Y with this property, then the first vertex of P that belongs to Y
also has that property.
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choice of s and the construction of Ps, Ps is a (c, v)-path for some c ∈ C. If P is Y -free, then
Ps is of Type (�, v), otherwise, Ps is of Type (�,�, v). J

For each i ∈ [s], define Zi and Di as follows.

Zi =


Z(u, c) if i = 1, P1 is a (u, c)-path, c ∈ C
Z(a, b) if i ∈ [2, s− 1], Pi is a (a, b)-path, (a, b) ∈ (C ∪X)2

Z(c, v) if i = s, Ps is a (c, v)-path, c ∈ C

Di =


D[verD(u, c;C)] if i = 1, P1 is a (u, c)-path, c ∈ C
D[verD(a, b; (C ∪N−D (v))] if i ∈ [2, s− 1], Pi is a (a, b)-path, (a, b) ∈ (C ∪X)2

D[verD(c, v)] if i = s, Ps is a (c, v)-path, c ∈ C

Recall the construction of Z from the lemma statement. Observe that for each i ∈ [s],
Zi ⊆ Z. From Observation 3.1, to give a Z-replacement witness for P , it is enough to give a
Zi-replacement witness for each Pi, in Di, i ∈ [s]. Thus, the following claim will finish the
proof of the lemma.

B Claim 3.7. For each i ∈ [s], Pi has a Zi-replacement witness in Di.

Proof. We prove the claim using the following cases.

Case i = 1: From Claim 3.6, P1 is a C-free (u, c)-path in D for some c ∈ C. Thus, P1
is a (u, c)-path in D1. Since Z1 is a k-cut preserving set for (u, c) in Di, there exists a
Z1-replacement witness for P1 in D1.
Case i ∈ [2, s− 1]: From Claim 3.6, when i ∈ [2, s− 1], then Pi is a (C ∪N−D (v))-free
(a, b)-path in D for some (a, b) ∈ (C ∪X)2. Thus, Pi is an (a, b)-path in Di. Since Zi is
a k-cut preserving set for (a, b) in Di, there exists a Zi-replacement witness for Pi in Di.
Case i = s: From Claim 3.6, Ps is of either Type (�, v) or Type (�,�, v).

Ps is of Type (�, v): From the definition of Type (�, v), Ps is a C-free (c, v)-path in
D, for some c ∈ C. Thus, Ps is a (c, v)-path in Ds. Since Zs is a k-cut preserving set
for (c, v) in Ds, there exists a Zs-replacement witness for Ps in Ds.
Ps is of Type (�,�, v): From the definition of Type (�,�, v), Ps is a (c, v)-path in
D, for some c ∈ C, and there exists y ∈ V (P ) ∩ Y such that the (c, y)-subpath of P
is C-free. Let P †s be the (c, y)-subpath of P . Recall that Y = N−D (v) \X. Consider
the (c, v)-path in D, denoted by P̃s, obtained by appending the arc (y, v) at the end
of P †s . That is, P̃s = P †s ◦ (y, v). Since P †s is a C-free path, so is P̃s. Thus P̃s is a
(c, v)-path in Ds. Since Zs is a k-cut preserving set for (c, v) in Ds, there exists a
semi-Zs-based partition of P̃s which is a Zs-replacement witness for P̃s in Ds. Let
P̃s = P̃s,1 ◦ . . . ◦ P̃s,r be one such partition. Since y ∈ Y = N−D (v) \X and Zs ⊆ X,
y 6∈ Zs. Thus, y is an internal vertex of P̃s,r. Let P̃s,r be an (x, v)-path. Clearly,
x ∈ Zs because P̃s = P̃s,1 ◦ . . . ◦ P̃s,r is a semi-Zs-based partition. Let P †s,r be the
(x, v)-subpath of Ps,r. We claim that Ps = P̃s,1 ◦ . . . ◦ P̃s,r−1 ◦ P †s,r is a semi-Zs-based
partition of Ps and is also a Zs-replacement witness for Ps in Ds. It is clear from the
discussion above that Ps = P̃s,1 ◦ . . . ◦ P̃s,r−1 ◦ P †s,r is a semi Zs-based partition of Ps.
We will now show that it is a Zs-replacement witness for Ps in Ds.
Since P̃s = P̃s,1 ◦ . . . ◦ P̃s,r is a Zs-replacement witness for P̃s, we have that for each
j ∈ [r], either V (P̃s,j) ⊆ Zs or there exists a list Lj containing k + 1 vertex disjoint



W. Lochet et al. 15

paths from the start vertex of P̃s,j to its end vertex. Also, since y 6∈ Zs and y is an
internal vertex of P̃s,r, V (P̃s,r) 6⊆ Zs. Thus, there is a list Lr containing k + 1 vertex
disjoint (x, v)-paths (recall x and v are the start and end vertices, respectively, of
P̃s,r). Since Ps = P̃s,1 ◦ . . . ◦ P̃s,r−1 ◦ P †s,r, and P †s,r is an (x, v)-path, from the above
discussion for each j ∈ [r − 1], either V (P̃s,j) ⊆ Zs or there exists a list Lj containing
k + 1 vertex disjoint paths from the start vertex of P̃s,j to its end vertex. Also, there
exists a list, Lr, containing k + 1 vertex disjoint paths from the start vertex of P †s,r to
its end vertex. This completes the proof of the claim.

J

As argued earlier, this completes the proof of the lemma. J

3.1 Finding a Small k-Cut Preserving Set for a Pair with Large Flow
As explained in Section 1.2, the proof of Lemma 3.3 will distinguish whether there is a k
vertex-cut for (s, t) or not. The case where there is a no k vertex-cut is the easiest one, and
will be dealt with the following lemma by simply keeping k + 1 vertex disjoint paths.

I Lemma 3.8. Let D ∈ Dα be an acyclic digraph and u, v ∈ V (D) be such that each (u, v)-
vertex cut in D has size at least k + 1. Then, a k-cut preserving set for (u, v) in D of size at
most (2α− 1)(k + 1) + 2 exists and is computable in nO(1) time, where n = |V (D)|.

Proof. Since every (u, v)-vertex cut in D has size at least k + 1, from Menger’s Theorem,
there are at least k + 1 vertex-disjoint (u, v)-paths in D. Let Q′1, . . . , Q′k+1 be a collection of
some k + 1 of these paths. We will now obtain a collection of Q1, . . . Qk+1 vertex disjoint
paths where the length of each Qi is at most 2α+ 1. To this end, we define each Qi as some
shortest (u, v)-path using the vertices of V (Q′i). We first claim that the length of Qi is at
most 2α+ 1. For the sake of contradiction, suppose not. Then, from Observation 2.1, there
exist x, y ∈ V (Qi) such that (x, y) ∈ E(D). Since D is acyclic, x appears before y in the path
Qi. This contradicts that Qi is a shortest (u, v)-path in V (Q′i). Let Z =

⋃
i∈[k+1] V (Qi).

Clearly, {u, v} ⊆ Z and |Z| ≤ (2α− 1)(k+ 1) + 2. The size bound follows because the length
of each Qi is at most 2α + 1, and u, v are the vertices common in each Qi. To show that
Z is a k-cut preserving set for (u, v) in D, consider the semi-Z-based partition of P that is
P itself. Then, {Q1, . . . , Qk+1} is the list for P containing k + 1 internally vertex-disjoint
(V (D) \ Z)-free (u, v)-paths. J

3.2 Finding a Small k-Cut Preserving Set of a Pair in a Tournament
As explained before, the proof of Lemma 3.3 will use induction on α. The next lemma
handles the base case where α = 1. It is somewhat more complicated compared to the
arguments in Section 1.2; the reason for the complication is that we consider the digraph D
such that the D − {u, v} ∈ Dα. Thus D is not “exactly” a tournament. This is required in
the inductive case for the proof of Lemma 3.3.

I Lemma 3.9. Let D be an acyclic digraph. Let u, v ∈ V (D) be such that N+(u) = N−(v) =
∅ and D − {u, v} is a tournament. Then, a k-cut preserving set for (u, v) in D of size at
most k3 + 5k2 + 3k exists and is computable in polynomial time.

Proof. If all (u, v)-vertex cuts in D have size at least k+ 1, then the correctness follows from
Lemma 3.8. Thus, for the rest of the proof assume that there is a (u, v)-vertex-cut in D of
size at most k. Let C = {c1, . . . , c`} be a minimal (u, v)-vertex cut in D of size ` ≤ k.
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B Claim 3.10. C ⊆ N+
D (u) ∪N−D (v).

Proof. Suppose not. Then, there exists ci ∈ C such that ci 6∈ N+(u) ∪N−(v). Since C is a
minimal (u, v)-vertex cut in D, there exists a path, say P , from u to v in D− (C \ {ci}). Let
u′ be the first vertex on P after u and v′ be the last vertex of P before v. Since D − {u, v}
is an acyclic tournament, (u′, v′) ∈ E(D). Since u′, v′ 6∈ C, we get a (u, v)-path in D − C,
contradicting that C is a (u, v)-vertex cut in D. J

Let I = {i ∈ [`] | ci ∈ N−D (v)} and J = {j ∈ [`] | cj ∈ N+
D (u)}. For all i ∈ I, let

Ui = verD(u, ci;C) and Di = D[Ui]. For all j ∈ J , let Vj = verD(cj , v;C) and Dj = D[Vj ].
For all (i, j) ∈ [`]2, i 6= j, let Qi,j = verD(ci, cj ; ∅) and Di,j = D[Qi,j ].

For each i ∈ I (resp. j ∈ J , resp. (i, j) ∈ [`]2, i 6= j), we will compute a k-cut preserving
set Zi (resp. Zj , resp. Zi,j) of (u, ci) (resp. (cj , v), resp. (ci, cj)) in Di (resp. Dj , resp. Di,j)
of size at most 2k + 3 (resp. 2k + 3, resp. k + 3). The procedure to do so is as follows.

Computing Zi, i ∈ I: First observe that Ui is a candidate for Zi. Thus, if |Ui| ≤ 2(k+1),
set Zi = Ui. Otherwise, we have that |Ui| ≥ 2k + 3. Since D − {u, v} is an acyclic
tournament, let π be the unique topological ordering of D − {u, v}. We divide this case
further into two cases.

Case 1: |N+(u) ∩ Ui| ≤ k: Let Ũi be the last k + 1 vertices of Ui in π. Observe that
Ũi ⊆ N−(ci) ∩ Ui. Define Zi = (N+(u) ∩ Ui) ∪ Ũi ∪ {u, ci}. Clearly, |Zi| ≤ 2k + 3.
To prove that Zi is a k-cut preserving set for (u, ci) in Di, consider some (u, ci)-path
P in Di, such that V (P ) 6⊆ Zi. We will show a Zi-replacement witness for P in
Di. Consider the semi-Zi-based partition of P , P = P1 ] P2, where P1 is the arc
(u, x) ∈ E(P ), for some x ∈ N+(u) ∩ Ui and P2 is the (x, ci)-subpath of P . Clearly,
V (P1) ⊆ Zi. We claim that there are k + 1 vertex-disjoint (x, ci)-paths in Zi. To see
this, consider the following argument. Since V (P ) 6⊆ Zi, there exists a vertex y ∈ V (P )
such that y 6∈ Zi. Then, y ∈ V (P2). Since y 6∈ Zi, it in particular holds that y 6∈ Ũi.
Thus, all the vertices of Ũi appear after y in π. Since there is a (x, y)-path in Di, x
appears before y in π. Thus, x appears before all the vertices of Ũi in π. Thus, because
D − {u, v} is a tournament, Ũi ⊆ N+(x) ∩ Ui. Since Ũi ⊆ N−(ci) ∩ Ui, there are |Ũi|
many vertex disjoint (x, ci)-paths in Z. This completes the proof.

Case 2: |N+(u) ∩ Ui| > k: First observe that all the vertices of N+(u) ∩ Ui appear
before ci in π. Since π is a topological ordering of D−{u, v}, there are |N+(u)∩Ui| > k

vertex-disjoint (u, ci)-paths in Zi. Thus, each (u, ci)-vertex-cut in Di has size at least
k + 1. In this case, let Zi be the k-cut preserving set for (u, ci) in Di obtained from
Lemma 3.8. Observe that |Zi| ≤ k + 3.

Computing Zj, j ∈ J : Zj can be computed using arguments symmetric to the previous
case.
Computing Zi,j, (i, j) ∈ [`]2, i 6= j: First observe that all the vertices of Qi,j \ {ci, cj}
appear after ci and before cj in π. Thus, there are |Qi,j \ {ci, cj}| many vertex-disjoint
(ci, cj)-paths in Di,j . If |Qi,j | ≤ k − 2, then set Zi = Qi,j , otherwise let Zi be the k-cut
preserving set for (ci, cj) in Di,j obtained from Lemma 3.8. In either case, |Zi| ≤ k + 3.

Let Z :=
⋃
i∈I Zi ∪

⋃
j∈J Zj ∪

⋃
(i,j)∈[`]2,i6=j Zi,j . Observe that C ⊆ Z. First note that

|Z| ≤ |I|(2k+ 3) + |J |(2k+ 3) + `2(k+ 3) ≤ k3 + 5k2 + 3k2 (the last inequality holds because
|I|+ |J | = ` and ` ≤ k). We will now show that Z is a k-cut preserving set for (u, v) in D.
To see this, consider some(u, v)-path P , in D. Since C is a (u, v)-vertex-cut in D there exists
a vertex of C on P . Let ci be the first vertex of C on P and cj be the last vertex of C on P
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(ci could be the same as cj). Let P1 be the (u, ci)-subpath of P , P2 be the (ci, cj)-subpath
of P and P3 be the (cj , v)-subpath of P (if ci is the same as cj , then P2 is empty). Thus,
P = P1 ◦P2 ◦P3 is a semi-Z-based partition of P (as C ⊆ Z). Since Zi is a k-cut preserving
set for (u, ci) in Di, Zi is a k-cut preserving set for (cj , v) in Dj and Zi,j is a k-cut preserving
set for (ci, cj) in Di,j , and Zi,Zj ,Zi,j ⊆ Z, from Observation 3.1, Z is a k-cut preserving
set for (u, v) in D. J

3.3 Finding a small k-cut preserving set for a pair in a D ∈ Dα

We are now ready to prove Lemma 3.3.

I Lemma 3.3 (k-Cut Preserving Lemma). Let D be an acyclic digraph, and u, v ∈ V (D)
be such that N−(u) = N+(v) = ∅. Additionally, let D − {u, v} ∈ Dα. Then there exists
a k-cut preserving set for (u, v) in D of size at most f(α), where f(1) = k3 + 5k2 + 3k
and for α > 1, f(α) = k2g(α) + 2kh(α), g(α) = (2k + (k + kf(α − 1))2)f(α − 1) and
h(α) = (k2 + k)g(α) + kf(α− 1). Moreover, such a set can be found in time nO(1), where
n = |V (D)|.

Proof. We prove this lemma using induction on α. When α = 1, the proof follows from
Lemma 3.9.

B Claim 3.11. Let x, y ∈ V (D) \ {x, y}. Then, a k-cut preserving set for (x, y) of size g(α)
in any digraph D′ that is a subgraph of D where u, v 6∈ V (D′), can be found in polynomial
time.

Proof. Let W be a minimum (x, y)-vertex-cut in D′. If |W | > k, then the claim follows
from Lemma 3.8. Thus, we are now in the case where |W | ≤ k. For each w ∈W , let Z(x,w)
(resp. Z(w, y)) be a k-cut preserving set for (x,w) (resp. (w, y)) in D′[verD′(x,w;W )]
(resp. D′[verD′(w, y;W )]). Let B = N−D′(y) ∩

⋃
w∈W Z(w, y). For each (a, b) ∈ (W ∪ B)2,

let Z(a, b) be a k-cut preserving set for (a, b) in D′[ver′D(a, b;W ∪ N−(y))]. Then, from
Lemma 3.5, Z(x, y) :=

⋃
w∈W (Z(x,w)∪Z(w, y))∪

⋃
(a,b)∈(W∪B)2 Z(a, b) is a k-cut preserving

set for (x, y) in D′.
We will now show that for any w ∈ W and (a, b) ∈ (W ∪ B)2, each digraph among

D′[verD′(x,w;W )], D′[verD′(w, y;W )] and D′[verD′(a, b;W ∪N−D′(y))] has independence
number strictly smaller than α. Then, from induction hypothesis and the expression for
Z(x, y) written above, we will conclude that a k-cut preserving set for (x, y) in D′ of size g(α)
can be found in polynomial time. To see that the independence number of D′[verD′(x,w;W )]
is strictly less than α, observe that y is not adjacent to any vertex in verD′(x,w;W ), as W is
an (x, y)-vertex cut in D′. Thus, any independent set of D′[verD′(x,w;W )] together with y is
an independent set ofD′ and hence ofD. Since y 6∈ {u, v}, u, v 6∈ V (D′) and the independence
number of D − {u, v} is α, we have that the independence number of D′[verD′(x,w;W )]
is strictly smaller than α. A similar argument holds for D′[verD′(w, y;W )] as in this case
x is not adjacent to any vertex of verD′(w, y;W ). For D′[verD′(a, b;W ∪ N−D′(y))], since
verD′(a, b;W ∪N−D′(y)) ∩N−D′(y) = ∅, u, v 6∈ V (D′) and N+

D′(y) = ∅, any independent set
of D′[verD′(a, b;W ∪N−D′(y))] together with y is an independent set in D − {x, y}. Since
D−{x, y} has independence number α, D′[verD′(a, b;W ∪N−D′(y))] has independence number
strictly smaller than α. J

Let C be a minimum (u, v)-vertex-cut in D. If |C| > k, then the lemma follows from
Lemma 3.8. Thus, for the remainder of the proof we assume that |C| ≤ k. For each
c ∈ C, let Uc = verD(u, c;C), Vc = verD(c, v;C), Z(u, c) be a (u, c) k-cut preserving set in
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D[Uc], and Z(c, v) be a (c, v) k-cut preserving set in D[Vc]. For each (c, c′) ∈ C2, c 6= c′,
let Qc,c′ = verD(c, c′;C), and Z(c, c′) be a k-cut preserving set in D[Qc,c′ ]. Then from
Lemma 3.4, Z :=

⋃
c∈C Z(u, c)∪Z(c, v)∪

⋃
(c,c′)∈C2,c6=c′ Z(c, c′) is a k-cut preserving set for

(u, v) in D. Since C ∩ {u, v} = ∅, from Claim 3.11, for each (c, c′) ∈ C2, c 6= c′, Z(c, c′) of
size g(α) can be computed in polynomial time. In the remainder of the proof, we will show
how to compute Z(u, c) and Z(c, v), for any c ∈ C, of the desired size. We will only give the
proof of construction of Z(u, c) as the proof for Z(c, v) is symmetrical.

B Claim 3.12. For any c ∈ C, Z(u, c) of size h(α) can be computed in polynomial time.

Proof. For ease of notation, let D̂ = D[Uc]. Let A be a minimum (u, c)-vertex-cut in D̂.
First note that A ∩ {u, v} = ∅. If |A| > k, then the claim follows from Lemma 3.8. Thus, for
the remainder of the proof, assume that |A| ≤ k.

For each a ∈ A, let Ûa = ver
D̂

(u, a;A), V̂a = ver
D̂

(a, c;A), Ẑ(u, a) be a (u, a) k-cut
preserving set in D̂[Ûa] and Ẑ(a, c) be a (a, c) k-cut preserving set in D̂[V̂a]. For each
(a, a′) ∈ A2, a 6= a′, let Ra,a′ = ver

D̂
(a, a′;A) and Ẑ(a, a′) be a k-cut preserving set in

D̂[Ra,a′ ]. Then from Lemma 3.4, Z(u, c) :=
⋃
a∈A(Ẑ(u, a)∪Ẑ(a, c))∪

⋃
(a,a′)∈A2,a 6=a′ Ẑ(a, a′)

is a k-cut preserving set for (u, c) in D. Since A∩{u, v} = ∅ and c ∈ {u, v}, from Claim 3.11,
for each a ∈ A, (a, a′) ∈ A2, a 6= a′, Ẑ(a, c) and Ẑ(a, a′) of size g(α) can be computed in
polynomial time. Moreover, the independence number of D̂[Ûa]− {u, a} is strictly smaller
than α because c( 6= v) is not adjacent to any vertex in Ûa, besides possibly u and a. Thus,
for each a ∈ A, a set Ẑ(u, a) of size f(α − 1) can be computed in polynomial time by the
induction hypothesis. This finishes the proof of the claim. J

Thus, from the previous arguments and Claim 3.12, we have that Z is a k-cut preserving
set for (u, v) in D of size at most k2g(α) + 2kh(α). J

A rough computation gives that, for any k, g(α) ≤ 6k2f(α− 1) and h(α) ≤ 8k4f(α− 1).
This imply that f(α) ≤ 22k5f(α − 1)3. By noting that f(1) ≤ 22k5, we can show the
following observation.

I Observation 3.13. For any α and k, there exists a k-cut preserving set of size smaller
than f(k, α) = (22k5)4α .

3.4 k-Cut Preserving Sets for a Set of Vertices
Below we also define a notion of k-cut preserving sets for a set of vertices. Such a notion will
come handy in our applications. Given a digraph D and X ⊆ V (D), for each (u, v) ∈ X2, we
define the digraph DX

(u,v) as follows (note that u could be equal to v). Let R = V (D)−X.
Then, DX

(u,v) is the supergraph of D[R] obtained by adding two new vertices u+ and v−

together with the following set of additional arcs: {(u+, x) : x ∈ R, (u, x) ∈ E(D)}∪{(x, v−) :
x ∈ R, (x, v) ∈ E(D)} .

I Definition 3.14 (k-Cut Preserving Set for a Set of Vertices). For any digraph D, a positive
integer k and X ⊆ V (D), we say that X ⊆ Z ⊆ V (D) is a k-cut preserving set for X, if for
all (u, v) ∈ X2, Z is a k-cut preserving set for (u, v) in DX

(u,v).

I Lemma 3.15. For any digraph D ∈ Dα, a positive integer k, and S ⊆ V (D) such that
D − S is a acyclic, a k-cut preserving set for S of size at most |S|2f(k, α) can be found in
polynomial time, where f(k, α) ≤ (22k5)4α .
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Proof. For each pair (u, v) ∈ S2 (u and v could be equal), let Z(u,v) be the a k-cut preserving
set for (u+, v−) in DS

(u,v) obtained from Lemma 3.3. From the definition of k-cut preserving
set for S, Z =

⋃
(u,v)∈S2 Z(u,v) is a k-cut preserving set for S. From Observation 3.13, for

any (u, v) ∈ S2, |Z(u,v)| ≤ f(k, α). Thus, we conclude the correctness of the lemma. J

4 Applications of the k-Cut Preserving Lemma

4.1 Fault-Tolerant (S, S)-Reachability
In this section, we prove Lemma 1.1. Recall that (D,S, `, k) is an instance of FTR(S, S)
where D ∈ Dα, S ⊆ V (D) and `, k are positive integers such that each strongly connected
component of D − S has size at most `. The goal is to compute a subgraph H of D of
size k2O(α) such that, for any A ⊆ E(D) of size at most k, for any s, t ∈ S, if D − A has
an (s, t)-path, then so does H − A. It is not difficult to see from Lemma 3.2 that if Z is
a k-cut preserving set for S in D, then H = D[Z] is a solution for (D,S, `, k) (for any `).
When ` = 1, D − S is acyclic and hence a k-cut preserving set for S can be computed using
Lemma 3.15. When ` > 1, in order to use Lemma 3.15 we modify the digraph D to turn
D − S acyclic. We now describe the operation, which we call dagify, that is used to turn
D − S acyclic. Informally, for each strongly connected component SC of D we turn it into
an independent set while preserving the paths in D that use the vertices of SC. This is
achieved by creating a new vertex for every ordered pair of vertices (say, (u, v)) in SC. Such
a vertex represents the existence of a (u, v)-path in the strongly connected component SC.
In fact, in the path in the modified graph, each new vertex corresponding to some pair (u, v)
can be replaced by some (u, v)-path from the strongly connected component SC to yield a
path in the original graph. Then, arcs between two vertices in this newly constructed vertex
set are put in such a way that the concatenation of the paths corresponding to these new
vertices gives a path in D. This idea is formalized below.

I Definition 4.1 (dagify(D,R)). Let D be a digraph, R ⊆ V (D) and S = V (D) \ R. Let
SC1, . . . , SCd be the strongly connected components of D[R]. For a ∈ [d], let V (SCa) =
{va1 , . . . , vana}, where na = |V (SCa)|. Then, D†R := dagify(D,R) is the digraph defined as:

Vertex set of D†
R: For each a ∈ [d], let SC†a = {vaij | (vai , vaj ) ∈ {SCa}2, i, j ∈ [na]}. Let

R† = ∪a∈[d]SC
†
a and V (D†R) = R† ∪ S.

Arc set of D†
R: It contains all the arcs of D with both end-points in S. For each a ∈ [d],

SC†a is an independent set in D†R. For any a ∈ [d], s ∈ S and i, j ∈ [na], (s,vaij) ∈ E(D†R)
if and only if (s, vai ) ∈ E(D). Similarly, (vaij , s) ∈ E(D†R) if and only if (vaj , s) ∈ E(D).
We put the arcs between SC†a and SC†b , for distinct a, b ∈ [d] as follows. For any i, j ∈ [na]
and i′, j′ ∈ [nb], (vaij ,vbi′j′) ∈ E(D†R) if and only if (vaj , vbi′) ∈ E(D).

For a set of vertices of X† ⊆ D†R, full-comp(X†) denotes the set of vertices of V (D) such
that, for each vai,j ∈ X†, all the vertices of SCa belong to full-comp(X†). Also all the vertices
of S that belong to X†, belong to full-comp(X†). Observe that |full-comp(X†)| ≤ `2 · |X†|,
where ` is the upper bound on the size of each SCa. Note from the construction above that,
for any s, t ∈ S and an (s, t)-path P † in D†R, there exists an (s, t)-path P in D such that
V (P ) ⊆ full-comp(P †). The following observations state a few properties of the digraph D†R
that would be useful when we want to find a k-cut preserving set for D†R using Lemma 3.15.

I Observation 4.1. D†R[R†] is acyclic.
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Proof. Recall, from the construction of D†R, that R† =
⋃
a∈[d] SC

†
a and each SC†a is an

independent set in D†R. Without loss of generality, let SC1, . . . , SCd be the strongly connected
components of D[R] ordered as in their topological ordering. Then, there is no arc from a
vertex of SCb to a vertex of SCa, for any b > a, in D. Thus, from the construction of D†R,
there is no arc from any vbij to any vai′j′ (b > a). This shows that D†R[R†] is acyclic. J

I Observation 4.2. If D ∈ Dα and every strongly connected component of D[R] has size at
most `, then D†R ∈ D`2α.

Proof. Recall that R† =
⋃
a∈[d] SC

†
a and D†R[SC†a] has no arc. From the construction of

D†R, for each a ∈ [d], |SC†a| ≤ `2. Finally, since D ∈ Dα, from the construction of D†R, the
size of any maximum independent set in D†R is at most maxa∈[d] |SC†a| · α ≤ `2α. J

We define some terminology that would come handy later. For any A ⊆ E(D), we say
that a vertex v ∈ V (D) is affected by A if there exists some arc of A that is incident on v.
The set affected by A in D†R is the set of vertices of D†R containing the union of the vertices
in SC†a, for each a ∈ [d] such that a vertex in SCa is affected by A in D.

I Observation 4.3. Let D be a digraph, R ⊆ V (D) and S = V (D) \ R. Let A ⊆ E(D) of
size at most k. Let A† be the set affected by A in D†R. Recall the construction of D†R from
Definition 4.1. For some vaij ,vbi′j′ ∈ R†, let P † be an A†-free (vaij ,vbi′j′)-path in D†R. Then
there exists a (vai , vbj′)-path P in D such that: V (P ) ⊆ full-comp(P †) and, P does not use
any arc of A.

Proof. Recall the construction of dagify(D,R). Consider any path P obtained from P † by
replacing all the vertices of R† as follows. If for any c ∈ [d], i∗, j∗ ∈ [nc], vci∗j∗ ∈ V (P †), then
replace vci∗j∗ in P † by any (vci∗ , vcj∗)-path in the strongly connected component SCc. Clearly,
the path P obtained is a (vai , vbj′)-path in D and V (P ) ⊆ full-comp(P †). Also from the
definition of A† and the fact that P † is A†-free, we get that P cannot use an arc of A. J

From the construction in Definition 4.1, for any s, t ∈ S, for an (s, t)-path P in D, we
can associate a unique (s, t)-path P † in D†R. This is elaborated below. Consider the digraph
D†R obtained by dagify(D,R). (vai , vaj ) ∈ SC2

a for some component SCa of D[R]. Let s, t ∈ S.
Let P be an S-free (s, t)-path in D. For any such path P , we define the notion of a reduced
path of P in D†R as follows. Consider the unique partition P = Ps ◦ Pi1 ◦ . . . ◦ Piq ◦ Pt such
that Ps is an arc (s, u) where u ∈ V (SCi1), Pt is an arc (v, t) where v ∈ V (SCiq) and for
each j ∈ [q], V (Pij ) ⊆ V (SCij ), where i1, . . . , ij ∈ [d] and i1 < . . . < iq. For each j ∈ [q],
let Pij be a (vijpj , v

ij
rj )-path. Consider the vertex vijpj ,rj in Vij ⊆ R† ⊆ V (D†R). From the

construction of D†R, we get the (s, t)-path P † = s ◦vi1p1,r1
◦vi2p2,r2

◦ . . . ◦viqpq,rq ◦ t in D
†
R. This

(s, t)-path P † in D†R is called the reduced path of P in D†R.

Proof of Lemma 1.1. Recall (D,S, `, k) is an instance of FTR(S, S). Let R = V (D) \ S.
Let D†R be obtained by dagify(D,R). From Observations 4.1 and 4.2, Lemma 3.15 can be
used to compute a (2k`2 + 1)-cut preserving set for S in D†R. Let Z† be such a set. Let
Z = full-comp(Z†). We claim that H = D[Z] is a solution to the instance (D,S, `, k). (First
note that the size bound on H follows from Lemma 3.15 and the fact that each strongly
connected component of R has size at most `.)

Towards this let A ⊆ E(D) of size at most k, s, t ∈ S and P be an (s, t)-path in D −A.
We need to show that there is some (s, t)-path in H −A too. Let P = P1 ◦ . . . ◦ Pq be the
S-based partition of P such that each Pi is an (si, ti)-path. Then it suffices to show that
for each fixed i ∈ [q], there is some (si, ti) path in H −A (these paths would yield a closed
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walk from s to t in H −A and hence an (s, t)-path in H −A). In the remaining part of the
proof, we focus on proving this. Note that each Pi is S-free. Fix any i ∈ [q]. For the ease of
notation, let us call the path Pi as P , vertices si, ti as s, t respectively.

Let P † be the reduced path corresponding of P in D†R. Since Z† is a (2k`2 + 1)-cut
preserving set for P † in D†R, consider a Z†-witnessing replacement P † = P †1 ◦ . . . ◦P †r . Recall
the notation from the construction in Definition 4.1.

For an arbitrary c ∈ [r], let P †c be a (vaij ,vbi′,j′)-path (or (s,vaij)-path or (vaij , s)-path).
Observe that, since P † is the reduced path of P , to finish the proof of the lemma, it is enough
to show a (vai , vbj)-path (or (s, vai )-path or (vai , s)-path) exists in H − A. Without loss of
generality, let P †c be a (vaij ,vbi′,j′)-path, the other cases hold due to similar arguments.

As P † = P †1 ◦ . . . ◦ P
†
d is a Z†-witnessing replacement, one of the following cases arises.

1. V (P †c ) ⊆ Z†. Since P † is the reduced path of P , consider the (vai , vbj)-subpath, say P ′c,
of P . Then, V (P ′c) ⊆ full-comp(P †c ) ⊆ Z (because V (P †c ) ⊆ Z†). Also since P does not
have an arc in A, so does P ′c. Thus, by the construction of H, P ′c is a path in H −A.

2. There is a list Li of 2k`2 + 1 internally vertex-disjoint (vaij ,vbi′j′)-paths in D
†
R[Z†]. Let

A† be the set of affected vertices of A in D†R. Clearly, |A†| ≤ 2k`2. Then there exists a
path in Li that is A†-free. Then from Observation 4.3, there exists a (vai , vbj)-path, say
P ′c, such that V (P ′C) ⊆ full-comp(P †c ) ⊆ Z and, that does not use an arc of A. From
the construction of H, P ′c is a path in H −A.

This finishes the proof of the lemma. J

4.2 Kernel for DFAS on Dα

In this section, we give a polynomial kernel for DFAS on Dα, that is, we prove Theorem 1.3.

I Theorem 1.3. DFAS on Dα admits a kernel of size kO(4α).

We achieve this in two steps. In the first step, we find a set of vertices S of size O(αk)
whose removal results in an acyclic digraph. We then show that it is enough to keep the
vertices of a k-cut-preserving set for S to get a kernel.

I Lemma 4.2. Let (D, k) be an instance of DFAS and let D ∈ Dα. In polynomial time,
one can either correctly conclude that (D, k) is a NO instance of DFAS, or output a set
S ⊆ V (D) such that |S| ≤ (2α+ 1)k and D − S is acyclic.

Proof. Since D ∈ Dα, if there exists a cycle in D, then from Observation 2.1 there exists
a cycle of length at most 2α + 1. Thus, one can greedily find vertex-disjoint cycles each
of length at most 2α+ 1. To see this, notice that after the removal of any vertex set, the
resulting digraph remains in Dα and hence our previous argument reapplies. If one finds
more than k such cycles, then any dfas of S has size at least k + 1, in which case report that
(D, k) is a NO instance. Otherwise, one finds a collection C of at most k cycles of length at
most 2α+ 1 each such that every cycle of D intersects in some vertex of one of the cycles in
C. In this case, output S as the union of the vertex sets of the cycles in C. J

I Lemma 4.3. Let (D, k) be an instance of DFAS where D ∈ Dα. Let S be a set computed
by Lemma 4.2 on input (D, k). Let Z be a k-cut preserving set for S in D computed by
Lemma 3.15. Then, (D, k) is a YES instance of DFAS if and only if (D[Z], k) is a YES
instance.
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Proof. Since D[Z] is a subgraph of D, the forward direction is trivial. For the backward
direction, let A be a dfas of D[Z] of size at most k. We will prove that A is also a dfas of
D. For the sake of contradiction, suppose that A is not a dfas of D, that is, there is some
cycle C in D−A. Since D−S is acyclic, C must contain some vertex from S. Let v0, . . . , v`
be the vertices in V (C) ∩ S, appearing in this order along C (the choice of which vertex is
denoted v0 is arbitrary).

For any pair (vi, vi+1), the (vi, vi+1)-subpath of C is S-free. Recall the construction of
the digraph DS

(vi,vi+1) before Definition 3.14. From the definition of Z (by Definition 3.14), Z
contains a k-cut preserving set for (vi, vi+1) in DS

vi,vi+1
, for each i ∈ [0, `]. From Lemma 3.2,

there exists a path P ′i from vi to vi+1 in D[Z]−A. Thus, we conclude that for each i ∈ [`]0,
there exists a (vi, vi+1)-path (where addition is modulo `) in D[Z]−A. Since C is a cycle,
these paths give a closed walk (and hence also a cycle) in D[Z]−A. J

Proof of Theorem 1.3. Its correctness follows from Lemmas 3.15 and 4.3 by noting that
the size of the set Z obtained is smaller than ((2α+ 1)k)2f(k, α) . J

5 Introducing Parity Preserving Set

One of the mains tools employed for the proof of Lemma 1.1 and Theorem 1.3 was Lemma
3.2, which says that if Z is a k-cut preserving set for (u, v) and A is a set of at most k arcs,
then the existence of a (u, v)-path in D − A implies the existence of one in D[Z]− A. To
prove Lemma 1.2 and Theorem 1.7, we need to take into account not only the existence
of a path, but also its length modulo a certain integer p. For this reason, we introduce a
notion of parity preserving sets. Vaguely speaking, in the a parity preserving set, like the cut
preserving set, we need to keep witnesses for paths. In the case of cut preserving sets keeping
a list of k + 1 paths was enough to ensure the existence of one of them after the removal of
at most k arcs, as one path from each of the lists, together would yield a walk which was
sufficient for the cut-preserving purposes. In this case, since a walk doesn’t necessarily yield
the required parity path, we need to have witness lists of large enough size that ensure the
existence of enough paths such that a disjoint witness of required parity can be found for
each piece to yield a witnessing path for the given path. Also, the size of the list of paths
required as a witness then also becomes a function of the size of the original path. This is
formalized in the definition below.

I Definition 5.1 ((k, p, q, t)-parity preserving set for a collection of pairs). For any digraph D,
positive integers k, p, q, t, and a collection of pairs of vertices V ⊆ V (D)2, a set Z is called a
(k, p, q, t)-parity preserving set for V if for any A ⊆ E(D) of size at most k, if there exists
V ′ ⊆ V, |V ′| ≤ q, V ′ = {(ui, vi) : i ∈ [q′], q′ ≤ q} such that,

1. for each (ui, vi) ∈ V ′, there is a (ui, vi)-path Pi of length at most t in D −A,
2. for each i, j ∈ [q′], i 6= j, the paths Pi, Pj described above are internally vertex-disjoint,
3. for each i ∈ [q′], the internal vertices of Pi are disjoint from the set of vertices in the

pairs of V,

then for each i ∈ [q′], there exists a (ui, vi)-path P ∗i in D[Z]−A such that,

1. length of Pi modulo p is equal to length of P ∗i modulo p,
2. for each i, j ∈ [q′], i 6= j, the paths Pi and P ∗j are internally vertex-disjoint.
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We now show how to a find (k, p, q, t)-parity preserving sets using cut preserving sets.
For this, first recall the definition of dagify(D,R) (Definiton 4.1). Recall that, the strongly
connected components of R are denoted by SCi and their corresponding vertices in R† are
denoted by SC†i .

I Lemma 5.2. Let k, p, q, t, ` be positive integers. Let D ∈ Dα be a digraph, S ⊆ V (D) and
R = V (D)− S. Suppose that every strongly connected component of D[R] contains at most `
vertices. Let β = qt(2`2α+ 1)p2α`2 + (qt+ 2k)`2 + p2α. Let Z† be a β-cut preserving set for
S in dagify(D,R) = D†R, and let Z = S ∪ {SCi | there exists v ∈ SC†i such that v ∈ Z†}.
Then, Z is a (k, p, q, t)-parity preserving set for S2 in D. Moreover, such a set Z of size at
most |S|2f(β, α`2)`2 can be computed, where f is as defined in Lemma 3.15.

Proof. From Observation 4.2, D†R ∈ D`2α, which together with Lemma 3.15, implies that
β-cut preserving set Z† for S in D†R of size at most |S|2f(β, α`2) can be computed. Thus,
|Z| ≤ |S|2f(β, α`2)`2. It remains to show that Z is a (k, p, q, t)-parity preserving set for S2

in D. For simplicity of notation, let D† denote D†R.
Recall the notation above Lemma 3.15. Notice that Z† is the union of β-cut preserving

sets, specifically, a cut Cu,v for (u+, v−) in D†Su,v for all u, v ∈ S. For convenience, we will
consider that any vertex s ∈ S of D†R corresponds to the pair of vertices (s, s) of D. Because
of this, any vertex v of D†R corresponds to a pair of vertices of D. In some arguments ahead,
for a vertex (a1, b1) of D†R, we will want to consider a (a1, b1)-path in the component of D[R]
containing a1 and b1. When a1 = b1 = s ∈ S, it will be always safe to take the single vertex
s as this path.

Let A ⊆ E(D) be of size at most k. Let {(u1, v1), . . . , (uc, vc)} be some pairs of vertices
of S, where c ≤ q and let P1, . . . , Pc be a set of paths such that,

1. for each i ∈ [c], Pi is a (ui, vi)-path of length at most t in D −A,
2. for each i, j ∈ [c], i 6= j, the paths Pi, Pj are internally vertex-disjoint,
3. for every i ∈ [c], the internal vertices of Pi are disjoint from S.

We want to show the existence of a set of paths P ∗1 , . . . , P ∗c such that every P ∗i is a (ui, vi)-
path in D[Z]−A, the length of Pi modulo p is the same as the length of P ∗i modulo p and,
all the P ∗i ’s are internally vertex-disjoint.

For each i ∈ [c], let P †i be the reduced path of Pi in D†. Note that P †i is a (ui, vi)-path
in D†. Since, Z† is a β-cut preserving set for (ui, vi) in D†, there exists a semi-Z†-based
partition of P †i , P

†
i = P †i,1 ◦ · · · ◦ P

†
i,ai

, such that for each j ∈ [ai], either V (P †i,j) ⊆ Z† or
there exists a list L†i,j of size β containing paths between the same endpoints as P †i,j .
I Note 5.3. For each i ∈ [c], since the length of Pi is at most t, ai ≤ t.

B Claim 5.4. Without loss of generality, for each i ∈ [c], j ∈ [ai], all the paths in L†i,j have
length at most 2`2α+ 1.

Proof. Recall from Observation 4.2 that D† ∈ D`2α. Thus, from Observation 2.1, we can
safely assume that all the paths in L†i,j have length at most 2`2α+ 1. J

For each path P †i,j in D†, we will now associate a path Pi,j in D with it. The path Pi,j is
basically the subpath of Pi with the endpoints corresponding to the endpoints of P †i,j , that
is, Pi,j is obtained from P †i,j by replacing each vertex vzx,y in P †i,j by some (vx, vy)-path in
SCz. Consider the collection of paths {Pi,j | i ∈ [c], j ∈ [ai]}. Observe that our goal reduces
to finding another collection {P ∗i,j | i ∈ [c], j ∈ [ai]} such that,
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1. the vertex sets of the internal vertices of P ∗i,j and P ∗i′,j′ are disjoint, for each i, i′ ∈ [c],
j ∈ [ai], j′ ∈ [ai′ ], i 6= i′, j 6= j′,

2. for each i ∈ [c], j ∈ [ai], the length of the path Pi,j modulo p is the same as the length of
the path P ∗i,j modulo p.

It is enough to prove the above because the collection P ∗i = P ∗i,1 ◦ · · · ◦ P ∗i,ai , for each
i ∈ [c] is the desired collection.

If V (P †i,j) ⊆ Z†, then let P ∗i,j = Pi,j . Note that, in this case, V (Pi,j) = V (P ∗i,j) ⊆ Z.
Thus, P ∗i,j is a path in D[Z]−A. In the other case, when there exists a list L†i,j of paths of
size β for P †i,j , we clean this list as follows.

First, since c ≤ q, all the Pi’s are of length at most t, each strongly connected component
in D[R] contains at most ` vertices and |A| ≤ k, we need to remove only (qt+ 2k)`2 paths
from each list L†i,j so that the internal vertices of the remaining paths correspond to strongly
connected components of D[R] not containing any of the vertices in any of the Pi’s or any
vertex adjacent to any edge in A. Since the number of lists L†i,j is bounded by ct (refer
Note 5.3), and each path is smaller than 2`2α+ 1, we can remove at most qt(2`2α+ 1)p2α`2

further paths from each list so that the remaining lists, which we denote as L̂†i,j ’s, consist
of p2α internally vertex-disjoint paths of D†Sui,vi , such that if SCr is a strongly connected
component of D[R] and a pair of vertices (x1, x2) ∈ V (SCr) is used in a path of L̂†i,j , then
no other path of any other Lx,q can use a pair of vertices of V (SCr) as an internal vertex.

Let Qai,j = x1 ◦x2 ◦ · · · ◦xf be a path of Li,j , with all the xi’s being vertices of Cui,vi . We
will construct a path T ai,j of D[Z]−A as follows: x1 is a vertex of P †i which corresponds in
Pi to a path in some strongly connected component SCr from some vertex a1 to a vertex b1.
Let K1 be this path. Likewise, xf is a vertex of P †i which corresponds in Pi to a path in some
strongly connected component SCr′ from some vertex af to a vertex bf . Let Kf be this path.
Each of the other xi’s corresponds to a pair of vertices (ai, bi) in some strongly connected
component SCri of D[R], let Ki be any (ai, bi)-path in this component. By definition of the
digraph D†R, it is clear that the concatenation of the Ki using the additional arcs from br
to ar+1 for r ∈ [f − 1] is a (a1, bf )-path in D[Z]. Moreover, because of the cleaning part of
our argument, we know that none of the xr for r ∈ [2, f − 1] belong to strongly connected
component adjacent to arcs of S, which means that all the Kr for r ∈ [2..f − 1] are in
D[Z]−A. Since K1 and Kf are subpaths of Hi, and don’t contain any vertex not in Cui,vi ,
they also belong to D[Z]−A.

Let Qai,j be a path of some L̂†i,j , Qa
′

i′,j′ a path of some Li′.j′ (possibly i = i′ and j = j′)
and T ai,j and T a′i′,j′ the paths of D[Z] − A associated. Because of the cleaning part of our
procedure, the internal vertices of Qai.j and Qa

′

i′,j′ belong to different strongly connected
components of D[R]. This implies that the paths T ai,j and T a′i′,j′ are internally vertex-disjoint.
For a similar reason, they are also internally vertex disjoint from all the vertices of all the
other Pj . It means that, for any fixed i, j such that P †i,j does not belong to Cui,vi , the only
thing we have left to argue is that there exists, among the paths T ai,j , a path of the same
length modulo p as P ∗i,j . This is done by Lemma 2.2, as there is at least p2α of those paths.
This ends the proof. J

6 Applications of Parity Preserving Sets

In this section we show how to utilize Lemma 5.2 to prove Lemma 1.2 and Theorem 1.7.
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6.1 Parity Reachability Fault Tolerance

In order to prove Lemma 1.2, we need a way to bound the size of the paths that we consider.
This is the purpose of the next two lemmas.

I Lemma 6.1. Let D ∈ Dα, p be some positive integer and u and v be two vertices such that
any strongly connected component in D − {u, v} has size at most `. If there exists a path P
from u to v of length q such that q mod p = r for some r ∈ [p−1] and q ≥ αp`+2, then there
exists a path P ′ from u to v of length q′ such that q′ mod p = (r + 1) and q − αp` ≤ q′ < q.
Moreover, V (P ′) ⊂ V (P ).

Proof. Suppose P = x0, . . . , xq−1 and consider the set of vertices S = ∪i∈[0,α]x1+ip`. Because
D ∈ Dα and S is a set of size α+ 1, there is an arc between two vertices x1+ip` and x1+jp`
for some 0 ≤ i < j ≤ α. This arc has to be oriented from x1+ip` to x1+jp` or it would create
with the subpath of P from x1+ip` to x1+jp` a cycle of length greater than ` in D − {u, v}.
Thus the path P ′ obtained from P by replacing the subpath of P from x1+ip` to x1+jp` by
the arc (x1+ip`, x1+jp`) satisfies all the properties required. J

If P is a path of length at least αp2`, it means we can apply Lemma 6.1 p times to get a
path of the same parity. This gives the following lemma.

I Lemma 6.2. Let D be a digraph in Dα, p some positive integer and u and v two vertices
such that any strongly connected component in D−{u, v} has size at most `. If there exists a
path P from u to v of length q such that q mod p = r for some r ∈ [p− 1], then there exists
a path P ′ from u to v of length q′ such that q′ mod p = r and q′ ≤ αp2` + 2. Moreover,
V (P ′) ⊂ V (P ).

We are now ready to prove the parity version of our fault-tolerant result.

I Lemma 1.2. Given a digraph D ∈ Dα, positive integers k, `, p, a non-negative integer
r, and S ⊆ V (D) such that every strongly connected component of D − S has at most `
vertices, the Fault-Tolerance (S, S)-Parity Reachability problem admits a solution
H on (|S|α`pk)O(4α`

2
) vertices. Furthermore, such a solution H can be found in polynomial

time.

Proof. Let Z ′ be a (k, p, |S|, αp2`+ 2)-parity-preserving set obtained by applying Lemma
5.2 to D and S. A rough computation would show that the β defined in Lemma 5.2 is then
smaller than 20|S|α3`5p5 + 2k`2, which gives that:

|Z ′| ≤ |S|2`2(22(20|S|α3`5p5 + 2k`2)5)4α`
2

.

Let us now show that Z ′ is a solution to the Fault-Tolerance (S, S)-Parity Reach-
ability problem. Let A be a set at most k arcs, s and t two vertices of S, and P a path
from s to t in D −A. Let s1, . . . , se denote the vertices in the intersection of P with S, in
the order as they appear on P , and for every i ∈ [e− 1], Pi denote the subpath of P from
si to si+1. As P is a path, e ≤ |S|. By applying Lemma 6.2, we can assume that all the
Pi’s are smaller than αp2`+ 2. Thus, by definition of a (k, p, |S|, αp2`+ 2)-parity-preserving
set, for every i ∈ [e] there exists a path P ′i in D[Z ′]−A from si to si+1 of the same length
modulo p as Pi and such that all the P ′i are internally vertex-disjoint. Taking the union of
the P ′i gives the desired (s, t)-path in D[Z ′]−A. J
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6.2 Kernel for mod(p)-DCT in Dα

In this section, we present a proof of Theorem 1.7. The proof follows the same structure as
the proof of Theorem 1.3. First we need to find an approximate solution of polynomial size.
For this we need the following result, due to Chen et al. [21]

I Theorem 6.3. Let l ≥ 2 be an integer. If a strongly connected digraph D contains no
directed cycle of length 1 mod p, then χ(D) ≤ p.

Remember that, when D ∈ Dα, χ(D) ≤ p implies that |D| ≤ αp.

I Lemma 6.4. Let D ∈ Dα and p a positive integer. Then either D does not contain a cycle
of length 1 mod p, or such a cycle on fewer than p(α+ 1)2 vertices exists.

Proof. Suppose C is the smallest cycle of length 1 mod p, and |C| = q ≥ (α + 1)2p. Let
C = x0, . . . , xq−1 denote the vertices of C. Consider the set of vertices A = ∪i∈[0,α]{xiαp}.
Because A contains more than α vertices, there is an arc between two vertices of A, say from
xiαp to xjαp. However, since q ≥ (α + 1)2p, the subpath of C from xjαp to xiαp contains
more than αp vertices. Let C ′ denote the vertices on this path. D[C ′] is a strongly connected
graph on more than αp vertices. Theorem 6.3 implies the existence of a cycle of length 1
mod p in D[C ′] which is a contradiction as C ′ is smaller than C. J

With the previous lemma, one can easily adapt the proof of Lemma 4.2 to show the
following:

I Lemma 6.5. Let (D, k) be an instance of mod(p)-DCTand let D ∈ Dα. In polynomial
time, one can either correctly conclude that (D, k) is a NO instance of mod(p)-DCT, or
output a set S ⊆ V (D) such that |S| ≤ (α + 1)2pk and D − S does not have any cycle of
length 1 mod p.

We are now ready to prove the existence of a kernel for mod(p)-DCT:

I Theorem 1.7. mod(p)-DCT on Dα admits a kernel of size (pαk)O(4α
3p2

).

Proof. Let (D, k) be an instance mod(p)-DCT. By applying Lemma 6.5, we can either
find k + 1 vertex disjoint cycles of length 1 mod p, and conclude that (D, k) is a NO
instance, or find a set S of size at most k(α+ 1)2p vertices such that D − S doesn’t contain
any cycle of length 1 mod p. Let R = V (D) − S and note that Theorem 6.3 implies
that the strongly connected component of D[R] have at most αp vertices. Let Z be a
(k, p, p(α+ 1 + k)2, p(α+ 1 + k)2)-parity preserving set for S obtained from applying Lemma
5.2 to D and S. Note that, the β defined in Lemma 5.2 is then smaller than 10p8α10k4 and
thus |Z| ≤ (k(α+ 1)2p)2(22(10p8α106k4)5)4α

3p2

. We claim that (D, k) is a YES instance of
mod(p)-DCT if and only if (D[Z], k) is a YES instance of mod(p)-DCT.

For the ease of notation, let D′ = D[Z]. Since D′ is a subgraph of D, the forward
direction is trivial. For the backward direction, let A be a set of at most k arcs such that of
D′ −A has no cycle of length 1 mod p. We will now prove that D′ −A also has no cycle of
length 1 mod p. For the sake of contradiction, suppose there is a cycle of length 1 mod p

in D −A and let C be the smallest such cycle. Since D ∈ Dα and |A| ≤ k, D −A ∈ Dα+k.
Then by Lemma 6.4, the length of C is at most p(α+ 1 + k)2.

Since D[R] has no cycle of length 1 mod p, C ∩ S 6= ∅. Let v1, . . . , vq be the vertices of
C ∩ S in the order as they appear on C. Note that q ≤ p(α+ 1 + k)2. Then, for each i ∈ [q],
there is a subpath Pi,i+1 (count q + 1 as 1) from vi to vi+1, such that Pi,i+1 is S-free. Note
that all the length of each of these paths is at most the length of the cycle C which is at
most p(α+ 1 + k)2.
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B Claim 6.6. For each i ∈ [q], there exists a path P ′i,i+1 from vi to vi+1 in D′ −A such that:

1. the length modulo p of P ′i,i+1 is the same as the one of Pi,i+1, and
2. for any i, j ∈ [q], i 6= j, the set of internal vertices of P ′i,i+1 and P ′j,j+1 are disjoint.

Proof. Since Z is a (k, p, p(α+ 1 + k)2, p(α+ 1 + k)2)-parity-preserving set for S2 in D and⋃
i∈[q](vi, vi+1) ⊆ S2, the claim follows from the definition of (k, p, p(α+1+k)2, p(α+1+k)2)-

parity-preserving set for S2. J

Consider the cycle C ′ formed by taking the union of all the paths P ′i,i+1, for all i ∈ [q].
From Claim 6.6, C ′ exists in D′−A and has the same length modulo p as C. This contradicts
the definition of A and ends the proof. J

6.3 Difference Between Paths and Cycles
As stated in the introduction, there is a fundamental difference between Lemma 1.2 and
Theorem 1.7 as we are only able to obtain a kernel for cycle of length modulo 1 mod p. The
reason behind this difference is that Theorem 6.3 only works for cycles of length 1 mod p

(they even provide counterexamples in [21] when the length is not 1), while Lemma 6.2 works
for any r ∈ [0, p− 1].

7 NP-hardness of Directed Edge Odd Cycle Transversal on
Tournaments

In this section, we will show that DEOCT is NP-hard on tournaments by showing that it is
equivalent to DFAS on tournaments. Given a digraph D, observe that any dfas of D is also
a deoct. But the converse may not always be true. But what we can prove in the converse
case is that if |S| is an deoct of D, then there exists a vertex set |S′| such that |S′| ≤ |S| and
S′ is a dfas of D. Lemma 7.2 proves is. The following lemma from [55] will be used in the
proof of Lemma 7.2.

I Lemma 7.1 ([55] Lemma 11). Let D be a tournament on n vertices and m arcs. Then D
has a dfas of size at most m

2 + 1
2d

n−1
2 e.

I Lemma 7.2. Let D be a tournament. If S is a deoct of D, then there exists a dfas of D
of size at most |S|.

Proof. Consider the digraph D − S. Let C1, . . . , Ct be the set of strongly connected compo-
nents of D − S. For ease of notation, let us denote D[Ci] by Di. Let Si = S ∩ E(Ci). For
each i ∈ [t], we will now construct a set Xi such that Xi is a dfas of Di such that |Xi| ≤ |Si|.
Since Di is a strongly connected digraph and has no odd directed cycles, from Proposition 2.3,
Di is bipartite. Let (Ai, Bi) be a bipartition of Di. Let |Ai| = na and |Bi| = nb.

B Claim 7.3. |Si| ≥
(
na
2
)

+
(
nb
2
)
.

Proof. Since (Ai, Bi) is a bipartition of Di, Di[Ai] and Di[Bi] are independent. Since Di is
an induced subgraph of D − S and D is a tournament, all the arcs whose both end-points
are either in Ai or in Bi, are in S. Thus, the claim follows. J

Let Xa
i and Xb

i be the dfas of D[Ai] and D[Bi] obtained from Lemma 7.1. Then
|Xa

i | ≤ 1
2
(
na
2
)
− 1

2d
na−1

2 e and |X
b
i | ≤ 1

2
(
nb
2
)
− 1

2d
nb−1

2 e. Consider E(Ai, Bi) and E(Bi, Ai).
If |E(Ai, Bi)| ≤ |E(Bi, Ai)|, then let Xab

i = E(Ai, Bi). Otherwise, let Xab
i = E(Bi, Ai).

Observe that |Xab
i | ≤ nanb

2 . Let Xi = Xa
i ∪Xb

i ∪Xab
i .
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B Claim 7.4. Xi is a dfas of Di.

Proof. Suppose not. Then there is a cycle, say Q, in Di−Xi. Recall (Ai, Bi) is a bipartition
of Di. Since Xa

i is a dfas of D[Ai] and Xa
i ⊆ Xi, Q is not entirely contained in Ai. Similarly,

Q is not entirely contained in Bi. Thus, if such a cycle Q exists, it has to intersect both Ai and
Bi. This implies there exists two distinct arcs of Q, say e1 and e2, such that e1 ∈ E(Ai, Bi)
and e2 ∈ E(Bi, Ai). But this is not possible, because Xab

i ⊆ X. J

B Claim 7.5. |Xi| ≤ |Si|.

Proof. From the construction of Xi, we have |Xi| = |Xa
i |+ |Xb

i |+ |Xab
i . Thus,

|Xi| ≤
1
2

(
na
2

)
− 1

2d
na − 1

2 e+ 1
2

(
nb
2

)
− 1

2d
nb − 1

2 e+ nanb
2

= 1
2

(
na
2

)
− 1

2d
na − 1

2 e+ 1
2

(
nb
2

)
− 1

2d
nb − 1

2 e+ nanb
2

= n2
a

4 −
na
4 −

1
2d
na − 1

2 e+ n2
b

4 −
nb
4 −

1
2d
nb − 1

2 e+ nanb
2

≤ n2
a

4 −
na
4 + 1

2(na2 −
1
2)− n2

b

4 + nb
4 −

1
2(nb2 −

1
2) + nanb

2

Observe that nanb
2 ≤ n2

a

4 + n2
b

4 . Thus, we have the following.

|Xi| ≤
n2
a

2 + n2
b

2 −
na
2 + nb

2 + 1
8 =

(
na
2

)
+
(
nb
2

)
+ 1

8

Since,
(
na
2
)

+
(
nb
2
)
is an integer and the size of the set Xi is an integer, we have that

|Xi| ≤
(
na
2
)

+
(
nb
2
)
≤ |S|. The last inequality follows from Claim 7.3.

J

Let S′ = S \ ∪i∈[t]Si. Observe that S = S′ ] S1 ] . . . ] St. Let X = ∪i∈[t]Xi ∪ S′.

B Claim 7.6. |X| ≤ |S|.

Proof. Since X = ∪i∈[t]Xi ∪ S′, |X| = ∪i∈[t]|Xi| + |S′|. Thus, from Claim 7.5, |X| ≤
∪i∈[t]|Xi|+ |S′| ≤ |S|. J

B Claim 7.7. X is a dfas of D.

Proof. For the sake of contradiction, suppose there is a cycle, say Q, in D −X. Recall that
C1, . . . , Ct are the strongly connected components of D − S. Also, S′ is the set of those arcs
of S whose one endpoint belong to Ci and the other in Cj , for some i, j ∈ [t], i 6= j. Since
S′ ⊆ X, the vertex set of Q cannot intersect both Ci and Cj for some i, j ∈ [t], i 6= j. Thus,
the vertex set ofQ is fully contained in some Ci. Since Xi ⊆ X and Xi is a dfas of Di (from
Claim 7.4), there is no cycle in Di −X. This proves the claim. J

Claim 7.6 and 7.7 prove the lemma. J

I Lemma 7.8. Let D be a tournament. For any integer k, D has a dfas of size at most k if
and only if D has a deoct of size at most k.

Proof. Clearly, any dfas of D is also a deoct of D. The other direction follows from
Lemma 7.2. J

Since DFAS on tournaments is NP-hard [58], from Lemma 7.8 it follows that, DEOCT
on tournaments in NP-hard. This proves Theorem 1.5.
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8 Sub-exponential FPT Algorithms

A k-cut of a digraph D is a partition of the vertex set of D into two parts, V (D) = L ]R,
such that |E(R,L)| ≤ k. Misra et al. [48] proved the following bound on the number of
k-cuts in any digraph D ∈ Dα.

I Lemma 8.1 ([48], Lemma 4). If D ∈ Dα, then for any positive integer k, the number of
k-cuts in D is most 2c

√
k log k · (n+ 1)2αd

√
ke · logn, where c is a fixed absolute constant.

Further, the k-cuts in any digraph can be enumerated by polynomial delay.

I Lemma 8.2 ([35], Lemma 7). k-cuts of any digraph D can be enumerated with polynomial-
time delay.

8.1 Improved Sub-exponential FPT Algorithm for DFAS on Dα.
A sub-exponential FPT algorithm for DFAS was presented in [48, Theorem 1] with running
time 2α2√k log (αk)nO(α). This algorithm is obtained by a dynamic programming on the
number of k-cuts in an input instance (D, k). The above running time directly follows from
the number of k-cuts in a digraph D ∈ Dα of bounded out-degeneracy [48, Lemma 7, Lemma
20]. We can obtain a faster algorithm by first applying Theorem 1.3 to the input instance
(D, k) to obtain a kernel (D′, k′), and then applying [48, Theorem 1] to (D′, k′). This
procedure gives a running time of 2O(f(α)

√
k log k) · nO(1) for some function f , of α), thereby

proving Theorem 1.4.

8.2 Sub-exponential FPT Algorithm for Directed Edge Odd Cycle
Transversal on Dα

In this section, we prove Theorem 1.8.

I Theorem 1.8. DEOCT on Dα admits an algorithm with running time 2O(f(α)
√
k log k) ·

nO(1), where f(α) is a function of α and n is the number of vertices in D.

Our approch is similar to [48], but requires some additional work to handle the even
cycles that remain after removing a solution.

For a digraph D, let us define a γ-vertex sequence of D as a sequence of vertex sets of D
say (C1, . . . , Ct), such that,

1. for all i, j ∈ [t], i 6= j, Ci ∩ Cj = ∅ and C1 ] . . . ] Ct = V (D), and
2. for all i ∈ [t], |Ci| ≤ γ,

For any subset Ci ⊆ V (D), deoct(Ci) denotes the size of the minimum deoct of D[Ci].
The cost of a γ-vertex sequence (C1, . . . , Ct) of D is defined as

∑
i∈[t]deoct(Ci) + |{(u, v) :

(u, v) ∈ E(D), u ∈ Cj , v ∈ Ci, j > i}|. For the rest of the section, fix γ = α+
√
α2 + 8αk.

I Lemma 8.3. Let D ∈ Dα. For any positive integer k, (D, k) is YES instance of DEOCT
if and only if there exists a γ-vertex sequence of D of cost at most k.

Proof. For the forward direction, let (D, k) be a YES instance of DEOCT. Let S be a deoct
of D of size at most k. Consider the digraph D − S. Note that the vertex set of D − S is
the same as the vertex set of D. Let (C1, . . . , Ct) be the topological ordering of the strongly
connected components of D−S, that is, each Ci is a strongly connected component of D−S
and if there exists (u, v) ∈ E(D − S), such that u ∈ Cj and v ∈ Ci, then j > i. We will
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now show that (C1, . . . , Ct) is a γ-vertex sequence of D of cost at most k. First observe that
C1 ] . . . Ct = V (D). We will now show that for each i ∈ [t], |Ci| ≤ γ and cost of (C1, . . . , Ct)
is at most k.

B Claim 8.4. For any i ∈ [t], |Ci| ≤ γ.

Proof. Since Ci is a strongly connected component of D − S and S is a deoct of D, from
Proposition 2.3 Ci is a bipartite graph in D − S. Let (Ai, Bi) be a bipartition of Ci.
We will now show that |Ai|, |Bi| ≤ γ

2 . This will prove the claim. Let us argue that
|Ai| ≤ γ

2 , the other case is symmetric. Since D[Ai] is a subgraph of D, D[Ai] ∈ Dα. Thus,
from Lemma 2.1, E(D[Ai]) ≥ |Ai|2

2α − |Ai|2 . Since, Ai is an independent set in D − S,
|S| ≥ E(D[Ai]) ≥ |Ai|2

2α −
|Ai|

2 . Then if |Ai| > γ
2 , the we have that |S| > k, which is a

contradiction. The same argument holds for Bi too. Thus, we conclude that |Ci| ≤ γ. J

B Claim 8.5. The cost of (C1, . . . , Ct) is at most k.

Proof. To show this, we will prove that the cost of (C1, . . . , Ct) is at most |S|. Recall that
cost of (C1, . . . , Ct) is

∑
i∈[t]deoct(Ci) + |{(u, v) : (u, v) ∈ E(D), u ∈ Cj , v ∈ Ci, j > i}|. Let

us denote Eback = {(u, v) : (u, v) ∈ E(D), u ∈ Cj , v ∈ Ci, j > i}. Since (C1, . . . , Ct) is a
topological ordering of the strongly connected components of D − S, Eback ⊆ S. Also, for
any i ∈ [t], |deoct(Ci)| ≤ |S ∩ E(D[Ci])|. Thus, cost of (C1, . . . , Ct) is at most |S|. J

Claims 8.4 and 8.5 prove the forward direction of the lemma. We now prove the backward
direction. Let (C1, . . . , Ct) be a γ-vertex sequence of D of cost at most k. Let Eback = {(u, v) :
(u, v) ∈ E(D), u ∈ Cj , v ∈ Ci, j > i}. We will now show that S = ∪i∈[t]deoct(Ci) ∪Eback is a
deoct of D. Observe that |S| is equal to the cost of (C1, . . . , Ct). Suppose S is not a deoct
of D. Then there exists an odd cycle in D − S. Since, for all i ∈ [t], deoct(Ci) ⊆ S, such a
cycle cannot be fully contained in any Ci. Therefore, there exists an arc of this cycle, say
(u, v), such that u ∈ Cj and v ∈ Ci, j > i. This violates that Eback ⊆ S. J

Let (D, k) be the input instance of DEOCT. The algorithm of Theorem 1.8 applies the
kernelization algorithm of Theorem 1.6 to obtain an equivalent instance (D′, k′). This is
followed by a dynamic programming procedure over the k′-cuts in D′ to obtain a γ-vertex
sequence of D′ of cost at most k.

Proof of Theorem 1.8. We will solve DEOCT by doing a dynamic programming over the
set C of k-cuts. Let (D, k) be the input instance. Apply the kernelization algorithm of
Theorem 1.6 to obtain an equivalent instance (D′, k′) where the number of vertices in D′
is kf(α). Since (D′, k′) is equivalent to (D, k), it is enough to solve the problem on (D′, k′).
For ease of notation, we will denote (D′, k′) by (D, k).

From Lemma 8.1, the number of k-cuts in D is at most η = 2c′
√
k log k · (kf(α) + 1)2αd

√
ke ·

log k, where c′ is a fixed absolute constant. From Lemma 8.2, all these k-cuts can be
enumerated in η · kO(1) time. Let us denote by C, the set of k-cuts of D.

Let T denote the dynamic programming table indexed by cuts in and integers {0, . . . , k}.
For any k-cut (L,R) ∈ C and i ∈ {0, . . . , k}, we T ((L,R), i) is defined as follows.

T ((L,R), i) =


1 if there exists a γ-vertex sequence (C1, . . . , C`) of D[L]

of cost at most i, and (L \ {C`}, R ∪ {C`}) ∈ C
0 otherwise
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Note that T ((V (D), ∅), k) = 1 if and only if D has a deoct of size at most k. This follows
from Lemma 8.3.

We now describe how we compute T ((L,R), i), for any (L,R) ∈ C and i ∈ [k]. For all i ∈
[k], T ((∅, V (D)), i) = 1. For any (L,R) ∈ C, such that L 6= ∅, and any i ∈ [k], T ((L,R), i) = 1
if and only if the following holds: there exists C ⊆ L such that (L \ C,R ∪ C) ∈ C, and
T ((L \ C,R ∪ C), i − j) = 1 where j =deoct(C) + |{(u, v) : u ∈ C, v ∈ L \ C}|. Observe
that the above describes a recursive procedure that computes all entries in T in time
2c∗f(α)

√
k log k where c∗ is an absolute constant. In total the running time of our algorithm is

2cf(α)
√
k log k · nO(1) where c is an absolute constant.

It only remains to prove the correctness of the above procedure. We now prove that for
any (L,R) ∈ C and i ∈ [k], T ((L,R), i) = 1 if and only if there exists a γ-vertex sequence
(C1, . . . , C`) of D[L] of cost at most i, and (L \ {C`}, R ∪ {C`}) ∈ C. We prove this by
induction on |L|. When |L| = 0, this is true because of the base case.

In the forward direction, we will show that if T ((L,R), i) = 1 then there exists a γ-vertex
sequence (C1, . . . , C`) of D[L] of cost at most i, and (L \ {C`}, R ∪ {C`}) ∈ C. In the
above procedure for computing the table T , we set T ((L,R), i) = 1 only if there exists
C` ⊆ L, such that (L \ {C`}, R ∪ {C`}) ∈ C and T ((L \ C,R ∪ C), i − j) = 1 where j =
deoct(C) + |{(u, v) : u ∈ C, v ∈ L \ C}|. Since T ((L \ {C`}, R ∪ {C`}), i − j) = 1, by
the induction hypothesis, D[L \ {C`}] has a γ-vertex sequence of cost at most i − j. Let
(C1, . . . , C`−1) be the ordering of L \ {C`} witnessing this, that is, cost of this ordering is at
most i− j. Since deoct(C) + |{(u, v) : u ∈ C, v ∈ L \ C}| = j, the cost of (C1, . . . , C`) is at
most i. Thus, the (C1, . . . , C`−1, C`) is a γ-vertex sequence of D[L] of cost at most i.

In the reverse direction, we will show that if D[L] has a γ-vertex sequence of cost
at most i and (L \ {C`}, R ∪ {C`}) ∈ C, then T ((L,R), i) = 1. Let (C1, . . . , C`) be a
γ-vertex sequence in D[L] of cost at most i such that (L \ {C`}, R ∪ {C`}) ∈ C. Let
j =deoct(C) + |{(u, v) : u ∈ C, v ∈ L \ C}|. Then the sequence (C1, . . . , C`−1) is a γ-vertex
sequence of D[L \ {C`}] of cost at most i− j. Thus, T ((L \ {C`}, R∪{C`}), i− j) = 1. Then
it follows that our recursive procedure sets T ((L,R), i) = 1. This concludes the proof. J

9 Conclusion

In this paper, we presented a sparsification procedure for the class of acyclic digraphs (or
more generally, “almost” acyclic) of bounded independence, to preserve the (both normal
and parity-based) reachability from a given terminal set S to a given terminal set T under
the failure of any set of at most k arcs. In particular, it outputs a digraph whose size is
completely independent of n and polynomial in k, while even the simple classes of directed
paths and tournaments admit no sparsifier whose output is a digraph of less than n− 1 arcs
already when k = 1. Apart from being interesting on its own from the perspective of fault
tolerance, we also showed that our sparsification procedure finds applications in Kernelization.
Specifically, we proved that the classic Directed Feedback Arc Set problem as well as
Directed Edge Odd Cycle Transversal (which, in sharp contract, is W[1]-hard on
general digraphs) admit polynomial kernels on bounded independence number digraphs. In
fact, for any p ∈ N, we designed a polynomial kernel for hitting all cycles of length ` where (`
mod p = 1). Additionally, we derived complementary results that assert the NP-hardness of
DEOCT on tournaments, as well as its admittance of a sub-exponential time parameterized
algorithm on digraphs of bounded independence.

We conclude the paper with a few directions for further research. Our result, currently,
holds when the input digraph D is “almost acyclic” and has bounded independence number.
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From the example of the tournament described in the introduction (the one that is obtained
by taking a transitive tournament and reversing the arcs along the Hamiltonian path defined
by its topological ordering), it seems that some notion of “almost acyclic” might be necessary
to have fault tolerant subgraphs whose size avoid the dependence on n. On the other hand,
it might be possible to ask for something weaker than bounded independence number. For
example, forbidding the existence of an induced Pα, the directed path on α vertices.
Question 1: Does FTR(S, S) admit a subgraph of size independent of n on digraphs that
are “almost acyclic” and have no induced Pα, for some fixed positive integer α?

It is not very difficult to observe that our results (Lemmas 1.1 and 1.2) also hold when the
input graph is undirected and has bounded independence number. It would be interesting
(because of the arguments discussed earlier) if one could obtain similar results when the
input undirected graph has no induced Pα.
Question 2: Does FTR(S, S) admit a subgraph of size independent of n when the input
graph is undirected and has no induced Pα, for some fixed positive integer α?

It would also be interesting to discover other (di)graph classes where the dependence on
n of the size of the output subgraph can be sublinear, for example, logn, for FTR(S, S) and
also for other fault tolerant graph properties.
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