Immersion of transitive tournaments in digraphs with large minimum outdegree*

William Lochet ${ }^{a, b}$
${ }^{a}$ Université Côte d'Azur, CNRS, I3S, UMR 7271, Sophia Antipolis, France
${ }^{b}$ Laboratoire d'Informatique du Parallélisme
UMR 5668 ENS Lyon - CNRS - UCBL - INRIA
Université de Lyon, France

Abstract

We prove the existence of a function $h(k)$ such that every simple digraph with minimum outdegree greater than $h(k)$ contains an immersion of the transitive tournament on k vertices. This solves a conjecture of Devos, McDonald, Mohar and Scheide.

In this note, all digraphs are without loops. A digraph D is simple if there is at most one arc from x to y for any $x, y \in V(D)$. Note that arcs in opposite directions are allowed. The multiplicity of a digraph D is the maximum number of parallel arcs in the same direction in D. We say that a digraph D contains an immersion of a digraph H if the vertices of H are mapped to distinct vertices of D, and the arcs of H are mapped to directed paths joining the corresponding pairs of vertices of D, in such a way that these paths are pairwise arc-disjoint. If the directed paths are vertex-disjoint, we say that D contains a subdivision of H.

Understanding the necessary conditions for graphs to contain a subdivision of a clique is a very natural and well-studied question. One of the most important examples is the following result by Mader [6]:

Theorem 1 ([6]). For every $k \geq 1$, there exists an integer $f(k)$ such that every graph with minimum degree greater than $f(k)$ contains a subdivision of K_{k}.

Bollobás and Thomason [1] as well as Komlós and Szemerédi [4] proved that $f(k)=O\left(k^{2}\right)$. In the case of digraphs, there exist examples of digraphs with large out- and indegree without a subdivision of the complete digraph on three vertices, as shown by Thomassen [7]. However Mader [5] conjectured that an analogue should hold for transitive tournaments $T T_{k}$ in digraphs with large minimum outdegree.

Conjecture $2([5])$. For every $k \geq 1$, there exists an integer $g(k)$ such that every simple digraph with minimum outdegree at least $g(k)$ contains a subdivision of $T T_{k}$.

[^0]The question turned out to be way more difficult than the non oriented case, as the existence of $g(5)$ remains unknown. Weakening the statement, Devos, McDonald, Mohar and Scheide [3] made the following conjecture replacing subdivision with immersion and proved it for the case of eulerian digraphs.

Conjecture 3 ([3]). For every $k \geq 1$, there exists an integer $h(k)$ such that every simple digraph with minimum outdegree at least $h(k)$ contains an immersion of $T T_{k}$.

Finding the right value for $h(k)$ in the case of non oriented graphs is an interesting question on its own (see [2] for more details).

The goal of this note is to present a proof of this conjecture. Let $F(k, l)$ be the digraph consisting of k vertices x_{1}, \ldots, x_{k} such that there exists l arcs from x_{i} to x_{i+1} for every $1 \leq i \leq k-1$. It is clear that $F\left(k,\binom{k}{2}\right)$ contains an immersion of $T T_{k}$, so the following theorem implies Conjecture 3 .

Theorem 4. For every $k \geq 1$ and l, there exists a function $f(k, l)$ such that every digraph with minimum outdegree greater than $f(k, l)$ and multiplicity at most $k l$ contains an immersion of $F(k, l)$.

Proof. We prove the result for $f(k, l)=2 k^{3} l^{2}$ and $l \geq 2$. We proceed by induction on k. For $k=1$ this is trivial because $F(1, l)$ is one vertex. Suppose now that the result holds for k and assume for a contradiction that it does not hold for $k+1$. Let D be the digraph with the smallest number of arcs and vertices such that D has multiplicity at most $(k+1) l$, all but at most $c_{1}=k+(k+1) l$ vertices have outdegree at least $f(k+1, l)$ and without an immersion of $F(k+1, l)$. By minimality of D, every vertex has outdegree exactly $f(k+1, l)$, expect c_{1} of them with outdegree 0 . Call T the set of vertices of outdegree 0 . By removing T and some of the parallel arcs, we obtain a digraph of outdegree greater than $d^{\prime}=f(k+1, l)-c_{1}(k+1) l-\frac{f(k+1, l)}{k+1}$ with multiplicity $k l$. Because $f(k+1, l)-f(k, l)=2\left(3 k^{2}+3 k+1\right) l^{2}$ and $c_{1}(k+1) l+\frac{f(k+1, l)}{(k+1)}=k(k+1) l+3(k+1)^{2} l^{2}$, we get that $d^{\prime} \geq f(k, l)$ and by induction there exists an immersion of $F(k, l)$ in $D-T$. Call $X=\left\{x_{1}, \cdots, x_{k}\right\}$ the set of vertices of the immersion and $P_{i, j}$ the j th directed path of this immersion from x_{i} to x_{i+1}. We can assume this immersion is of minimum size, so that every vertex in $P_{i, j}$ has exactly one outgoing arc in $P_{i, j}$. Let D^{\prime} be the digraph obtained from D by removing all the arcs of the $P_{i, j}$ and the vertices x_{1}, \ldots, x_{k-1}. By the previous remark, the degree of each vertex in D^{\prime} is either 0 if this vertex belongs to T or at least $f(k+1, l)-(k-1) l-(k-1)(k+1) l$.

For every vertex $y \in D^{\prime}-x_{k}$, there do not exist l arc-disjoint directed paths from x_{k} to y in D^{\prime}, for otherwise there would be an immersion of $F(k+1, l)$ in D. Hence, by Menger's Theorem there exists a set E_{y} of less than l arcs such that there is no directed path from x_{k} to y in $D^{\prime} \backslash E_{y}$. Define C_{y} for every vertex $y \in D^{\prime}-x_{k}$ as the set of vertices which can reach y in $D^{\prime} \backslash E_{y}$. Now take Y a minimal set such that $\cup_{y \in Y} C_{y}$ covers $D^{\prime}-x_{k}$. We claim that Y consists of at least $c_{2} \geq \frac{f(k+1, l)-(k-1) l-(k-1)(k+1) l}{l} \geq 2 c_{1}$ elements, as $\cup_{y \in Y} E_{y}$ must contain all the arcs of D^{\prime} with x_{k} as tail.

For each $y \in Y$, define S_{y} as the set of vertices which belong to C_{y} and no other $C_{y^{\prime}}$ for $y^{\prime} \in Y$. Since Y is minimal, every S_{y} is non-empty. Note that for $u \in S_{y}$, if there exists $y^{\prime} \in Y \backslash y$ and $v \in C_{y^{\prime}}$ such that $u v \in A(D)$, then $u v \in E_{y^{\prime}}$. Note that $T \subset Y$ as vertices in T have outdegree 0 and if $y \in Y \backslash T$ then S_{y} consists only of vertices of outdegree $f(k+1, l)$ in D.

Let R be the digraph with vertex set Y and arcs from y to y^{\prime} if there is an arc from S_{y} to $C_{y^{\prime}}$. As noted before, $d_{R}^{-}(y) \leq\left|E_{y}\right| \leq l$. The average outdegree of the vertices of $Y \backslash T$ in R is then at most $\frac{c_{1} l+\left(c_{2}-c_{1}\right) l}{c_{2}-c_{1}} \leq 2 l$. Let y be a vertex of $R \backslash T$ with outdegree at most this average. Let H
be the digraph induced on D^{\prime} by the vertices in $S y$ to which we add X, all the arcs that existed in D (with multiplicity) from vertices of S_{y} to vertices of X and the following arcs: For each $P_{i, j}$, let $z_{1}, z_{2}, \ldots, z_{l}=P_{i, j} \cap S y$, where z_{i} appears before z_{i+1} on $P_{i, j}$ and add all the arcs $\left(z_{i}, z_{i+1}\right)$ to H. Note that, if (x, y) is an arc of D^{\prime}, then by minimality of the copy of $F(k, l)$, every time x appears before y on some $P_{i, j}$, then $P_{i, j}$ uses one of the $\operatorname{arcs}(x, y)$. Thus for each pair of vertices x and y in H, either $(x, y) \in A(D)$ and the number of $(x, y) \operatorname{arcs}$ in H is equal to the one in D, or $(x, y) \notin A(D)$ and the number of (x, y) arcs in H is bounded by $(k-1) l$. This implies that H has multiplicity at most $(k+1) l$.

Claim 4.1. H is a digraph with multiplicity at most $(k+1) l$, such that all but at most c_{1} vertices have outdegree greater than $f(k+1, l)$ and H does not contain an immersion of $F(k+1, l)$.
Proof of the claim. Suppose H contains an immersion of $F(k+1, l)$, then by replacing the new arcs by the corresponding directed paths along the $P_{i, j}$ we get an immersion of $F(k+1, l)$ in D. Moreover, we claim that the number of vertices in H with outdegree smaller than $f(k+1, l)$ is at most $k+2 l+(k-1) l=c_{1}$. Indeed, the vertices of H that can have outdegree smaller in H than in D are the x_{i}, or the vertices with outgoing arcs in $E_{y^{\prime}}$ for some $y^{\prime} \in Y \backslash y$, or the vertices along the $P_{i, j}$. But with the additions of the new arcs, we know that there is at most one vertex per path $P_{i, j}$ that loses some outdegree in H.

However, since H is strictly smaller than D, we reach a contradiction.

Acknowledgements

The author wishes to thank Frédéric Havet and Stéphan Thomassé for their useful comments on the manuscript.

References

[1] B. Bollobás and A. Thomason, Proof of a conjecture of Mader, Erdős and Hajnal on topological complete subgraphs, European Journal of Combinatorics 19 (1998), 883-887.
[2] M. Devos, Z. Dvořák, J. Fox, J. McDonald, B. Mohar, and D. Scheide, Minimum degree condition forcing complete graph immersion, Combinatorica 34 (2014), 279-298.
[3] M. DeVos, J. McDonald, B. Mohar, and D. Scheide. Immersing complete digraphs. European Journal of Combinatorics, 33 (2012), 1294-1302.
[4] J. Komlós and E. Szemerédi, Topological Cliques in Graphs II, Combinatorics, Probability and Computing 5 (1996), 70-90.
[5] W. Mader, Degree and Local Connectivity in Digraphs, Combinatorica 5 (1985), 161-165
[6] W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Math. Annalen 174 (1967), 265-268.
[7] C. Thomassen, Even Cycles in Directed Graphs, European Journal of Combinatorics 6 (1985), 85-89.

[^0]: *This work was supported by ANR under contract STINT ANR-13-BS02-0007.

