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Abstract

We prove the existence of a function h(k) such that every simple digraph with minimum
outdegree greater than h(k) contains an immersion of the transitive tournament on k vertices.
This solves a conjecture of Devos, McDonald, Mohar and Scheide.

In this note, all digraphs are without loops. A digraph D is simple if there is at most one arc
from x to y for any x, y ∈ V (D). Note that arcs in opposite directions are allowed. The multiplicity
of a digraph D is the maximum number of parallel arcs in the same direction in D. We say that
a digraph D contains an immersion of a digraph H if the vertices of H are mapped to distinct
vertices of D, and the arcs of H are mapped to directed paths joining the corresponding pairs of
vertices of D, in such a way that these paths are pairwise arc-disjoint. If the directed paths are
vertex-disjoint, we say that D contains a subdivision of H.

Understanding the necessary conditions for graphs to contain a subdivision of a clique is a very
natural and well-studied question. One of the most important examples is the following result by
Mader [6]:

Theorem 1 ([6]). For every k ≥ 1, there exists an integer f(k) such that every graph with minimum
degree greater than f(k) contains a subdivision of Kk.

Bollobás and Thomason [1] as well as Komlós and Szemerédi [4] proved that f(k) = O(k2).
In the case of digraphs, there exist examples of digraphs with large out- and indegree without a
subdivision of the complete digraph on three vertices, as shown by Thomassen [7]. However Mader
[5] conjectured that an analogue should hold for transitive tournaments TTk in digraphs with large
minimum outdegree.

Conjecture 2 ([5]). For every k ≥ 1, there exists an integer g(k) such that every simple digraph
with minimum outdegree at least g(k) contains a subdivision of TTk.
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The question turned out to be way more difficult than the non oriented case, as the existence of
g(5) remains unknown. Weakening the statement, Devos, McDonald, Mohar and Scheide [3] made
the following conjecture replacing subdivision with immersion and proved it for the case of eulerian
digraphs.

Conjecture 3 ([3]). For every k ≥ 1, there exists an integer h(k) such that every simple digraph
with minimum outdegree at least h(k) contains an immersion of TTk.

Finding the right value for h(k) in the case of non oriented graphs is an interesting question on
its own (see [2] for more details).

The goal of this note is to present a proof of this conjecture. Let F (k, l) be the digraph consisting
of k vertices x1, . . . , xk such that there exists l arcs from xi to xi+1 for every 1 ≤ i ≤ k − 1. It is
clear that F (k,

(
k
2

)
) contains an immersion of TTk, so the following theorem implies Conjecture 3.

Theorem 4. For every k ≥ 1 and l, there exists a function f(k, l) such that every digraph with
minimum outdegree greater than f(k, l) and multiplicity at most kl contains an immersion of F (k, l).

Proof. We prove the result for f(k, l) = 2k3l2 and l ≥ 2. We proceed by induction on k. For k = 1
this is trivial because F (1, l) is one vertex. Suppose now that the result holds for k and assume for
a contradiction that it does not hold for k + 1. Let D be the digraph with the smallest number of
arcs and vertices such that D has multiplicity at most (k + 1)l, all but at most c1 = k + (k + 1)l
vertices have outdegree at least f(k + 1, l) and without an immersion of F (k + 1, l). By minimality
of D, every vertex has outdegree exactly f(k+1, l), expect c1 of them with outdegree 0. Call T the
set of vertices of outdegree 0. By removing T and some of the parallel arcs, we obtain a digraph
of outdegree greater than d′ = f(k + 1, l) − c1(k + 1)l − f(k+1,l)

k+1 with multiplicity kl. Because

f(k+1, l)−f(k, l) = 2(3k2 +3k+1)l2 and c1(k+1)l+ f(k+1,l)
(k+1) = k(k+1)l+3(k+1)2l2, we get that

d′ ≥ f(k, l) and by induction there exists an immersion of F (k, l) in D−T . Call X = {x1, · · · , xk}
the set of vertices of the immersion and Pi,j the jth directed path of this immersion from xi to
xi+1. We can assume this immersion is of minimum size, so that every vertex in Pi,j has exactly
one outgoing arc in Pi,j . Let D′ be the digraph obtained from D by removing all the arcs of the
Pi,j and the vertices x1, . . . , xk−1. By the previous remark, the degree of each vertex in D′ is either
0 if this vertex belongs to T or at least f(k + 1, l)− (k − 1)l − (k − 1)(k + 1)l.

For every vertex y ∈ D′ − xk, there do not exist l arc-disjoint directed paths from xk to y in
D′, for otherwise there would be an immersion of F (k + 1, l) in D. Hence, by Menger’s Theorem
there exists a set Ey of less than l arcs such that there is no directed path from xk to y in D′ \Ey.
Define Cy for every vertex y ∈ D′ − xk as the set of vertices which can reach y in D′ \ Ey. Now
take Y a minimal set such that ∪y∈Y Cy covers D′ − xk. We claim that Y consists of at least

c2 ≥ f(k+1,l)−(k−1)l−(k−1)(k+1)l
l ≥ 2c1 elements, as ∪y∈Y Ey must contain all the arcs of D′ with xk

as tail.
For each y ∈ Y , define Sy as the set of vertices which belong to Cy and no other Cy′ for y′ ∈ Y .

Since Y is minimal, every Sy is non-empty. Note that for u ∈ Sy, if there exists y′ ∈ Y \ y and
v ∈ Cy′ such that uv ∈ A(D), then uv ∈ Ey′ . Note that T ⊂ Y as vertices in T have outdegree 0
and if y ∈ Y \ T then Sy consists only of vertices of outdegree f(k + 1, l) in D.

Let R be the digraph with vertex set Y and arcs from y to y′ if there is an arc from Sy to Cy′ .
As noted before, d−R(y) ≤ |Ey| ≤ l. The average outdegree of the vertices of Y \ T in R is then

at most c1l+(c2−c1)l
c2−c1 ≤ 2l. Let y be a vertex of R \ T with outdegree at most this average. Let H
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be the digraph induced on D′ by the vertices in Sy to which we add X, all the arcs that existed
in D (with multiplicity) from vertices of Sy to vertices of X and the following arcs: For each Pi,j ,
let z1, z2, . . . , zl = Pi,j ∩ Sy, where zi appears before zi+1 on Pi,j and add all the arcs (zi, zi+1) to
H. Note that, if (x, y) is an arc of D′, then by minimality of the copy of F (k, l), every time x
appears before y on some Pi,j , then Pi,j uses one of the arcs (x, y). Thus for each pair of vertices
x and y in H, either (x, y) ∈ A(D) and the number of (x, y) arcs in H is equal to the one in D, or
(x, y) 6∈ A(D) and the number of (x, y) arcs in H is bounded by (k − 1)l. This implies that H has
multiplicity at most (k + 1)l.

Claim 4.1. H is a digraph with multiplicity at most (k + 1)l, such that all but at most c1 vertices
have outdegree greater than f(k + 1, l) and H does not contain an immersion of F (k + 1, l).

Proof of the claim. Suppose H contains an immersion of F (k + 1, l), then by replacing the new
arcs by the corresponding directed paths along the Pi,j we get an immersion of F (k + 1, l) in D.
Moreover, we claim that the number of vertices in H with outdegree smaller than f(k + 1, l) is at
most k + 2l + (k − 1)l = c1. Indeed, the vertices of H that can have outdegree smaller in H than
in D are the xi, or the vertices with outgoing arcs in Ey′ for some y′ ∈ Y \ y, or the vertices along
the Pi,j . But with the additions of the new arcs, we know that there is at most one vertex per path
Pi,j that loses some outdegree in H. �

However, since H is strictly smaller than D, we reach a contradiction.
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