
A Polynomial Kernel for Paw-Free Editing1

Eduard Eiben2

Department of Informatics, University of Bergen, Bergen, Norway3

eduard.eiben@uib.no4

William Lochet5

Department of Informatics, University of Bergen, Bergen, Norway6

william.lochet@uib.no7

Saket Saurabh8

Institute of Mathematical Sciences, Chennai, India9

Department of Informatics, University of Bergen, Bergen, Norway10

saket@imsc.res.in11

Abstract12

For a fixed graph H, the H-free-Edge Editing problem asks whether we can modify a given graph13

G by adding or deleting at most k edges such that the resulting graph does not contain H as an14

induced subgraph. The problem is known to be NP-complete for all fixed H with at least 3 vertices15

and it admits a 2O(k)nO(1) algorithm. Cai and Cai [Algorithmica (2015) 71:731–757] showed that16

H-free-Edge Editing does not admit a polynomial kernel whenever H or its complement is a path17

or a cycle with at least 4 edges or a 3-connected graph with at least 1 edge missing. Their results18

suggest that if H is not independent set or a clique, then H-free-Edge Editing admits polynomial19

kernels only for few small graphs H, unless coNP ∈ NP/poly. Therefore, resolving the kernelization20

of H-free-Edge Editing for small graphs H plays a crucial role in obtaining a complete dichotomy21

for this problem. In this paper, we positively answer the question of compressibility for one of22

the last two unresolved graphs H on 4 vertices. Namely, we give the first polynomial kernel for23

Paw-free-Edge Editing with O
(
k6) vertices.24

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;25

Theory of computation → Graph algorithms analysis; Theory of computation → Parameterized26

complexity and exact algorithms27

Keywords and phrases Kernelization, Paw-free graph, H-free editing, graph modification problem28

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2329

© Eduard Eiben, William Lochet, and Saket Saurabh;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2628-3435
mailto:eduard.eiben@uib.no
mailto:william.lochet@uib.no
mailto:saket@imsc.res.in
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 A Polynomial Kernel for Paw-Free Editing

1 Introduction30

For a family of graph G, the general G-Graph Modification problem ask whether we31

can modify a graph G into a graph in G by performing at most k simple operations.32

Typical examples of simple operations that are well-studied in the literature include vertex33

deletion, edge deletion, edge addition, or combination of edge deletion and addition. We34

call these problems G-Vertex Deletion, G-Edge Deletion, G-Edge Addition, and35

G-Edge Editing, respectively. By a classic result by Lewis and Yannakakis [16], G-Vertex36

Deletion is NP-complete for all non-trivial hereditary graph classes. The situation is quite37

different for the edge modification problems. Earlier efforts for edge deletion problems [10, 19],38

though having produced fruitful concrete results, shed little light on a systematic answer,39

and it was noted that such a generalization is difficult to obtain.40

G-Graph Modification problems have been extensively investigated for graph classes41

G that can be characterized by a finite set of forbidden induced subgraphs. We say that42

a graph is H-free, if it does not contain any graph in H as an induced subgraph. For this43

special case, the H-free Vertex Deletion problem is well understood. If H contains a44

graph on at least two vertices, then all of these problems are NP-complete, but admit cknO(1)
45

algorithm [3], where c is the size of the largest graph in H (the algorithms with running46

time f(k)nO(1) are called fixed-parameter tractable (FPT) algorithms [7, 9]). On the other47

hand, the NP-hardness proof of Lewis and Yannakakis [16] excludes algorithms with running48

time 2o(k)nO(1) under Exponential Time Hypothesis (ETH) [14]. Finally, as observed by49

Flum and Grohe [12] a simple application of sunflower lemma [11] gives a kernel with O (kc)50

vertices, where c is again the size of the largest graph in H. A kernel is a polynomial time51

preprocessing algorithm which outputs an equivalent instance of the same problem such that52

the size of the reduced instance is bounded by some function f(k) that depends only on53

k. We call the function f(k) the size of the kernel. It is well-known that any problem that54

admits an FPT algorithm admits a kernel. Therefore, for problems with FPT algorithms one55

is interested in polynomial kernels, i.e., kernels where size upper bounded by a polynomial56

function.57

For the edge modification problems, the situation is more complicated. While all of these58

problems also admit cknO(1) time algorithm, where c is the maximum number of edges in a59

graph in H [3], the P vs NP dichotomy is still not known. Only recently Aravind et al. [1]60

gave the dichotomy for the special case when H contains precisely one graph H [1]. From the61

kernelization point of view, the situation is even more difficult. The reason is that deleting or62

adding an edge to a graph can introduce a new copy of H and this might further propagate.63

Hence, we cannot use the sunflower lemma to reduce the size of the instance. Cai asked the64

question whether H-free Edge Deletion admits a polynomial kernel for all graphs H [2].65

Kratsch and Wahlström [15] showed that this is probably not the case and gave a graph H66

on 7 vertices such that H-free Edge Deletion and H-free Edge Editing does not67

admit a polynomial kernel unless coNP ⊆ NP/poly. Consequently, it was shown that this is68

not an exception, but rather a rule [4, 13]. Indeed the result by Cai and Cai [4] shows that69

H-free Edge Deletion, H-free Edge Addition, and H-free-Edge Editing do not70

admit a polynomial kernel whenever H or its complement is a path or a cycle with at least71

4 edges or a 3-connected graph with at least 2 edges missing. This suggests that actually72

the H-free modification problems with a polynomial kernels are rather rare and only for73

small graphs H. For the graphs on 4 vertices the kernelization of H-free edge modification74

problems was open for last two graphs and their complements (see Table 1), namely paw75

and claw, and Cao et al. [6] conjectured that all of these problems admit polynomial kernels.76



E. Eiben, W. Lochet, and S. Saurabh 23:3

(a) P4 (b) C4 (c) K4 (d) claw (e) paw (f) diamond

Figure 1 Graphs on 4 vertices, their complements are omitted.

H deletion addition editing
K4 O

(
k4) [5] trivial O

(
k4) [5]

P4 O
(
k3) [13] O

(
k3) [13] O

(
k3) [13]

diamond O
(
k3) [18] trivial O

(
k8) [6]

paw O
(
k3) [this paper] O

(
k3) [this paper] O

(
k6) [this paper]

claw open open open
C4 no [13] no [13] no [13]

Table 1 The kernelization results of H-free edge modification problems for H being 4-vertex
graphs. Note that for a complement of H, the rows with deletion and addition are swapped, but
otherwise the same results hold.

In this paper, we give kernels for the first of the two remaining graphs, namely the paw.77

1.1 Brief Overview of the Algorithm78

Our main result is a polynomial kernel for Paw-free-Edge Editing. The key to obtain the79

kernel is a structural theorem by Olariu [17] that states that every connected paw-free graph80

is either triangle-free or complete multipartite graph. We start our kernelization algorithm81

by finding a greedy edge-disjoint packing of paws in G. This clearly contains at most k paws82

and hence at most 4k vertices. Let us denote the set of these vertices by S. The goal now is83

to bound the vertices in G−S. Bounding the vertices belonging to the complete multipartite84

components of G−S is rather simple. We show that every vertex in S is adjacent to at most85

1 complete multipartite component and for each multipartite component, we can reduce86

the size of each part as well as the number of these parts to O (k), else we can always find87

an irrelevant vertex that does not appear in any solution. The triangle-free part is more88

tricky. The difficulty comes from the fact that actually instead of keeping this part of the89

graph triangle-free, the optimal solution might want to add some edges to make it complete90

multipartite. We are however able to show that there is always optimal solution that keeps91

the vertices at distance at least 5 from S in a triangle-free component. This structural92

claim helps us in looking for solution which are not too far away from S “in some sense”.93

Moreover, after some preprocessing of the instance, we can also show that the vertices with94

more than 4k + 6 neighbors inside the triangle-free components of G − S cannot end up95

inside a complete multipartite component. It means that we can mark the relevant vertices96

in triangle-free components as follows. Set S0 := S and for every i < 5, let Si+1 be the set97

obtained by marking for each vertex of Si+1, 4k + 6 neighbors at distance i + 1 from S. The98

set of vertices marked is then O
(
k6). Finally, we can remove the vertices of triangle-free99

components which have not been marked. This is safe because these vertices are either too100

far from S to belong to a complete multipartite component, or every way to connect these101

vertices to S use vertices that can’t end up in a complete multipartite component of the102

reduce instance because of the degree condition. This gives us the desired kernel.103

CVIT 2016



23:4 A Polynomial Kernel for Paw-Free Editing

2 Preliminaries104

We assume familiarity with the basic notations and terminologies in graph theory. We refer105

the reader to the standard book by Diestel [8] for more information. Given a graph G and106

a set of pairs of vertices A ∈ V (G)2, we denote by G∆A the graph whose set of vertices is107

V (G) and set of edges is the symmetric difference of E(G) and A.108

Parameterized Algorithms and Kernelization: For a detailed illustration of the following facts109

the reader is referred to [7, 9]. A parameterized problem is a language Π ⊆ Σ∗×N, where Σ is a110

finite alphabet; the second component k of instances (I, k) ∈ Σ∗×N is called the parameter. A111

parameterized problem Π is fixed-parameter tractable if it admits a fixed-parameter algorithm,112

which decides instances (I, k) of Π in time f(k) · |I|O(1) for some computable function f .113

A kernelization for a parameterized problem Π is a polynomial-time algorithm that given114

any instance (I, k) returns an instance (I ′, k′) such that (I, k) ∈ Π if and only if (I ′, k′) ∈ Π115

and such that |I ′| + k′ ≤ f(k) for some computable function f . The function f is called116

the size of the kernelization, and we have a polynomial kernelization if f(k) is polynomially117

bounded in k. It is known that a parameterized problem is fixed-parameter tractable if and118

only if it is decidable and has a kernelization. However, the kernels implied by this fact are119

usually of superpolynomial size.120

A reduction rule is an algorithm that takes as input an instance (I, k) of a parameterized121

problem Π and outputs an instance (I ′, k′) of the same problem. We say that the reduction122

rule is safe if (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance. In order to123

describe our kernelization algorithm, we present a series of reduction rules.124

We will need the following result describing the structure of paw-free graphs [17].125

I Theorem 1. G is a paw-free graph if and only if each connected component of G is126

triangle-free or complete multipartite.127

To make a clear distinction between these two cases, we will say that a graph is a complete128

multipartite graph if it contains at least three parts. In particular, it contains a triangle.129

3 Reduction Rules130

From now on (G, k) will be an instance of paw-free editing and we assume k > 0. Let us first131

describe two rules which can be safely applied.132

I Reduction Rule 1. If X is an independent set of k +3 vertices with the same neighborhood,133

remove a vertex x ∈ X from the graph.134

Proof of Safeness. Suppose (G, k) is an instance of the paw-free editing problem and X135

is an independent set of k + 3 vertices with the same neighborhood. Let G′ be the graph136

obtained by removing a vertex of X. We need to show that (G′, k) has a solution if and only137

if (G, k) has one. Since G′ is a subgraph of G, it is clear that if (G, k) has a solution, then so138

does (G′, k). Let A be a solution to (G′, k) and assume G∆A contains a paw x1, x2, x3, x4139

with x1, x2, x3 being a triangle and x4 being adjacent to x3. Because A is a solution to140

(G′, k), it means that one of the xi must be the vertex x that we removed from G. Moreover,141

at most two of the other vertices of X belong to the paw, as x is adjacent to at least one142

vertex and X is an independent set. If only one other vertex of X belongs to it, consider the143

other k + 1 vertices of X which are not in the paw. They all have the same neighborhood144

in the paw as x, so A must contain for each of them at least one edge with the paw, or we145

could replace x with this vertex in the paw, which contradicts the fact that A is a solution146



E. Eiben, W. Lochet, and S. Saurabh 23:5

of (G′, k). However, since A is smaller than k + 1 we reach a contradiction. If two other147

vertices of X belong to the paw, then it means that x = x4 and these vertices are x1 and x3.148

Moreover it means that the edge x1x3 must be edited as X is an independent set. In that149

case, consider the other k vertices of X which are not in the paw. Again, for each of them,150

the solution must contains an edge with the paw, but since |A \ (x1x3)| < k, we also reach a151

contradiction. Overall this implies that Rule 1 is safe. J152

Following analogous arguments for the case when X induces a complete multipartite153

graph with at least k + 5 parts, we also obtain safeness of the following rule.154

I Reduction Rule 2. If X is a complete multipartite subgraph with k + 5 parts having the155

same neighborhood outside of X, then remove the smallest part of X from the graph.156

Proof of Safeness. Suppose (G, k) is an instance of the paw-free editing problem and X is157

a complete multipartite subgraph with k + 5 parts having the same neighborhood outside158

of X. Let G′ be the graph obtained by removing the smallest part P of X. We need to159

show that (G′, k) has a solution if and only if (G, k) has one. Let A be a solution to (G′, k)160

and assume G∆A contains a paw x1, x2, x3, x4 with x1, x2, x3 being a triangle and x4 being161

adjacent to x3. Because A is a solution to (G′, k), it means that one of the xi must belong162

to P . Moreover, since the vertices in P have exactly the same neighborhood in G and they163

form an independent set, this paw can contain at most one vertex from P . Let us call x this164

vertex. Since X consists of k + 5 parts, it means that there exists k + 1 parts different from165

P and without a vertex in this paw. However we know that any vertex in these parts has166

the exact same neighborhood as x inside the paw. This means that each of these vertices167

must be adjacent in A to the paw, or we can replace x with a vertex belonging to G′, which168

is a contradiction. However, since there is at least k + 1 of these vertices and |A| = k, we169

reach a contradiction. J170

Note that if there exists a set X for which Reduction Rule 1 can be applied, then this set171

can be found in polynomial time. Therefore from now on we assume that (G, k) is an instance172

where Reduction Rule 1 cannot be applied. Let H be a maximal packing of edge-disjoint173

paws and S the set of vertices appearing in H.174

We will now introduce two new rules.175

I Reduction Rule 3. If there is a pair of adjacent vertices s1, s2 with 4k + 6 common176

neighbors in the triangle-free components of G − S, then remove the edge s1, s2 and set177

k := k − 1.178

The soundness of Reduction Rule 3 is implied by the following Lemma:179

I Lemma 2. Suppose Reduction Rule 1 cannot be applied anymore and let s1, s2 be two180

adjacent vertices. If there are more than 4k + 6 vertices belonging to the triangle-free181

components of G− S adjacent to both s1 and s2, then either (G, k) is a no-instance, or any182

solution uses the edge s1s2.183

Proof. Suppose there is a solution A not using the edge s1s2. Because s1 and s2 have 4k + 6184

common neighbors in G, it means that they belong to a triangle and thus to a complete185

multipartite component of G∆A. Because |A| = k, we know that at least 2k + 6 of the186

common neighbors of s1 and s2 are not adjacent to any edge in A. This means that these187

vertices belong to the same component in G∆A, and moreover they can only be in two188

different parts as they belong to the triangle-free components of G − S. This means that189

k + 3 of these vertices belong to the same part of a complete multipartite component of190

CVIT 2016



23:6 A Polynomial Kernel for Paw-Free Editing

G∆A and since they are not incident to any edge in A, they have the same neighborhood in191

G. Therefore, we could have applied Reduction Rule 1. J192

I Reduction Rule 4. If C is a complete multipartite component of G− S and P1 is a part193

of C with more than 3k + 3 vertices, then remove all the edges between the other parts of C194

and decrease k by the amount of edges removed. If this amount is greater than k, answer no.195

The fact that Reduction Rule 4 is safe is implied by the following Lemma:196

I Lemma 3. Suppose Reduction Rule 1 cannot be applied anymore and assume C is a197

complete multipartite component of G− S. If one part of C is larger than 3k + 3, then either198

(G, k) is a no-instance, or any solution will remove all the edges between the other parts of199

C.200

Proof. Let P1 be a part of C of size greater than 3k +3 and let s1, s2 be two adjacent vertices201

of C − P1. Let A be a solution of size at most k which does not use the edge s1s2. A is202

incident to at most 2k vertices, so it means that at least k + 3 vertices of P1 are not incident203

to any edge of A. Moreover, since s1s2 is not in A, these k + 3 vertices belong to the same204

part of a complete multipartite component of G∆A and thus have the same neighborhood in205

G. This is a contradiction, as Reduction Rule 1 cannot be applied anymore. J206

Note also that if Reduction Rules 3 and 4 can be applied, then it is possible to do it in207

polynomial time. From now on assume that none of these rules can be applied.208

4 Bounding the Complete Multipartite Components209

The next two lemmas allow us to bound the number of vertices belonging to complete210

multipartite components of G− S.211

I Lemma 4. Let C denote a complete multipartite component of G − S. If |C| ≥ (3k +212

3)(3k + 5), then either Reduction Rule 2 can be applied or (G, k) is a no-instance. Moreover,213

if Reduction Rule 2 can be applied, then it can be done in polynomial time.214

Proof. Because Reduction Rule 4 cannot be applied, we have that every part of C contains215

at most (3k + 3) vertices. Suppose now that C consists of more than 3k + 5 parts. If (G, k)216

is a yes-instance, then the solution can only be adjacent to at most 2k of these parts. The217

complete multipartite graph consisting of the k + 5 parts not adjacent to the solution is then218

a candidate to apply Reduction Rule 2.219

Note that to find the multipartite subgraph to apply Reduction Rule 2, we only have to220

check for each part if the vertices in this part have the same neighborhood outside of C, and221

for the part that do, find a maximum set of parts with the same neighborhood. J222

I Lemma 5. For any s ∈ S, s is adjacent to at most one complete multipartite component223

of G− S.224

Proof. Suppose s ∈ S is adjacent to two complete multipartite components C1 and C2. Let225

x be a vertex of C1 adjacent to s. By definition of C1, there exist vertices y and z in C1 such226

that x, y, z is a triangle. This implies that one of y and z has to be adjacent to s or it would227

yield a paw without any edge in S which is not possible by definition of H.228

Suppose now that y is adjacent to s (the case x is adjacent to s is identical). Now let c2229

be a vertex of C2 adjacent to s. Because C1 and C2 are two different components, c2 cannot230

be adjacent to either c1 or y, which means that s, c1, c2 and y form paw without any edge in231

S, a contradiction. J232



E. Eiben, W. Lochet, and S. Saurabh 23:7

The next section is devoted to proving that, if there exists a solution A, then we can233

assume that any complete multipartite component of G∆A only contains vertices at distance234

5 from S.235

5 Bounding the Diameter of Relevant Vertices236

Let A denote a solution such that the sizes of the multipartite components in G∆A are237

minimal. In this section, C will denote a complete multipartite component of G∆A, and238

C1, C2, . . . , Cr the parts of C. For any i ∈ [r] and j, let Ci,j denote the set of vertices of Ci239

which are at distance j of S and Ci,j =
⋃

t6=i Ct,j .240

I Lemma 6. For any j ≥ 4, and any i ∈ [r], if Ci,0 ∪ Ci,1 is non empty, then Ci,j is.241

Proof. Suppose Ci,0 ∪ Ci,1 and Ci,j are non empty.242

Because j ≥ 4, we know that E(Ci,j , Ci,0 ∪ Ci,1 ∪ Ci,2) is empty. This implies that A

contains all the pairs in Ci,j × (Ci,0 ∪ Ci,1 ∪ Ci,2). However, vertices in Ci,j can only be
adjacent to vertices at distance i, i − 1 and i + 1 from S, thus replacing all the edges in
Ci,j × (Ci,0 ∪ Ci,1 ∪ Ci,2) by the pairs in E(Ci,j , Ci,j−1 ∪ Ci,j ∪ Ci,j+1) would also give a
solution by disconnecting the vertices in Ci,j from C. However, since A is chosen such that
|C| is minimal, it implies that: |Ci,j | × |Ci,0 ∪ Ci,1 ∪ Ci,2| ≤ |E(Ci,j , Ci,j−1 ∪ Ci,j ∪ Ci,j+1)|.
However, |E(Ci,j , Ci,j−1 ∪ Ci,j ∪ Ci,j+1)| ≤ |Ci,j | × |Ci,j−1 ∪ Ci,j ∪ Ci,j+1| and thus:

|Ci,j−1 ∪ Ci,j ∪ Ci,j+1| ≥ |Ci,0 ∪ Ci,1 ∪ Ci,2|

.243

Now setting

A′ :=
(
A ∪ E(Ci,0 ∪ Ci,1, Ci,0 ∪ Ci,1 ∪ Ci,2)

)
\
(
(Ci,0 ∪ Ci,1)× (Ci,j−1 ∪ Ci,j ∪ Ci,j+1)

)
gives an optimal solution where C doesn’t contain Ci,0 ∪ Ci,1 and whose value is as good as244

A, a contradiction. J245

For any j, let Sj =
⋃

i∈[r] Ci,j . In other word, Sj is the set of vertices of C at distance j from246

S. The main implication of Lemma 6 is that, if Sj is not empty for j ≥ 4, then A contains all247

the pair Si × (S0 ∪ S1). Indeed, it shows that vertices in Sj and S0 ∪ S1 belongs to different248

parts and thus must be adjacent in G∆A. However, just by considering the distance to S in249

G, these vertices cannot be adjacent in G, and thus these pairs must be in A. This allows us250

to prove the following lemma.251

I Lemma 7. For any j ≥ 5, Sj is empty.252

Proof. Suppose S4 and S5 are non empty. By Lemma 6, we know that the vertices in S5 and253

S0∪S1 belong to different parts of the complete multipartite component. This implies that A254

contains S5× (S0∪S1). However, removing these pairs from A, as well as all pairs containing255

a vertex of C at distance more than 6 from S, and adding EG(S5, S4) also yields a solution256

by disconnecting S5 from the multipartite component. By optimality of A, this implies that257

EG(S5, S4) ≥ |S5||S0∪S1| and thus |S4| ≥ |S1∪S0|. Now again by Lemma 6, we have that A258

contains S4× (S0 ∪S1). However, |S4| ≥ |S1 ∪S0| so it means that |S1 ∪S0|2 ≤ |S4||S1 ∪S0|.259

Let A′ be the solution obtained from A by disconnecting S1 from S0 and removing all pairs260

adjacent to the sets Sj for j ≥ 2. Because |S1 ∪ S0|2 ≤ |S4||S1 ∪ S0|, we have that |A′| ≤ |A|261

and the multipartite component containing S0 is strictly smaller in G∆A′ than in G∆A262

while the other remain exactly the same, which is a contradiction. J263

CVIT 2016



23:8 A Polynomial Kernel for Paw-Free Editing

6 Triangle-Free Components264

Before proving our main result let us prove the following lemma, which will be useful in265

bounding the number of vertices outside of S.266

I Lemma 8. If x ∈ G has at least 4k + 6 neighbors belonging to triangle-free components of267

G− S, then there is no solution A such that x belongs to a complete multipartite component268

of G∆A.269

Proof. Let T denote the set of neighbors of x belonging to triangle-free components of G−S.270

Suppose x belongs to a complete multipartite component C of G∆A. First note that at least271

2k + 6 of the vertices of T will not be adjacent to any edge of A, which means that their272

neighborhood in G and G∆A are the same and they belong to C in G∆A. Now because the273

vertices of T belong to triangle-free components, it means that these 2k + 6 vertices can only274

belong to two different parts of this multipartite component. In particular, at least k + 3 of275

those belong to the same part and thus have the exact same neighborhood in G∆A and thus276

in G. This means that Reduction Rule 1 can be applied, which is a contradiction. J277

I Lemma 9. Suppose (G, k) is a yes-instance. Then there exists a set S′ of at most (4k+6)4k278

vertices such that if x 6∈ S′ belongs to a triangle-free component of G − S, then x doesn’t279

belong to any triangle in G using only one vertex of S. Moreover, there is a polynomial time280

algorithm that either find this set or concludes that (G, k) is a no-instance.281

Proof. Let x be a vertex belonging to a triangle-free component C of G− S. Suppose that282

x belongs to a triangle using only one vertex s of S and another vertex y of C. Note first283

that C is the only component of G− S adjacent to s or we would have a paw using edges284

not in S. Suppose now that t ∈ C is adjacent to x. Then t must be adjacent to either y or s285

or it would yield a paw using no edge in S. Thus, since C is triangle free, t must be adjacent286

to s. The same argument would show that any vertex adjacent to t in C must be adjacent287

to s and thus the whole component C is adjacent to x.288

LetM be a maximal matching in C. IfM consists of more than k edges, then it means289

that any solution A to the instance (G, k) puts s in a complete multipartite component. In290

particular if |C| ≥ 4k + 6, as C ⊆ N(x) and |A| ≥ k, we have that 2k + 6 of the vertices of C291

are not adjacent to any edge of A and belong to the same complete multipartite component as292

s. Moreover, these vertices can only belong to two different parts of this complete multipartite293

component (or we would have a triangle in C), and thus k + 3 of them belong to the same294

part. However, since their neighborhood in G and G∆A are identical, it means we could295

have applied Reduction Rule 1, so (G, k) is a no-instance. So let C ′ be defined as the vertices296

ofM if |M| ≤ k and the full set C ifM if |M| ≥ k. Note that in the case where |M| ≤ k,297

the vertices in C \ C ′ only have neighbors in S ∪ C ′.298

Let S′ be the union of the C ′ for every such component C where there exists a vertex299

which belong to a triangle using one vertex from s ∈ S. Note that the number of those300

components C is bounded by |S|. Indeed, s cannot be adjacent to any other component301

of G− S or we have a paw using no edge from S which is not possible. This implies that302

|S′| ≤ |S|(4k + 6). J303

7 Main Result304

We are now ready to prove our main theorem.305

I Theorem 10. The paw-free editing problem has a kernel on O
(
k6) vertices306



E. Eiben, W. Lochet, and S. Saurabh 23:9

Proof. Let (G, k) be an instance of paw-free editing. The algorithm first apply Reduction307

Rule 1 repetitively. Once Reduction Rule 1 cannot be applied anymore, the algorithm308

computes H a maximal packing of edge-disjoint paws. If H consists of more than k paws,309

answer no. If this is not the case, let S be the set of vertices belonging to a paw of H.310

|S| ≤ 4k. Then the algorithm apply Reduction Rules 3 and 4 until either k < 0, in which311

case it answers no, or they cannot be applied anymore.312

Because H is maximal, Theorem 1 implies that the components G− S are either triangle-313

free or complete multipartite. Let C be a complete multipartite component. If |C| ≥314

(3k + 3)(3k + 5), then Lemma 4 implies that the algorithm can apply Reduction Rule 2 or315

answer no. Moreover Lemma 5 implies that the number of complete multipartite components316

adjacent to S is bounded by |S|. Overall this implies that the number of vertices contained in317

complete multipartite components of G− S adjacent to S is bounded by 4k(3k + 3)(3k + 5),318

or it is possible to apply Reduction Rule 2.319

By applying Lemma 9, we either find out that (G, k) is a no-instance or find a set S′ of320

at most (4k + 6)4k vertices such that if x 6∈ S′ belongs to a triangle-free component of G−S,321

then x doesn’t belong to any triangle in G using only one vertex of S.322

Because Reduction Rule 3 cannot be applied anymore, it means that for every pair of323

adjacent vertices s1, s2 in S, the number of vertices in triangle-free components adjacent to324

both s1 and s2 is bounded by 4k + 6. This means that, if S′′ denotes the set of vertices in a325

triangle-free component forming a triangle with 2 vertices of S, then |S′′| ≤ |S|2(4k + 6).326

Then we construct recursively sets S0, S1, . . . S6 such that Si is a subset of vertices of G327

at distance i from S as follows: First we set S0 := S and then, for every i ∈ {0, . . . , 5}, we328

define Si+1 by picking, for every vertex x of Si, 4k + 6 neighbors of x at distance i + 1 from329

S in G and belonging to a triangle-free component of G− S. Note that |
⋃

Si| = O
(
k6).330

Let G′ be the graph induced on G by S, S′, S′′ the Si and all the complete multipartite331

components of G − S adjancent to S. Note that, by construction of S′ and S′′, there is332

no triangle in G using a vertex which is not in G′. We claim that (G′, k) has a solution if333

and only if (G, k) has a solution. As G′ is a subgraph of G, it is clear that if (G, k) has a334

solution, then so does (G′, k). Suppose now that (G′, k) has a solution A, but (G, k) does335

not have a solution. In particular, it implies that G∆A is not paw-free. Because of Lemma 7,336

we can assume that no complete multipartite component of G′∆A has a vertex at distance337

5 from S and that A is minimal. Let x1, x2, x3, x4 form a paw in G∆A, with x1, x2, x3338

being the triangle. One of the xi must be a vertex which has not been marked during the339

construction of the Si. Moreover, since G′ contains all the triangles of G, it means that340

x1, x2 and x3 belong to G′ and x4 doesn’t. It also means that x1, x2 and x3 belong to a341

complete multipartite component of G′∆A and x4 is adjacent to one of these vertices, say x1.342

Since x1 is at distance less than 5 from S, it means that during the marking process x4 was343

not marked for x1. But this means that x1 has more than 4k + 6 neighbors in triangle-free344

components of G′ − S. However, Lemma 8 implies that x1 cannot belong to a complete345

multipartite component of G′∆A, which is a contradiction. J346

8 Better Bounds for Deletion and Addition347

In this section, we provide better kernels for paw-deletion and paw-addition. Let us start348

with the deletion problem, where the proof is quite similar to the one of Theorem 10, with349

the difference that we only keep vertices of the triangle-free components which are at distance350

one from S.351

I Theorem 11. The paw-free deletion problem admits a kernel of size O
(
k3).352

CVIT 2016



23:10 A Polynomial Kernel for Paw-Free Editing

Proof. Let (G, k) be an instance of paw-free deletion. First note that Reduction Rules 1–4353

are still safe in this context, and Lemma 8 still applies. Therefore the algorithm applies354

Reduction Rule 1 until it cannot be applied anymore. It then computes H a maximal packing355

of edge-disjoint paws. If H consists of more than k paws, answer no. If this is not the case,356

let S be the set of vertices belonging to a paw of H. |S| ≤ 4k. Then the algorithm apply357

Reduction Rules 3 and 4 until either k < 0, in which case it answers no, or they cannot be358

applied anymore.359

Again, by possibly applying Reduction Rule 2, we can assume that the set of vertices in360

all the multipartite components of G− S adjacent to S is smaller than 4k(3k + 3)(3k + 5).361

By applying Lemma 9, we either find out that (G, k) is a no-instance or find a set S′ of at362

most (4k + 6)4k vertices such that if x 6∈ S′ belongs to a triangle-free component of G− S,363

then x doesn’t belong to any triangle in G using only one vertex of S.364

Because Reduction Rule 3 cannot be applied anymore, it means that for every pair of365

adjacent vertices s1, s2 in S, the number of vertices in triangle-free components adjacent to366

both s1 and s2 is bounded by 4k + 6. This means that, if S′′ denote the set of vertices in a367

triangle-free component, forming a triangle with 2 vertices of S, then |S′′| ≤ |S|2(4k + 6).368

Note also that Lemma 8 still applies, and let S1 be the set obtained by picking for every369

vertex s in S, 4k + 6 neighbors in triangle-free components of G− S.370

Let G′ be the graph induced on G by S, S′, S′′, S1, as well as all the vertices on complete371

multipartite components of G − S. We want to show that (G, k) has a solution if and372

only if (G′, k) has a solution. Let A be a solution of (G′, k) and suppose G∆A has a paw373

x1, x2, x3, x4, with x1, x2, x3 being a triangle and x4 being adjacent to x3. Because of the374

choice of the sets S′ and S′′, all the triangle of G are contained in G′. Note also that, since375

the solution can only remove edges, x1, x2, x3 is a triangle in G. This implies that x3 ∈ S376

and x4 was not picked for the 4k + 6 neighbors of x3. In particular, this means that x3 has377

4k + 6 neighbors which belong to a triangle-free component of G′ − S in G′ and thus by378

Lemma 8, x3 cannot belong to a complete multipartite component of G′∆A. However, since379

x1, x2 and x3 form a triangle in G′∆A, we reach a contradiction. J380

I Theorem 12. The paw-free addition problem admits a kernel of size O
(
k3).381

Proof. Again, Reduction Rules 1–4 are still safe in this context, with the difference for382

Rules 3 and 4 that, instead of removing edges and decreasing k, we can directly conclude383

that (G, k) is a no-instance. Note also that a paw-free connected component can safely be384

removed from the graph.385

So the algorithm start by removing all the paw-free components of G and applying386

Reduction Rule 1 until it cannot be applied anymore. It then computes H a maximal packing387

of edge-disjoint paws. If H consists of more than k paws, answer no. If this is not the case,388

let S be the set of vertices belonging to a paw of H. |S| ≤ 4k. From now on we can assume389

that Rules 3 and 4 cannot be applied.390

Again, by possibly applying Reduction Rule 2, we can assume that the set of vertices in391

all the multipartite components of G− S adjacent to S is smaller than 4k(3k + 3)(3k + 5).392

Consider a connected component C1 of G. This component cannot be paw-free, or the393

algorithm would have removed it from the graph. So let S1 = C1 ∩ S and R1 the vertices394

of C1 contained in triangle-free component of G − S. Because C1 is not triangle-free, it395

means that any solution A to (G, k) leaves C1 as a complete multipartite component. In396

particular, it implies that R1 is smaller than 4k + 6. Indeed, if R1 is bigger than 4k + 6,397

then 2k + 6 vertices will have the same neighborhood in G∆A as in G. Moreover, since398

R1 is triangle-free, it means that these vertices belong to at most 2 parts of the complete399



E. Eiben, W. Lochet, and S. Saurabh 23:11

multipartite component. This implies that at least k + 3 of these vertices belong to the400

same part and Rule 1 applies. Moreover, since G has at most k connected component which401

are not paw-free, it implies that the set of vertices contained in triangle-free components of402

G− S is smaller than (4k + 6)k.403

Overall, it implies that our reduced instance has size at most 4k(3k + 3)(3k + 5) + (4k +404

6)k + 4k = O
(
k3), which ends the proof. J405

9 Conclusion406

In this paper we studied Paw-free-Edge Editing and gave a polynomial kernel of size407

O
(
k6). The only unresolved graphs H on 4 vertices, for which the kernelization complexity408

of H-free-Edge Editing problem remains open is claw. In fact, for this problem even409

the kernelization complexity of H-Edge Deletion and H-Edge Addition remain open.410

Settling the kernelization complexity might require using the power of structure theorem of411

claw free graphs. Thus, a natural start here could be looking at editing/deletion/addition412

to basic graphs, on which structure theorem of claw free graphs is built. We leave these as413

natural directions to pursue.414

References415

1 N. R. Aravind, R. B. Sandeep, and Naveen Sivadasan. Dichotomy results on the hardness416

of h-free edge modification problems. SIAM J. Discrete Math., 31(1):542–561, 2017. doi:417

10.1137/16M1055797.418

2 Hans L Bodlaender, Leizhen Cai, Jianer Chen, Michael R Fellows, Jan Arne Telle, and Dániel419

Marx. Open problems in parameterized and exact computation-iwpec 2006. UU-CS, 2006,420

2006.421

3 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary422

properties. Inf. Process. Lett., 58(4):171–176, 1996. doi:10.1016/0020-0190(96)00050-6.423

4 Leizhen Cai and Yufei Cai. Incompressibility of h-free edge modification problems. Algorithmica,424

71(3):731–757, 2015. doi:10.1007/s00453-014-9937-x.425

5 Yufei Cai. Polynomial kernelisation of H-free edge modification problems. Mphil thesis,426

Department of Computer Science and Engineering, The Chinese University of Hong Kong,427

Hong Kong SAR, China, 2012.428

6 Yixin Cao, Ashutosh Rai, R. B. Sandeep, and Junjie Ye. A polynomial kernel for diamond-free429

editing. In 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018,430

Helsinki, Finland, pages 10:1–10:13, 2018. doi:10.4230/LIPIcs.ESA.2018.10.431

7 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin432

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.433

8 R. Diestel. Graph Theory, 4th Edition. Springer, 2012.434

9 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.435

Texts in Computer Science. Springer, 2013.436

10 Ehab S. El-Mallah and Charles J. Colbourn. The complexity of some edge deletion problems.437

IEEE Transactions on Circuits and Systems, 35(3):354–362, 1988. doi:10.1109/31.1748.438

11 Paul Erdös and Richard Rado. Intersection theorems for systems of sets. Journal of the439

London Mathematical Society, 1(1):85–90, 1960.440

12 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical441

Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.442

13 Sylvain Guillemot, Frédéric Havet, Christophe Paul, and Anthony Perez. On the (non-443

)existence of polynomial kernels for P l -free edge modification problems. Algorithmica,444

65(4):900–926, 2013. doi:10.1007/s00453-012-9619-5.445

CVIT 2016

https://doi.org/10.1137/16M1055797
https://doi.org/10.1137/16M1055797
https://doi.org/10.1137/16M1055797
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1007/s00453-014-9937-x
https://doi.org/10.4230/LIPIcs.ESA.2018.10
https://doi.org/10.1109/31.1748
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/s00453-012-9619-5


23:12 A Polynomial Kernel for Paw-Free Editing

14 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.446

Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.447

15 Stefan Kratsch and Magnus Wahlström. Two edge modification problems without polynomial448

kernels. Discrete Optimization, 10(3):193–199, 2013. doi:10.1016/j.disopt.2013.02.001.449

16 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties450

is np-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)451

90060-4.452

17 Stephan Olariu. Paw-free graphs. Information Processing Letters, 28(1):53 – 54,453

1988. URL: http://www.sciencedirect.com/science/article/pii/0020019088901433,454

doi:https://doi.org/10.1016/0020-0190(88)90143-3.455

18 R. B. Sandeep and Naveen Sivadasan. Parameterized lower bound and improved kernel456

for diamond-free edge deletion. In 10th International Symposium on Parameterized and457

Exact Computation, IPEC 2015, September 16-18, 2015, Patras, Greece, pages 365–376, 2015.458

doi:10.4230/LIPIcs.IPEC.2015.365.459

19 Mihalis Yannakakis. Edge-deletion problems. SIAM J. Comput., 10(2):297–309, 1981. doi:460

10.1137/0210021.461

https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1016/j.disopt.2013.02.001
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
http://www.sciencedirect.com/science/article/pii/0020019088901433
https://doi.org/https://doi.org/10.1016/0020-0190(88)90143-3
https://doi.org/10.4230/LIPIcs.IPEC.2015.365
https://doi.org/10.1137/0210021
https://doi.org/10.1137/0210021
https://doi.org/10.1137/0210021

	Introduction
	Brief Overview of the Algorithm

	Preliminaries
	Reduction Rules
	Bounding the Complete Multipartite Components
	Bounding the Diameter of Relevant Vertices
	Triangle-Free Components
	Main Result
	Better Bounds for Deletion and Addition
	Conclusion

