A Polynomial Kernel for Paw-Free Editing

2 Eduard Eiben 💿

- ³ Department of Informatics, University of Bergen, Bergen, Norway
- 4 eduard.eiben@uib.no

5 William Lochet

- 6 Department of Informatics, University of Bergen, Bergen, Norway
- 7 william.lochet@uib.no

⁸ Saket Saurabh

- 9 Institute of Mathematical Sciences, Chennai, India
- ¹⁰ Department of Informatics, University of Bergen, Bergen, Norway
- 11 saket@imsc.res.in

¹² — Abstract

For a fixed graph H, the H-FREE-EDGE EDITING problem asks whether we can modify a given graph 13 G by adding or deleting at most k edges such that the resulting graph does not contain H as an 14 induced subgraph. The problem is known to be NP-complete for all fixed H with at least 3 vertices 15 and it admits a $2^{\mathcal{O}(k)}n^{\mathcal{O}(1)}$ algorithm. Cai and Cai [Algorithmica (2015) 71:731–757] showed that 16 H-FREE-EDGE EDITING does not admit a polynomial kernel whenever H or its complement is a path 17 or a cycle with at least 4 edges or a 3-connected graph with at least 1 edge missing. Their results 18 suggest that if H is not independent set or a clique, then H-FREE-EDGE EDITING admits polynomial 19 kernels only for few small graphs H, unless $coNP \in NP/poly$. Therefore, resolving the kernelization 20 of H-FREE-EDGE EDITING for small graphs H plays a crucial role in obtaining a complete dichotomy 21 for this problem. In this paper, we positively answer the question of compressibility for one of 22 the last two unresolved graphs H on 4 vertices. Namely, we give the first polynomial kernel for 23 PAW-FREE-EDGE EDITING with $\mathcal{O}(k^6)$ vertices. 24

²⁵ 2012 ACM Subject Classification Theory of computation \rightarrow Design and analysis of algorithms; ²⁶ Theory of computation \rightarrow Graph algorithms analysis; Theory of computation \rightarrow Parameterized

27 complexity and exact algorithms

28 Keywords and phrases Kernelization, Paw-free graph, *H*-free editing, graph modification problem

²⁹ Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

23:2 A Polynomial Kernel for Paw-Free Editing

30 **1** Introduction

For a family of graph \mathcal{G} , the general \mathcal{G} -GRAPH MODIFICATION problem ask whether we 31 can modify a graph G into a graph in \mathcal{G} by performing at most k simple operations. 32 Typical examples of simple operations that are well-studied in the literature include vertex 33 deletion, edge deletion, edge addition, or combination of edge deletion and addition. We 34 call these problems \mathcal{G} -VERTEX DELETION, \mathcal{G} -EDGE DELETION, \mathcal{G} -EDGE ADDITION, and 35 \mathcal{G} -EDGE EDITING, respectively. By a classic result by Lewis and Yannakakis [16], \mathcal{G} -VERTEX 36 DELETION is NP-complete for all non-trivial hereditary graph classes. The situation is quite 37 different for the edge modification problems. Earlier efforts for edge deletion problems [10, 19], 38 though having produced fruitful concrete results, shed little light on a systematic answer, 39 and it was noted that such a generalization is difficult to obtain. 40

 \mathcal{G} -GRAPH MODIFICATION problems have been extensively investigated for graph classes 41 \mathcal{G} that can be characterized by a finite set of forbidden induced subgraphs. We say that 42 a graph is \mathcal{H} -free, if it does not contain any graph in \mathcal{H} as an induced subgraph. For this 43 special case, the \mathcal{H} -FREE VERTEX DELETION problem is well understood. If \mathcal{H} contains a 44 graph on at least two vertices, then all of these problems are NP-complete, but admit $c^k n^{\mathcal{O}(1)}$ 45 algorithm [3], where c is the size of the largest graph in \mathcal{H} (the algorithms with running 46 time $f(k)n^{\mathcal{O}(1)}$ are called fixed-parameter tractable (FPT) algorithms [7, 9]). On the other 47 hand, the NP-hardness proof of Lewis and Yannakakis [16] excludes algorithms with running 48 time $2^{o(k)}n^{\mathcal{O}(1)}$ under Exponential Time Hypothesis (ETH) [14]. Finally, as observed by 49 Flum and Grohe [12] a simple application of sunflower lemma [11] gives a kernel with $\mathcal{O}(k^c)$ 50 vertices, where c is again the size of the largest graph in \mathcal{H} . A kernel is a polynomial time 51 preprocessing algorithm which outputs an equivalent instance of the same problem such that 52 the size of the reduced instance is bounded by some function f(k) that depends only on 53 k. We call the function f(k) the size of the kernel. It is well-known that any problem that 54 admits an FPT algorithm admits a kernel. Therefore, for problems with FPT algorithms one 55 is interested in polynomial kernels, i.e., kernels where size upper bounded by a polynomial 56 function. 57

For the edge modification problems, the situation is more complicated. While all of these 58 problems also admit $c^k n^{\mathcal{O}(1)}$ time algorithm, where c is the maximum number of edges in a 59 graph in \mathcal{H} [3], the P vs NP dichotomy is still not known. Only recently Aravind et al. [1] 60 gave the dichotomy for the special case when \mathcal{H} contains precisely one graph H [1]. From the 61 kernelization point of view, the situation is even more difficult. The reason is that deleting or 62 adding an edge to a graph can introduce a new copy of H and this might further propagate. 63 Hence, we cannot use the sunflower lemma to reduce the size of the instance. Cai asked the 64 question whether H-FREE EDGE DELETION admits a polynomial kernel for all graphs H [2]. 65 Kratsch and Wahlström [15] showed that this is probably not the case and gave a graph H66 on 7 vertices such that H-FREE EDGE DELETION and H-FREE EDGE EDITING does not 67 admit a polynomial kernel unless $coNP \subseteq NP/poly$. Consequently, it was shown that this is 68 not an exception, but rather a rule [4, 13]. Indeed the result by Cai and Cai [4] shows that 69 H-FREE EDGE DELETION, H-FREE EDGE ADDITION, and H-FREE-EDGE EDITING do not 70 admit a polynomial kernel whenever H or its complement is a path or a cycle with at least 71 4 edges or a 3-connected graph with at least 2 edges missing. This suggests that actually 72 the *H*-free modification problems with a polynomial kernels are rather rare and only for 73 small graphs H. For the graphs on 4 vertices the kernelization of H-free edge modification 74 problems was open for last two graphs and their complements (see Table 1), namely paw 75 and claw, and Cao et al. [6] conjectured that all of these problems admit polynomial kernels. 76

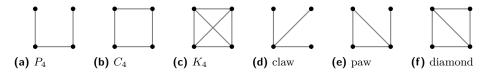


Figure 1 Graphs on 4 vertices, their complements are omitted.

H	deletion	addition	editing
K_4	$\mathcal{O}\left(k^4\right)$ [5]	trivial	$\mathcal{O}\left(k^4\right)$ [5]
P_4	$\mathcal{O}\left(k^3\right)$ [13]	$\mathcal{O}\left(k^3\right)$ [13]	$\mathcal{O}\left(k^3\right)$ [13]
diamond	$\mathcal{O}\left(k^3\right)$ [18]	trivial	$\mathcal{O}\left(k^{8}\right)$ [6]
paw	$\mathcal{O}\left(k^{3}\right)$ [this paper]	$\mathcal{O}\left(k^{3}\right)$ [this paper]	$\mathcal{O}\left(k^{6}\right)$ [this paper]
claw	open	open	open
C_4	no [13]	no [13]	no [13]

Table 1 The kernelization results of H-free edge modification problems for H being 4-vertex graphs. Note that for a complement of H, the rows with deletion and addition are swapped, but otherwise the same results hold.

⁷⁷ In this paper, we give kernels for the first of the two remaining graphs, namely the paw.

78 1.1 Brief Overview of the Algorithm

Our main result is a polynomial kernel for PAW-FREE-EDGE EDITING. The key to obtain the 79 kernel is a structural theorem by Olariu [17] that states that every connected paw-free graph 80 is either triangle-free or complete multipartite graph. We start our kernelization algorithm 81 by finding a greedy edge-disjoint packing of paws in G. This clearly contains at most k paws 82 and hence at most 4k vertices. Let us denote the set of these vertices by S. The goal now is 83 to bound the vertices in G-S. Bounding the vertices belonging to the complete multipartite 84 components of G - S is rather simple. We show that every vertex in S is adjacent to at most 85 1 complete multipartite component and for each multipartite component, we can reduce 86 the size of each part as well as the number of these parts to $\mathcal{O}(k)$, else we can always find 87 an irrelevant vertex that does not appear in any solution. The triangle-free part is more 88 tricky. The difficulty comes from the fact that actually instead of keeping this part of the 89 graph triangle-free, the optimal solution might want to add some edges to make it complete 90 multipartite. We are however able to show that there is always optimal solution that keeps 91 the vertices at distance at least 5 from S in a triangle-free component. This structural 92 claim helps us in looking for solution which are not too far away from S "in some sense". 93 Moreover, after some preprocessing of the instance, we can also show that the vertices with 94 more than 4k + 6 neighbors inside the triangle-free components of G - S cannot end up 95 inside a complete multipartite component. It means that we can mark the relevant vertices 96 in triangle-free components as follows. Set $S_0 := S$ and for every i < 5, let S_{i+1} be the set 97 obtained by marking for each vertex of S_{i+1} , 4k + 6 neighbors at distance i + 1 from S. The 98 set of vertices marked is then $\mathcal{O}(k^6)$. Finally, we can remove the vertices of triangle-free 99 components which have not been marked. This is safe because these vertices are either too 100 far from S to belong to a complete multipartite component, or every way to connect these 101 vertices to S use vertices that can't end up in a complete multipartite component of the 102 reduce instance because of the degree condition. This gives us the desired kernel. 103

23:4 A Polynomial Kernel for Paw-Free Editing

¹⁰⁴ **2** Preliminaries

We assume familiarity with the basic notations and terminologies in graph theory. We refer the reader to the standard book by Diestel [8] for more information. Given a graph G and a set of pairs of vertices $A \in V(G)^2$, we denote by $G\Delta A$ the graph whose set of vertices is V(G) and set of edges is the symmetric difference of E(G) and A.

Parameterized Algorithms and Kernelization: For a detailed illustration of the following facts the reader is referred to [7, 9]. A parameterized problem is a language $\Pi \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a finite alphabet; the second component k of instances $(I, k) \in \Sigma^* \times \mathbb{N}$ is called the parameter. A parameterized problem Π is fixed-parameter tractable if it admits a fixed-parameter algorithm, which decides instances (I, k) of Π in time $f(k) \cdot |I|^{\mathcal{O}(1)}$ for some computable function f.

A kernelization for a parameterized problem Π is a polynomial-time algorithm that given any instance (I, k) returns an instance (I', k') such that $(I, k) \in \Pi$ if and only if $(I', k') \in \Pi$ and such that $|I'| + k' \leq f(k)$ for some computable function f. The function f is called the size of the kernelization, and we have a polynomial kernelization if f(k) is polynomially bounded in k. It is known that a parameterized problem is fixed-parameter tractable if and only if it is decidable and has a kernelization. However, the kernels implied by this fact are usually of superpolynomial size.

¹²¹ A reduction rule is an algorithm that takes as input an instance (I, k) of a parameterized ¹²² problem Π and outputs an instance (I', k') of the same problem. We say that the reduction ¹²³ rule is *safe* if (I, k) is a *yes*-instance if and only if (I', k') is a *yes*-instance. In order to ¹²⁴ describe our kernelization algorithm, we present a series of reduction rules.

¹²⁵ We will need the following result describing the structure of paw-free graphs [17].

Theorem 1. G is a paw-free graph if and only if each connected component of G is triangle-free or complete multipartite.

To make a clear distinction between these two cases, we will say that a graph is a complete multipartite graph if it contains at least three parts. In particular, it contains a triangle.

3 Reduction Rules

From now on (G, k) will be an instance of paw-free editing and we assume k > 0. Let us first describe two rules which can be safely applied.

Reduction Rule 1. If X is an independent set of k+3 vertices with the same neighborhood, remove a vertex $x \in X$ from the graph.

Proof of Safeness. Suppose (G, k) is an instance of the paw-free editing problem and X 135 is an independent set of k+3 vertices with the same neighborhood. Let G' be the graph 136 obtained by removing a vertex of X. We need to show that (G', k) has a solution if and only 137 if (G, k) has one. Since G' is a subgraph of G, it is clear that if (G, k) has a solution, then so 138 does (G', k). Let A be a solution to (G', k) and assume $G\Delta A$ contains a paw x_1, x_2, x_3, x_4 139 with x_1, x_2, x_3 being a triangle and x_4 being adjacent to x_3 . Because A is a solution to 140 (G', k), it means that one of the x_i must be the vertex x that we removed from G. Moreover, 141 at most two of the other vertices of X belong to the paw, as x is adjacent to at least one 142 vertex and X is an independent set. If only one other vertex of X belongs to it, consider the 143 other k+1 vertices of X which are not in the paw. They all have the same neighborhood 144 in the paw as x, so A must contain for each of them at least one edge with the paw, or we 145 could replace x with this vertex in the paw, which contradicts the fact that A is a solution 146

of (G', k). However, since A is smaller than k + 1 we reach a contradiction. If two other vertices of X belong to the paw, then it means that $x = x_4$ and these vertices are x_1 and x_3 . Moreover it means that the edge x_1x_3 must be edited as X is an independent set. In that case, consider the other k vertices of X which are not in the paw. Again, for each of them, the solution must contains an edge with the paw, but since $|A \setminus (x_1x_3)| < k$, we also reach a contradiction. Overall this implies that Rule 1 is safe.

Following analogous arguments for the case when X induces a complete multipartite graph with at least k + 5 parts, we also obtain safeness of the following rule.

Reduction Rule 2. If X is a complete multipartite subgraph with k + 5 parts having the same neighborhood outside of X, then remove the smallest part of X from the graph.

Proof of Safeness. Suppose (G, k) is an instance of the paw-free editing problem and X is 157 a complete multipartite subgraph with k + 5 parts having the same neighborhood outside 158 of X. Let G' be the graph obtained by removing the smallest part P of X. We need to 159 show that (G', k) has a solution if and only if (G, k) has one. Let A be a solution to (G', k)160 and assume $G\Delta A$ contains a paw x_1, x_2, x_3, x_4 with x_1, x_2, x_3 being a triangle and x_4 being 161 adjacent to x_3 . Because A is a solution to (G', k), it means that one of the x_i must belong 162 to P. Moreover, since the vertices in P have exactly the same neighborhood in G and they 163 form an independent set, this paw can contain at most one vertex from P. Let us call x this 164 vertex. Since X consists of k+5 parts, it means that there exists k+1 parts different from 165 P and without a vertex in this paw. However we know that any vertex in these parts has 166 the exact same neighborhood as x inside the paw. This means that each of these vertices 167 must be adjacent in A to the paw, or we can replace x with a vertex belonging to G', which 168 is a contradiction. However, since there is at least k+1 of these vertices and |A| = k, we 169 reach a contradiction. 170

¹⁷¹ Note that if there exists a set X for which Reduction Rule 1 can be applied, then this set ¹⁷² can be found in polynomial time. Therefore from now on we assume that (G, k) is an instance ¹⁷³ where Reduction Rule 1 cannot be applied. Let \mathcal{H} be a maximal packing of edge-disjoint ¹⁷⁴ paws and S the set of vertices appearing in \mathcal{H} .

¹⁷⁵ We will now introduce two new rules.

Reduction Rule 3. If there is a pair of adjacent vertices s_1, s_2 with 4k + 6 common neighbors in the triangle-free components of G - S, then remove the edge s_1, s_2 and set k := k - 1.

¹⁷⁹ The soundness of Reduction Rule 3 is implied by the following Lemma:

Lemma 2. Suppose Reduction Rule 1 cannot be applied anymore and let s_1, s_2 be two adjacent vertices. If there are more than 4k + 6 vertices belonging to the triangle-free components of G - S adjacent to both s_1 and s_2 , then either (G, k) is a no-instance, or any solution uses the edge s_1s_2 .

Proof. Suppose there is a solution A not using the edge s_1s_2 . Because s_1 and s_2 have 4k + 6common neighbors in G, it means that they belong to a triangle and thus to a complete multipartite component of $G\Delta A$. Because |A| = k, we know that at least 2k + 6 of the common neighbors of s_1 and s_2 are not adjacent to any edge in A. This means that these vertices belong to the same component in $G\Delta A$, and moreover they can only be in two different parts as they belong to the triangle-free components of G - S. This means that k + 3 of these vertices belong to the same part of a complete multipartite component of

23:6 A Polynomial Kernel for Paw-Free Editing

¹⁹¹ $G\Delta A$ and since they are not incident to any edge in A, they have the same neighborhood in ¹⁹² G. Therefore, we could have applied Reduction Rule 1.

Reduction Rule 4. If C is a complete multipartite component of G - S and P_1 is a part of C with more than 3k + 3 vertices, then remove all the edges between the other parts of C and decrease k by the amount of edges removed. If this amount is greater than k, answer no.

¹⁹⁶ The fact that Reduction Rule 4 is safe is implied by the following Lemma:

▶ Lemma 3. Suppose Reduction Rule 1 cannot be applied anymore and assume C is a complete multipartite component of G - S. If one part of C is larger than 3k + 3, then either (G, k) is a no-instance, or any solution will remove all the edges between the other parts of C.

Proof. Let P_1 be a part of C of size greater than 3k + 3 and let s_1, s_2 be two adjacent vertices of $C - P_1$. Let A be a solution of size at most k which does not use the edge s_1s_2 . A is incident to at most 2k vertices, so it means that at least k + 3 vertices of P_1 are not incident to any edge of A. Moreover, since s_1s_2 is not in A, these k + 3 vertices belong to the same part of a complete multipartite component of $G\Delta A$ and thus have the same neighborhood in G. This is a contradiction, as Reduction Rule 1 cannot be applied anymore.

Note also that if Reduction Rules 3 and 4 can be applied, then it is possible to do it in polynomial time. From now on assume that none of these rules can be applied.

²⁰⁹ **4** Bounding the Complete Multipartite Components

The next two lemmas allow us to bound the number of vertices belonging to complete multipartite components of G - S.

▶ Lemma 4. Let C denote a complete multipartite component of G - S. If $|C| \ge (3k + 3)(3k + 5)$, then either Reduction Rule 2 can be applied or (G, k) is a no-instance. Moreover, if Reduction Rule 2 can be applied, then it can be done in polynomial time.

Proof. Because Reduction Rule 4 cannot be applied, we have that every part of C contains at most (3k + 3) vertices. Suppose now that C consists of more than 3k + 5 parts. If (G, k)is a *yes*-instance, then the solution can only be adjacent to at most 2k of these parts. The complete multipartite graph consisting of the k + 5 parts not adjacent to the solution is then a candidate to apply Reduction Rule 2.

Note that to find the multipartite subgraph to apply Reduction Rule 2, we only have to check for each part if the vertices in this part have the same neighborhood outside of C, and for the part that do, find a maximum set of parts with the same neighborhood.

▶ Lemma 5. For any $s \in S$, s is adjacent to at most one complete multipartite component of G - S.

Proof. Suppose $s \in S$ is adjacent to two complete multipartite components C_1 and C_2 . Let *x* be a vertex of C_1 adjacent to *s*. By definition of C_1 , there exist vertices *y* and *z* in C_1 such that *x*, *y*, *z* is a triangle. This implies that one of *y* and *z* has to be adjacent to *s* or it would yield a paw without any edge in *S* which is not possible by definition of \mathcal{H} .

Suppose now that y is adjacent to s (the case x is adjacent to s is identical). Now let c_2 be a vertex of C_2 adjacent to s. Because C_1 and C_2 are two different components, c_2 cannot be adjacent to either c_1 or y, which means that s, c_1, c_2 and y form paw without any edge in S, a contradiction.

The next section is devoted to proving that, if there exists a solution A, then we can assume that any complete multipartite component of $G\Delta A$ only contains vertices at distance 5 from S.

5 Bounding the Diameter of Relevant Vertices

Let A denote a solution such that the sizes of the multipartite components in $G\Delta A$ are minimal. In this section, C will denote a complete multipartite component of $G\Delta A$, and C_1, C_2, \ldots, C_r the parts of C. For any $i \in [r]$ and j, let $C_{i,j}$ denote the set of vertices of C_i which are at distance j of S and $\overline{C_{i,j}} = \bigcup_{t \neq i} C_{t,j}$.

▶ Lemma 6. For any $j \ge 4$, and any $i \in [r]$, if $C_{i,0} \cup C_{i,1}$ is non empty, then $C_{i,j}$ is.

²⁴² **Proof.** Suppose $C_{i,0} \cup C_{i,1}$ and $C_{i,j}$ are non empty.

Because $j \geq 4$, we know that $E(C_{i,j}, \overline{C_{i,0}} \cup \overline{C_{i,1}} \cup \overline{C_{i,2}})$ is empty. This implies that A contains all the pairs in $C_{i,j} \times (\overline{C_{i,0}} \cup \overline{C_{i,1}} \cup \overline{C_{i,2}})$. However, vertices in $C_{i,j}$ can only be adjacent to vertices at distance i, i - 1 and i + 1 from S, thus replacing all the edges in $C_{i,j} \times (\overline{C_{i,0}} \cup \overline{C_{i,1}} \cup \overline{C_{i,2}})$ by the pairs in $E(C_{i,j}, \overline{C_{i,j-1}} \cup \overline{C_{i,j}} \cup \overline{C_{i,j+1}})$ would also give a solution by disconnecting the vertices in $C_{i,j}$ from C. However, since A is chosen such that |C| is minimal, it implies that: $|C_{i,j}| \times |\overline{C_{i,0}} \cup \overline{C_{i,1}} \cup \overline{C_{i,2}}| \le |E(C_{i,j}, \overline{C_{i,j-1}} \cup \overline{C_{i,j}} \cup \overline{C_{i,j+1}})|$. However, $|E(C_{i,j}, \overline{C_{i,j-1}} \cup \overline{C_{i,j}} \cup \overline{C_{i,j+1}})| \le |C_{i,j}| \times |\overline{C_{i,j-1}} \cup \overline{C_{i,j}} \cup \overline{C_{i,j+1}}|$ and thus:

$$|\overline{C_{i,j-1}} \cup \overline{C_{i,j}} \cup \overline{C_{i,j+1}}| \ge |\overline{C_{i,0}} \cup \overline{C_{i,1}} \cup \overline{C_{i,2}}|$$

243

Now setting

$$A' := \left(A \cup E(C_{i,0} \cup C_{i,1}, \overline{C_{i,0}} \cup \overline{C_{i,1}} \cup \overline{C_{i,2}})\right) \setminus \left((C_{i,0} \cup C_{i,1}) \times (\overline{C_{i,j-1}} \cup \overline{C_{i,j}} \cup \overline{C_{i,j+1}})\right)$$

gives an optimal solution where C doesn't contain $C_{i,0} \cup C_{i,1}$ and whose value is as good as A, a contradiction.

For any j, let $S_j = \bigcup_{i \in [r]} C_{i,j}$. In other word, S_j is the set of vertices of C at distance j from S. The main implication of Lemma 6 is that, if S_j is not empty for $j \ge 4$, then A contains all the pair $S_i \times (S_0 \cup S_1)$. Indeed, it shows that vertices in S_j and $S_0 \cup S_1$ belongs to different parts and thus must be adjacent in $G\Delta A$. However, just by considering the distance to S in G, these vertices cannot be adjacent in G, and thus these pairs must be in A. This allows us to prove the following lemma.

▶ Lemma 7. For any $j \ge 5$, S_j is empty.

Proof. Suppose S_4 and S_5 are non empty. By Lemma 6, we know that the vertices in S_5 and 253 $S_0 \cup S_1$ belong to different parts of the complete multipartite component. This implies that A 254 contains $S_5 \times (S_0 \cup S_1)$. However, removing these pairs from A, as well as all pairs containing 255 a vertex of C at distance more than 6 from S, and adding $E_G(S_5, S_4)$ also yields a solution 256 by disconnecting S_5 from the multipartite component. By optimality of A, this implies that 257 $E_G(S_5, S_4) \ge |S_5||S_0 \cup S_1|$ and thus $|S_4| \ge |S_1 \cup S_0|$. Now again by Lemma 6, we have that A 258 contains $S_4 \times (S_0 \cup S_1)$. However, $|S_4| \ge |S_1 \cup S_0|$ so it means that $|S_1 \cup S_0|^2 \le |S_4| |S_1 \cup S_0|$. 259 Let A' be the solution obtained from A by disconnecting S_1 from S_0 and removing all pairs 260 adjacent to the sets S_j for $j \ge 2$. Because $|S_1 \cup S_0|^2 \le |S_4| |S_1 \cup S_0|$, we have that $|A'| \le |A|$ 261 and the multipartite component containing S_0 is strictly smaller in $G\Delta A'$ than in $G\Delta A$ 262 while the other remain exactly the same, which is a contradiction. 263

23:8 A Polynomial Kernel for Paw-Free Editing

²⁶⁴ **6** Triangle-Free Components

Before proving our main result let us prove the following lemma, which will be useful in bounding the number of vertices outside of S.

Lemma 8. If $x \in G$ has at least 4k + 6 neighbors belonging to triangle-free components of G - S, then there is no solution A such that x belongs to a complete multipartite component of $G\Delta A$.

Proof. Let T denote the set of neighbors of x belonging to triangle-free components of G-S. 270 Suppose x belongs to a complete multipartite component C of $G\Delta A$. First note that at least 271 2k + 6 of the vertices of T will not be adjacent to any edge of A, which means that their 272 neighborhood in G and $G\Delta A$ are the same and they belong to C in $G\Delta A$. Now because the 273 vertices of T belong to triangle-free components, it means that these 2k + 6 vertices can only 274 belong to two different parts of this multipartite component. In particular, at least k + 3 of 275 those belong to the same part and thus have the exact same neighborhood in $G\Delta A$ and thus 276 in G. This means that Reduction Rule 1 can be applied, which is a contradiction. 277

▶ Lemma 9. Suppose (G, k) is a yes-instance. Then there exists a set S' of at most (4k+6)4kvertices such that if $x \notin S'$ belongs to a triangle-free component of G - S, then x doesn't belong to any triangle in G using only one vertex of S. Moreover, there is a polynomial time algorithm that either find this set or concludes that (G, k) is a no-instance.

Proof. Let x be a vertex belonging to a triangle-free component C of G - S. Suppose that x belongs to a triangle using only one vertex s of S and another vertex y of C. Note first that C is the only component of G - S adjacent to s or we would have a paw using edges not in S. Suppose now that $t \in C$ is adjacent to x. Then t must be adjacent to either y or sor it would yield a paw using no edge in S. Thus, since C is triangle free, t must be adjacent to s. The same argument would show that any vertex adjacent to t in C must be adjacent to s and thus the whole component C is adjacent to x.

Let \mathcal{M} be a maximal matching in C. If \mathcal{M} consists of more than k edges, then it means 289 that any solution A to the instance (G, k) puts s in a complete multipartite component. In 290 particular if $|C| \ge 4k + 6$, as $C \subseteq N(x)$ and $|A| \ge k$, we have that 2k + 6 of the vertices of C 291 are not adjacent to any edge of A and belong to the same complete multipartite component as 292 s. Moreover, these vertices can only belong to two different parts of this complete multipartite 293 component (or we would have a triangle in C), and thus k+3 of them belong to the same 294 part. However, since their neighborhood in G and $G\Delta A$ are identical, it means we could 295 have applied Reduction Rule 1, so (G, k) is a no-instance. So let C' be defined as the vertices 296 of \mathcal{M} if $|\mathcal{M}| < k$ and the full set C if \mathcal{M} if $|\mathcal{M}| > k$. Note that in the case where $|\mathcal{M}| < k$, 297 the vertices in $C \setminus C'$ only have neighbors in $S \cup C'$. 298

Let S' be the union of the C' for every such component C where there exists a vertex which belong to a triangle using one vertex from $s \in S$. Note that the number of those components C is bounded by |S|. Indeed, s cannot be adjacent to any other component of G - S or we have a paw using no edge from S which is not possible. This implies that $|S'| \leq |S|(4k+6)$.

304 **7** Main Result

305 We are now ready to prove our main theorem.

³⁰⁶ ► **Theorem 10.** The paw-free editing problem has a kernel on $\mathcal{O}(k^6)$ vertices

Proof. Let (G, k) be an instance of paw-free editing. The algorithm first apply Reduction Rule 1 repetitively. Once Reduction Rule 1 cannot be applied anymore, the algorithm computes \mathcal{H} a maximal packing of edge-disjoint paws. If \mathcal{H} consists of more than k paws, answer *no*. If this is not the case, let S be the set of vertices belonging to a paw of \mathcal{H} . $|S| \leq 4k$. Then the algorithm apply Reduction Rules 3 and 4 until either k < 0, in which case it answers *no*, or they cannot be applied anymore.

Because \mathcal{H} is maximal, Theorem 1 implies that the components G-S are either trianglefree or complete multipartite. Let C be a complete multipartite component. If $|C| \geq (3k+3)(3k+5)$, then Lemma 4 implies that the algorithm can apply Reduction Rule 2 or answer *no*. Moreover Lemma 5 implies that the number of complete multipartite components adjacent to S is bounded by |S|. Overall this implies that the number of vertices contained in complete multipartite components of G-S adjacent to S is bounded by 4k(3k+3)(3k+5), or it is possible to apply Reduction Rule 2.

By applying Lemma 9, we either find out that (G, k) is a *no*-instance or find a set S' of at most (4k+6)4k vertices such that if $x \notin S'$ belongs to a triangle-free component of G-S, then x doesn't belong to any triangle in G using only one vertex of S.

Because Reduction Rule 3 cannot be applied anymore, it means that for every pair of adjacent vertices s_1, s_2 in S, the number of vertices in triangle-free components adjacent to both s_1 and s_2 is bounded by 4k + 6. This means that, if S'' denotes the set of vertices in a triangle-free component forming a triangle with 2 vertices of S, then $|S''| \leq |S|^2(4k + 6)$.

Then we construct recursively sets $S_0, S_1, \ldots S_6$ such that S_i is a subset of vertices of Gat distance *i* from S as follows: First we set $S_0 := S$ and then, for every $i \in \{0, \ldots, 5\}$, we define S_{i+1} by picking, for every vertex x of $S_i, 4k + 6$ neighbors of x at distance i + 1 from S in G and belonging to a triangle-free component of G - S. Note that $|\bigcup S_i| = \mathcal{O}(k^6)$.

Let G' be the graph induced on G by S, S', S'' the S_i and all the complete multipartite 331 components of G-S adjancent to S. Note that, by construction of S' and S'', there is 332 no triangle in G using a vertex which is not in G'. We claim that (G', k) has a solution if 333 and only if (G, k) has a solution. As G' is a subgraph of G, it is clear that if (G, k) has a 334 solution, then so does (G', k). Suppose now that (G', k) has a solution A, but (G, k) does 335 not have a solution. In particular, it implies that $G\Delta A$ is not paw-free. Because of Lemma 7, 336 we can assume that no complete multipartite component of $G'\Delta A$ has a vertex at distance 337 5 from S and that A is minimal. Let x_1, x_2, x_3, x_4 form a paw in $G\Delta A$, with x_1, x_2, x_3 338 being the triangle. One of the x_i must be a vertex which has not been marked during the 339 construction of the S_i . Moreover, since G' contains all the triangles of G, it means that 340 x_1, x_2 and x_3 belong to G' and x_4 doesn't. It also means that x_1, x_2 and x_3 belong to a 341 complete multipartite component of $G'\Delta A$ and x_4 is adjacent to one of these vertices, say x_1 . 342 Since x_1 is at distance less than 5 from S, it means that during the marking process x_4 was 343 not marked for x_1 . But this means that x_1 has more than 4k + 6 neighbors in triangle-free 344 components of G' - S. However, Lemma 8 implies that x_1 cannot belong to a complete 345 multipartite component of $G'\Delta A$, which is a contradiction. 346

8 Better Bounds for Deletion and Addition

In this section, we provide better kernels for paw-deletion and paw-addition. Let us start with the deletion problem, where the proof is quite similar to the one of Theorem 10, with the difference that we only keep vertices of the triangle-free components which are at distance one from S.

Theorem 11. The paw-free deletion problem admits a kernel of size $\mathcal{O}(k^3)$.

23:10 A Polynomial Kernel for Paw-Free Editing

Proof. Let (G, k) be an instance of paw-free deletion. First note that Reduction Rules 1–4 are still safe in this context, and Lemma 8 still applies. Therefore the algorithm applies Reduction Rule 1 until it cannot be applied anymore. It then computes \mathcal{H} a maximal packing of edge-disjoint paws. If \mathcal{H} consists of more than k paws, answer *no*. If this is not the case, let S be the set of vertices belonging to a paw of \mathcal{H} . $|S| \leq 4k$. Then the algorithm apply Reduction Rules 3 and 4 until either k < 0, in which case it answers *no*, or they cannot be applied anymore.

Again, by possibly applying Reduction Rule 2, we can assume that the set of vertices in all the multipartite components of G - S adjacent to S is smaller than 4k(3k+3)(3k+5). By applying Lemma 9, we either find out that (G, k) is a *no*-instance or find a set S' of at most (4k+6)4k vertices such that if $x \notin S'$ belongs to a triangle-free component of G - S, then x doesn't belong to any triangle in G using only one vertex of S.

Because Reduction Rule 3 cannot be applied anymore, it means that for every pair of adjacent vertices s_1, s_2 in S, the number of vertices in triangle-free components adjacent to both s_1 and s_2 is bounded by 4k + 6. This means that, if S'' denote the set of vertices in a triangle-free component, forming a triangle with 2 vertices of S, then $|S''| \leq |S|^2(4k+6)$.

Note also that Lemma 8 still applies, and let S_1 be the set obtained by picking for every vertex s in S, 4k + 6 neighbors in triangle-free components of G - S.

Let G' be the graph induced on G by S, S', S'', S_1 , as well as all the vertices on complete 371 multipartite components of G - S. We want to show that (G, k) has a solution if and 372 only if (G', k) has a solution. Let A be a solution of (G', k) and suppose $G\Delta A$ has a paw 373 x_1, x_2, x_3, x_4 , with x_1, x_2, x_3 being a triangle and x_4 being adjacent to x_3 . Because of the 374 choice of the sets S' and S'', all the triangle of G are contained in G'. Note also that, since 375 the solution can only remove edges, x_1, x_2, x_3 is a triangle in G. This implies that $x_3 \in S$ 376 and x_4 was not picked for the 4k + 6 neighbors of x_3 . In particular, this means that x_3 has 377 4k + 6 neighbors which belong to a triangle-free component of G' - S in G' and thus by 378 Lemma 8, x_3 cannot belong to a complete multipartite component of $G'\Delta A$. However, since 379 x_1, x_2 and x_3 form a triangle in $G' \Delta A$, we reach a contradiction. 380

Theorem 12. The paw-free addition problem admits a kernel of size $\mathcal{O}(k^3)$.

³⁸² **Proof.** Again, Reduction Rules 1–4 are still safe in this context, with the difference for ³⁸³ Rules 3 and 4 that, instead of removing edges and decreasing k, we can directly conclude ³⁸⁴ that (G, k) is a *no*-instance. Note also that a paw-free connected component can safely be ³⁸⁵ removed from the graph.

So the algorithm start by removing all the paw-free components of G and applying Reduction Rule 1 until it cannot be applied anymore. It then computes \mathcal{H} a maximal packing of edge-disjoint paws. If \mathcal{H} consists of more than k paws, answer *no*. If this is not the case, let S be the set of vertices belonging to a paw of \mathcal{H} . $|S| \leq 4k$. From now on we can assume that Rules 3 and 4 cannot be applied.

Again, by possibly applying Reduction Rule 2, we can assume that the set of vertices in 301 all the multipartite components of G-S adjacent to S is smaller than 4k(3k+3)(3k+5). 392 Consider a connected component C_1 of G. This component cannot be paw-free, or the 393 algorithm would have removed it from the graph. So let $S_1 = C_1 \cap S$ and R_1 the vertices 394 of C_1 contained in triangle-free component of G - S. Because C_1 is not triangle-free, it 395 means that any solution A to (G, k) leaves C_1 as a complete multipartite component. In 396 particular, it implies that R_1 is smaller than 4k + 6. Indeed, if R_1 is bigger than 4k + 6, 397 then 2k + 6 vertices will have the same neighborhood in $G\Delta A$ as in G. Moreover, since 398 R_1 is triangle-free, it means that these vertices belong to at most 2 parts of the complete 399

⁴⁰⁰ multipartite component. This implies that at least k + 3 of these vertices belong to the ⁴⁰¹ same part and Rule 1 applies. Moreover, since G has at most k connected component which ⁴⁰² are not paw-free, it implies that the set of vertices contained in triangle-free components of ⁴⁰³ G - S is smaller than (4k + 6)k.

Overall, it implies that our reduced instance has size at most $4k(3k+3)(3k+5) + (4k+405 \quad 6)k + 4k = \mathcal{O}(k^3)$, which ends the proof.

406 9 Conclusion

In this paper we studied PAW-FREE-EDGE EDITING and gave a polynomial kernel of size 407 $\mathcal{O}(k^6)$. The only unresolved graphs H on 4 vertices, for which the kernelization complexity 408 of H-FREE-EDGE EDITING problem remains open is claw. In fact, for this problem even 409 the kernelization complexity of *H*-EDGE DELETION and *H*-EDGE ADDITION remain open. 410 Settling the kernelization complexity might require using the power of structure theorem of 411 claw free graphs. Thus, a natural start here could be looking at editing/deletion/addition 412 to basic graphs, on which structure theorem of claw free graphs is built. We leave these as 413 natural directions to pursue. 414

⁴¹⁵ — References

416	1	N. R. Aravind, R. B. Sandeep, and Naveen Sivadasan. Dichotomy results on the hardness
417		of h-free edge modification problems. SIAM J. Discrete Math., 31(1):542-561, 2017. doi:
418		10.1137/16M1055797.
419	2	Hans L Bodlaender, Leizhen Cai, Jianer Chen, Michael R Fellows, Jan Arne Telle, and Dániel
420		Marx. Open problems in parameterized and exact computation-iwpec 2006. UU -CS, 2006,
421		2006.
422	3	Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
423		properties. Inf. Process. Lett., 58(4):171–176, 1996. doi:10.1016/0020-0190(96)00050-6.
424	4	$\label{eq:calibration} Leizhen Cai and Yufei Cai. Incompressibility of h-free edge modification problems. \ Algorithmica,$
425		71(3):731-757, 2015. doi:10.1007/s00453-014-9937-x.
426	5	Yufei Cai. Polynomial kernelisation of H-free edge modification problems. Mphil thesis,
427		Department of Computer Science and Engineering, The Chinese University of Hong Kong,
428		Hong Kong SAR, China, 2012.
429	6	Yixin Cao, Ashutosh Rai, R. B. Sandeep, and Junjie Ye. A polynomial kernel for diamond-free
430		editing. In 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018,
431		Helsinki, Finland, pages 10:1-10:13, 2018. doi:10.4230/LIPIcs.ESA.2018.10.
432	7	Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
433		Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
434	8	R. Diestel. Graph Theory, 4th Edition. Springer, 2012.
435	9	Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
436		Texts in Computer Science. Springer, 2013.
437	10	Ehab S. El-Mallah and Charles J. Colbourn. The complexity of some edge deletion problems.
438		IEEE Transactions on Circuits and Systems, 35(3):354–362, 1988. doi:10.1109/31.1748.
439	11	Paul Erdös and Richard Rado. Intersection theorems for systems of sets. Journal of the
440		London Mathematical Society, 1(1):85–90, 1960.
441	12	Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
442		Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.
443	13	Sylvain Guillemot, Frédéric Havet, Christophe Paul, and Anthony Perez. On the (non-
444) existence of polynomial kernels for P_{-l} -free edge modification problems. Algorithmica,
445		65(4):900-926, 2013. doi:10.1007/s00453-012-9619-5.

23:12 A Polynomial Kernel for Paw-Free Editing

- Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
 Sci., 62(2):367-375, 2001. doi:10.1006/jcss.2000.1727.
- Stefan Kratsch and Magnus Wahlström. Two edge modification problems without polynomial kernels. Discrete Optimization, 10(3):193-199, 2013. doi:10.1016/j.disopt.2013.02.001.
- John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
 is np-complete. J. Comput. Syst. Sci., 20(2):219-230, 1980. doi:10.1016/0022-0000(80)
 90060-4.
- 453
 17
 Stephan Olariu. Paw-free graphs. Information Processing Letters, 28(1):53 54,

 454
 1988. URL: http://www.sciencedirect.com/science/article/pii/0020019088901433,

 455
 doi:https://doi.org/10.1016/0020-0190(88)90143-3.
- R. B. Sandeep and Naveen Sivadasan. Parameterized lower bound and improved kernel for diamond-free edge deletion. In 10th International Symposium on Parameterized and Exact Computation, IPEC 2015, September 16-18, 2015, Patras, Greece, pages 365–376, 2015.
 doi:10.4230/LIPIcs.IPEC.2015.365.
- Mihalis Yannakakis. Edge-deletion problems. SIAM J. Comput., 10(2):297–309, 1981. doi:
 10.1137/0210021.