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1 Introduction20

For a family of graph G, the general G-Graph Modification problem asks whether we can21

modify a graph G into a graph in G by performing at most k simple operations. Typical22

examples of simple operations well-studied in the literature include vertex deletion, edge23

deletion, edge addition, or combination of edge deletion and addition. We call these problems24

G-Vertex Deletion, G-Edge Deletion, G-Edge Addition, and G-Edge Editing,25

respectively. By a classical result by Lewis and Yannakakis [20], G-Vertex Deletion is26

NP-complete for all non-trivial hereditary graph classes. The situation is quite different for27

the edge modification problems. Earlier efforts for edge deletion problems [13, 23], though28

having produced fruitful concrete results, shed little light on a systematic answer, and it was29

noted that such a generalization is difficult to obtain.30

G-Graph Modification problems have been extensively investigated for graph classes G31

that can be characterized by a finite set of forbidden induced subgraphs. We say that a graph32

is H-free, if it does not contain any graph in H as induced subgraph. For this special case,33

the H-free Vertex Deletion is well understood. If H contains a graph on at least two34

vertices, then all of these problems are NP-complete, but admit cknO(1) algorithm [4], where c35

is the size of the largest graph in H (the algorithms with running time f(k)nO(1) are called36

fixed-parameter tractable (FPT) algorithms [7, 11]). On the other hand, the NP-hardness37

proof of Lewis and Yannakakis [20] excludes algorithms with running time 2o(k)nO(1) under38

Exponential Time Hypothesis (ETH) [18]. Finally, as observed by Flum and Grohe [15] a39

simple application of sunflower lemma [14] gives a kernel with O (kc) vertices, where c is again40

the size of the largest graph in H. A kernel is a polynomial time preprocessing algorithm41

which outputs an equivalent instance of the same problem such that the size of the reduced42

instance is bounded by some function f(k) that depends only on k. We call the function43

f(k) the size of the kernel. It is well-known that any problem that admits an FPT algorithm44

admits a kernel. Therefore, for problems with FPT algorithms one is interested in polynomial45

kernels, i.e., kernels where size is a polynomial function.46

For the edge modification problems, the situation is more complicated. While all of these47

problems also admit cknO(1) time algorithm, where c is the maximum number of edges in a48

graph in H [4], the P vs NP dichotomy is still not known. Only recently Aravind et al. [1]49

gave the dichotomy for the special case when H contains precisely one graph H [1]. From the50

kernelization point of view, the situation is also more difficult. The reason is that deleting or51

adding an edge to a graph can introduce a new copy of H and this might further propagate.52

Hence, we cannot use the sunflower lemma to reduce the size of the instance. Cai asked the53

question whether H-free Edge Deletion admits a polynomial kernel for all graphs H [3].54

Kratsch and Wahlström [19] showed that this is probably not the case and gave a graph H on55

7 vertices such that H-free Edge Deletion and H-free Edge Editing does not admit56

a polynomial kernel unless coNP ⊆ NP/poly. Consequently, it was shown that this is not an57

exception, but rather a rule [5, 16]. Indeed the result by Cai and Cai [5] shows that H-free58

Edge Deletion, H-free Edge Addition, and H-free-Edge Editing do not admit a59

polynomial kernel whenever H or its complement is a path or a cycle with at least 4 edges60

or a 3-connected graph with at least 2 edges missing. This suggests that actually the H-free61

modification problems with a polynomial kernels are rather rare and only for small graphs H.62

Very recently, Eiben, Lochet, and Saurabh [12] announced a polynomial kernel for the case63

when H is a paw, which leaves only one last graph on 4 vertices for which the kernelization of64

H-free edge modification problems remains open, namely K1,3 known also as the claw.65

The class of claw-free graphs is a very well studied class of graphs with some interesting66

algorithmic properties. The most notorious example is probably the algorithm of Sbihi [21]67

for computing the maximal independent set in polynomial time. It also has been extensively68
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studied from a structural point of view, and Chudnosky and Seymour proposed, after a series of69

papers, a complete characterization of claw-free graphs [6]. Because of such a characterization,70

it seems reasonable to believe that a polynomial kernel for Claw-free Edge Deletion71

exists. However, the characterization of Chudnosky and Seymour is quite complex, which72

makes it hard to use. For this reason, as noted by Cygan et al. [8], trying to show the existence73

of a polynomial kernel in the cases of sub-classes of claw-free graphs seems like a good first74

step to try to understand this problem. In this paper, we prove the result for the most famous75

such class, line graphs.76

I Theorem 1. Line-Graph Edge Deletion admits a kernel with O
(
k5) vertices.77

Overview of the Algorithm78

As the first step of the kernelization algorithm, we use the characterization of line graphs79

by forbidden induced subgraphs to find a set S of at most 6k vertices such that for every80

vertex v ∈ S, G − (S \ {v}) is a line graph. This is simply done by a greedy edge-disjoint81

packing of forbidden induced subgraphs. Having the set S, we use the algorithm by Degiorgi82

and Simon [9] to find a partition of edges of G − S into cliques such that each vertex is in83

precisely 2 cliques. Let C = {C1, . . . , Cq} be the cliques in the partition. Since G− (S \ {v})84

is also a line graph, it is rather simple consequence of Whitney’s isomorphism theorem that85

the neighborhood of v can be covered by constantly many cliques of C. Furthermore, we will86

show that if a clique C in C has more than k + 7 vertices then the optimal solution does not87

contain an edge in C. Hence, we can partition the cliques in C into two groups "large" and88

"small". Note that if the optimal solution contains an edge in some small clique C, then for89

this change to be necessary, it has to be propagated from S by modifying small cliques on90

some clique-path from S to C using only small cliques. We will therefore define the distance91

of a clique to S, without going into too many details in here, to be basically the length of a92

shortest clique-path from the clique to S using only small cliques. Since there are only O (|S|)93

cliques in immediate neighborhood of S and the number of cliques in the neighborhood of a94

small clique is bounded by its size, we obtain that there are at most O
(
kd
)
cliques at distance95

at most d. Our main contribution and most technical part of our proof is to show that we96

can remove the edges covered by cliques at distance at least 5 from G. This is covered by97

Section 4. Afterwards we end up with an instance with all cliques in C at distance at least98

5 from S being singletons. As discussed above there are only O
(
k4) cliques at distance at99

most 4 and because large cliques stay intact in any optimal solution, it suffices to keep k + 7100

vertices in each large clique, which leads to the desired kernel of size O
(
k5).101

2 Preliminaries102

We assume familiarity with the basic notations and terminologies in graph theory. We refer103

the reader to the standard book by Diestel [10] for more information. Given a graph G and104

a set of edges F ⊆ E(G), we denote by G− F the graph whose set of vertices is V (G) and105

set of edges is the set E(G) \ F . Given two vertices u, v ∈ V (G), we let the distance between106

u and v in G, denoted distG(u, v)), be the number of edges on a shortest path from u to v.107

Furthermore, for S ⊆ V (G) and u ∈ V (G) we let distG(u, S) = minv∈V (G) distG(u, v)). We108

omit the subscript G, if the graph is clear from the context.109

Parameterized Algorithms and Kernelization. For a detailed illustration of the following110

facts the reader is referred to [7, 11]. A parameterized problem is a language Π ⊆ Σ∗ × N,111

where Σ is a finite alphabet; the second component k of instances (I, k) ∈ Σ∗ × N is called112
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the parameter. A parameterized problem Π is fixed-parameter tractable if it admits a fixed-113

parameter algorithm, which decides instances (I, k) of Π in time f(k) · |I|O(1) for some114

computable function f .115

A kernelization for a parameterized problem Π is a polynomial-time algorithm that given116

any instance (I, k) returns an instance (I ′, k′) such that (I, k) ∈ Π if and only if (I ′, k′) ∈ Π117

and such that |I ′| + k′ ≤ f(k) for some computable function f . The function f is called118

the size of the kernelization, and we have a polynomial kernelization if f(k) is polynomially119

bounded in k. It is known that a parameterized problem is fixed-parameter tractable if and120

only if it is decidable and has a kernelization. However, the kernels implied by this fact are121

usually of superpolynomial size.122

A reduction rule is an algorithm that takes as input an instance (I, k) of a parameterized123

problem Π and outputs an instance (I ′, k′) of the same problem. We say that the reduction124

rule is safe if (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance. In order to describe125

our kernelization algorithm, we present a series of reduction rules.126

Line graphs. Given a graph G, its line graph L(G) is a graph such that each vertex of L(G)127

represents an edge of G and two vertices of L(G) are adjacent if and only if their corresponding128

edges share a common endpoint (are incident) in G. It is well known that if the line graphs129

of two connected graphs G1 and G2 are isomorphic then either G1 and G2 are K3 and K1,3,130

respectively, or G1 and G2 are isomorphic as well (Whitney’s isomorphism theorem [22], see131

also Theorem 8.3 in [17]). Formally, we then study the following parameterized problem:132

Line-Graph-Edge Deletion
Input: A graph G = (V, E) and k ∈ N.
Parameter: k.
Question: Is there a set of edges F ⊆ E(G) such that G− F is a line graph and |F | ≤ k.

133

We call a set of edges F ⊆ V (G) such that G− F is a line graph a solution for G. A solution134

F is optimal, if there does not exists a solution F ′ such that |F ′| < |F |. To obtain our kernel,135

we will make use of several equivalent characterizations of line graphs.136

I Theorem 2 (see, e.g., Theorem 8.4 in [17]). The following statements are equivalent:137

1. G is a line graph.138

2. The edges of G can be partitioned into complete subgraphs is such a way that no point lies139

in more than two of the subgraphs.140

3. G does not have K1,3 as an induced subgraph, and if two odd triangles (triangles with the141

property that there exists another vertex adjacent to an odd number of triangle vertices)142

share a common edge, then the subgraph induced by their points is K4.143

4. None of nine graphs of Figure 1 is an induced subgraph of G.144

3 Structure of Line Graphs145

To obtain our kernel, we heavily rely on different characterizations of line graphs given by146

Theorem 2. The two main characterizations used throughout the paper are given in points 2.147

and 4. To ease the presentation of our techniques, we will define a notion of a clique partition148

witness for G, whose existence is implied by the point 2. of Theorem 2. Let G be a line graph,149

a clique partition witness for G is a set C = {C1, . . . , Cq} be such that:150

Ci ⊆ V (G) for all i ∈ [q],151

G[Ci] is a complete graph for all i ∈ [q], that is every Ci is a clique in G,152

|Ci ∩ Cj | ≤ 1 for all i 6= j ∈ [q],153

every v ∈ V (G) is in exactly two sets in C, and154
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Figure 1 The nine minimal non-line graphs, from characterization of line graphs by forbidden
induced subgraphs of Beineke [2]

for every edge uv ∈ E(G) there exists exactly one set Ci ∈ C such that {u, v} ⊆ Ci.155

Note that by Theorem 2, G is a line graph if and only if there exists a clique partition156

witness for G. The following three observations follow directly from the definition of clique157

partition witness and will be useful throughout the paper.158

I Observation 1. If C is clique partition witness for G then every clique in C is either a159

singleton, K2, or a maximal clique in G.160

I Observation 2. If C is clique partition witness for G, then every maximal clique in G of161

size at least 4 is in C.162

I Observation 3. If C is clique partition witness for G, then any clique of G which is not a163

sub-clique of some element of C is a triangle.164

We would like to point out that given a line graph G one can find a clique partition165

witness for G for example by using an algorithm of Degiorgi and Simon [9] for recognition of166

line graphs in polynomial time by. We sketch the main procedure of their algorithm in the167

appendix together with necessary modifications to actually output a clique partition witness168

instead of the underlying graph H such that G = L(H), for completeness.169

I Lemma 3. Given a graph G, there is an algorithm that in time O (|E(G)|+ |V (G)|) decides170

whether G is a line graph and if so, constructs a clique partition witness for G.171

3.1 Level Structure of Instances172

For the rest of the paper, let G be the input graph and let S be a set of at most 6k vertices173

such that for every v ∈ S the graph G− (S \ {v}) is a line graph. We let C = {C1, . . . , Cq}174

be a clique partition witness for G− S. The goal of this subsection is to split the cliques in175

C to levels such that 1.) each level contains only bounded number of cliques (that are not176

singletons) and 2.) if we do not remove any edge at level i, then we do not need to remove177

any edge at level j > i. We will later show that we do not need to remove any edges in cliques178

in level 5. The following lemma is useful to define/bound the number of cliques at the first179

level, i.e., cliques that interact with S.180

I Lemma 4. For every vertex v ∈ S there are at most two cliques C1, C2 ∈ C such that v is181

adjacent to all vertices in C1 ∪ C2 and to at most 6 vertices in V (G) \ (S ∪ C1 ∪ C2).182

Proof. Let C′ be clique partition witness for G− (S ∪ {v}). By definition, there are at most183

two cliques C ′1 and C ′2 in C′ that contains v. If |C ′i| ≥ 5, i ∈ {1, 2}, then by Observation 2,184

C ′i \ {v} is a clique in C. Else |C ′i \ v| ≤ 3 and C ′i contributes to at most 3 neighbors of v in185

G− S. J186
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The following lemma shows that cliques of size at least k + 7 can serve as kind of separators187

that will never be changed by a solution of size at most k. Hence, we can remove all cliques188

separated from S by large cliques. Moreover, it allows us to define the (i + 1)-st level by only189

considering the cliques of size at most k + 6 at level i.190

I Lemma 5. Let C ∈ C such that |C| ≥ k + 7 and let A ⊂ E(G) be an optimal solution for191

G. Then A ∩ E(G[C]) = ∅. Moreover, the clique partition witness C′ for G− A contains a192

clique C ′ such that C ′ \ S′ = C, where S′ ⊆ S is the set of vertices in S that are adjacent to193

all vertices in C.194

Proof. Let {u, v} ∈ A such that {u, v} ⊆ C. Clearly there are at most k − 1 vertices w in195

C such that either {u, w} ∈ A or {w, v} ∈ A. Let’s x ∈ C be such that xv, xu are edges in196

G − A. Similarly, there are at most k − 1 non-edges to u, v, x in G − A, so let y ∈ C be a197

vertex such that yu, yv, yx are edges in G − A. Repeating the same argument once again,198

there is z ∈ C such that zu, zv, zx, zy are edges in G−A. However, the subgraph of G−A199

induced on u, v, x, y, z is K5 minus an edge, which is one of the forbidden induced subgraphs200

in the characterization of line graphs.201

The moreover part follows from the following argument. Since no two cliques in C′ share202

more than 1 vertex and every vertex is in at most 2 cliques, the only way to cover all the203

edges of C, for |C| ≥ 4 in C′ is by a single clique C ′. It remains to show that no vertex in204

V (G) \ (S ∪ C) is in C ′. Every vertex in V (G) \ S is in two cliques C1, C2 in C that cover205

all its incident edges in G − S. If none of these two cliques is C, then C intersect each of206

these two cliques in at most 1 vertex. It follows that, because |C| ≥ 3, there is not vertex in207

V (G) \ (S ∪ C) adjacent to all vertices of C. J208

Let us now partition the cliques in C into two parts C<k+7 and C≥k+7 such that C<k+7209

contains precisely all the cliques in C with less than k + 7 vertices and C≥k+7 contains the210

remaining cliques. Intuitively, the deletion of an edge cannot propagate through edges covered211

by a clique in C≥k+7.212

We are now ready to define the level structure on the cliques in C. We divide the cliques213

in C into levels L1,L2, . . . ,Lp, for some p ∈ N, that intuitively reflects on how far from S the214

clique C ∈ C is if we consider a shortest path using only cliques in C<k+7. We will define the215

levels recursively as follows. By Lemma 4 for every vertex v ∈ S there exists at most two216

cliques C1, C2 ∈ C such that v is adjacent to all vertices in C1 ∪ C2 and to at most 6 vertices217

in V (G) \ (S ∪ C1 ∪ C2). Now let N v denote the set of cliques that contains C1, C2 and all218

the cliques that contain at least one of the neighbors of v in V (G) \ (S ∪ C1 ∪ C2). Note that219

|N v| ≤ 14. We let L1 be precisely the set
⋃

v∈S N v. For i > 1, we then let Li be the set220

of cliques C in C \ (
⋃

j∈{1..i−1} Lj) such that there is a clique C ′ in Li−1 ∩ C<k+7 such that221

C ∩ C ′ is not empty.222

I Observation 4. Let C ∈ C and w a vertex in C. If w has a neighbor in S, then either223

C ∈ L1 ∪ L2 or w is in a clique in C≥k+7.224

Proof. Let v ∈ S be a neighbor of w. Then N v ⊆ L1 contains a clique C ′ with w ∈ C ′.225

Clearly C ′ intersects C in w. Hence either C ′ ∈ C≥k+7 or by the definition of L2 the clique C226

is in L1 ∪ L2. J227

Let p ∈ N be such that Lp 6= ∅ and Lp+1 = ∅. While the following Reduction Rule is not228

completely necessary and would be subsumed by Reduction Rule 2, we include it to showcase229

some of the ideas needed for the proof in a simplified setting.230

I Reduction Rule 1. Remove all vertices in V (G) that are not in a clique in
⋃

i∈[p] Li.231
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Proof of safeness. Let H be the resulting graph and let CH be a set of cliques of H obtained232

from C, by taking all cliques in
⋃

i∈[p] Li and for every clique in C ∈ (C \
⋃

i∈[q] Li), CH contains233

C ∩ V (H), if it is nonempty. Since H is an induced subgraph of G and line graphs can be234

characterized by a set for forbidden induced subgraphs, it follows that for every A ∈ E(G),235

if G − A is a line graphs, then H − A is a line graph. It remains to show that if there is a236

set of edges A ∈ E(H) such that |A| ≤ k and H − A is a line graph, then G − A is also a237

line graph. Let A be such a set of edges of minimum size and let CA be a clique partition238

witness for H −A. It suffices to show that for every clique in C ∈ (CH \
⋃

i∈[p] Li), it holds239

that C ∈ CA. If this is the case, we get a clique partition witness for G−A by replacing the240

cliques of CH \
⋃

i∈[p] Li in CA by C \
⋃

i∈[p] Li.241

Now, C ∈ (CH \
⋃

i∈[p] Li) means that all cliques intersecting C are in C≥k+7. Moreover,242

because all vertices in H are in some clique on some level, by Lemma 5, for each clique C1 ∈ CH243

that intersect C there is a clique in C ′1 ∈ CA that is the union of C1 and some vertices in S.244

Hence, all vertices in C are already in at least one clique in CA \ C and all the edges incident245

to exactly one vertex in C are already covered by these cliques. And hence every clique that246

contains a vertex in C and intersects every other clique in CA in at most one vertex has to be a247

subset of C. Moreover, the cliques in CA that are subsets of C have to be vertex disjoint, since248

every vertex is in at most 2 cliques in CA. Hence, if C is not in CA, then some of the edges249

in C have to be in A, but replacing all the subsets of C in CA by C gives a clique partition250

witness for H −A′ for some A′ ( A which contradicts the fact that A is of minimum size. J251

We will also say that C ∈ C is at L-distance d from S, denoted by distL(C), if C is in Ld.252

We note that C still contains some cliques that are not in any of Li’s. We will let distL(C) =∞253

for such a clique C. We can now upper bound the number of cliques at L-distance d from S.254

I Lemma 6. There are at most 14|S|(k + 6)d−1 cliques in C at level d, i.e., in Ld.255

Proof. By the definition of L1, we have that L1 contains at most 14|S| cliques. Now by the256

definition of Ld we know that for any d ≥ 2 a clique is in Ld if and only if it shares a vertex257

with a clique in C<k+7 in Ld−1. Since no three cliques in C can share a vertex the number of258

cliques in Ld is precisely the number of vertices in the cliques from C<k+7 in Ld−1 and the259

lemma follows by a simple induction on d. J260

The remainder of the algorithm consists of two steps. First, in Section 4, we show that we261

can remove all edges from cliques that are at L-distance at least 5 from S. Afterwards, due to262

Lemma 6, we are left with only O
(
k4) non-singleton cliques in C. To finish the algorithm in263

Section 5, for each clique C ∈ C that is not a singleton, we mark arbitrary k + 7 vertices in C264

and remove all unmarked vertices from G. It is then rather straightforward consequence of265

Lemma 5 that this rule is safe and we get an equivalent instance with O
(
k5) vertices.266

4 Bounding the Distance from S267

The purpose of this section is to show that it is only necessary to keep the cliques in C that268

are at L-distance at most 4 from S (and adding a singleton for vertices covered by exactly one269

clique at L-distance at most 4). To do so, we need to show that there is always a solution that270

does not change the cliques at L-distance 5 at all. To do so, we first need to understand the271

interaction of cliques at L-distance 4 from S with the solution. The first step will be to show272

that there is an optimal solution A with clique partition witness CA such that all cliques in CA273

that share an edge with a clique in C at L-distance at least 4 from S are actually subcliques274

of a clique in C (when restricted to G− S). It is a simple consequence of Lemma 5 that this is275

true for any clique that intersect a clique in C≥k+7 in an edge. Hence, we can only care about276

cliques in CA that intersect a clique C in C<k+7 in an edge. By Observation 4, no vertex in C277
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has a neighbor in S. It then follows by Observation 3 that any clique in CA that intersects C278

in an edge and is not a subclique of a clique in C is indeed a triangle. This leads us to the279

following definition.280

I Definition 7 (bad triangle). Let A ⊆ E(G) be such that G− A is a line graph and let CA281

be a clique partition witness of G − A. A triangle xyz ∈ CA is said to be bad if it is not a282

sub-clique of a clique in C, and one of the edges of the triangle, say xy, is an edge contained283

in a clique of L-distance at least 4 from S.284

I Lemma 8. There exists an optimal solution without any bad triangle.285

Proof. Let A be an optimal solution and CA the clique partition witness of G−A. Suppose286

xyz is a bad triangle and let C1, C2 and C3 be the elements of C containing the edges xy, yz287

and zx respectively. See also Figure 2 for an illustration. Since xyz is a bad triangle, no288

clique in CA is a superset of Ci, i ∈ {1, 2, 3} and it is a simple consequence of Lemma 5289

that Ci ∈ C<k+7. By definition of bad triangle, at least one of C1, C2, and C3 is at L-290

distance 4 from S and hence all of these cliques are at L-distance at least 3 from S. Let291

X (resp. Y , Z) denote the other clique of CA containing x (reps. y, z). Let us define292

X1 = X ∩ C1, X3 = X ∩ C3, Y1 = Y ∩ C1, Y2 = Y ∩ C2, Z3 = Z ∩ C3 and Z2 = Z ∩ C2.293

Let C ′1 = X1 ∪ Y1, C ′2 = Y2 ∪ Z2 and C ′3 = Z3 ∪X3. Note that C ′i is a sub-clique of Ci for294

i ∈ [3]. Now for every i ∈ [3] we will update C ′i as follows. As long as there exists an edge e in295

C ′i such that e belongs to Ki ∈ CA, Ki is a sub-clique of Ci and Ki 6⊆ C ′i, we set C ′i := C ′i ∪Ki296

(see also Figure 2b). When this process stops, C ′i corresponds to the union of a set of elements297

of CA : Ki
1, . . . , Ki

li
which are sub-clique of Ci, and C ′i. Moreover, for any edge e of C ′i which298

is strictly contained in another clique of CA (meaning this clique is not e), then this clique has299

to be a triangle by Observation 3, as the clique of C containing e is Ci. Let ei
1, . . . , ei

si
denote300

the set of such edges and let Ci
1, . . . , Ci

si
be the triangles of CA containing these edges. Note301

that |A ∩ C ′1| ≥ s1, as for any edge e1
j , either x or y has to be non adjacent to each extremity302

in G− A or the edge would be in two cliques of CA (the same statement is also correct for303

|A ∩ C ′2| and |A ∩ C ′3| ). Let A′ be the set obtained from A by304

Removing all the edges of A ∩ C ′1, A ∩ C ′2 and A ∩ C ′3.305

Adding one of the two edges of Ci
j different from ei

j for every i ∈ [3] and j ∈ [si] (see306

Figure 2c illustrating the replacement of Cj
i in CA by its proper subclique in CA′ implied307

by this addition of an edge in A′.).308

B Claim 9. A′ is a set of edges not larger than A and such that G−A′ is a line graph with309

fewer bad triangles than G−A.310

Proof. The fact that |A′| ≤ |A| follows from the fact that |A ∩ C ′i| ≥ si for all i ∈ [3]. To see311

that G−A′ is a line graph, let us show that CA′ defined as follows is a clique partition witness312

for G−A′. Let CA′ be the set defined from CA by313

Removing CA, X, Y , Z, every Ci
j for i ∈ [3], j ∈ [si], every Ki

j for every i ∈ [3] and j ∈ [li]314

and every edge which are contained in one of the C ′i.315

Adding C ′i for i ∈ [3] and for every i ∈ [3] and j ∈ [si] the edge of Ci
j which has not been316

removed from A, as well as singletons for vertices belonging to only one clique.317

First it is clear that any set added to C′A is a clique as A′ does not contain any edge in318

A ∩ C ′1, A ∩ C ′2 and A ∩ C ′3 and these sets are cliques of G.319

Now take B and C two cliques of C′A. If B and C belong to CA, then clearly their320

intersection has size at most 1. If one belongs to CA and the other is the remaining edge of Ci
j321

for i ∈ [3] and j ∈ [si], then it is also clear as it is true for Ci
j . For i, j ∈ [3]2, C ′i and C ′j also322

intersect on one vertex, because Ci and Cj do and moreover, the cliques of CA intersecting C ′i323
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C1

C2C3

x y

z

X Y

Z

(a) A bad triangle xyz in CA.
C1, C2, C3 are three cliques in
C containing xy, yz, and xz re-
spectively. X, Y, Z ∈ CA are the
cliques containing x, y, z other
than xyz.

C1

C2C3

x y

z

X Y

Z

C ′
1

(b) C′
1 is the inclusion minimal

clique such that (X ∪ Y )∩C1 ⊆
C′

1 ⊆ C1 and for all K ∈ CA if
K ⊆ C1 and |K ∩ C′

1| ≥ 2, then
K ⊆ C′

1. C′
2 and C′

3 are defined
analogously.

C1

x y

C1
1

e11

(c) C1
1 intersects C′

1 in an edge e1
1.

C1
1 is replaced by an edge other than

e1
1. This forces to include one edge
in C1

1 to a solution A′. However,
this can be seen as replacing an edge
between {x, y} and endpoints of e1

1
that is in A.

Figure 2 The treatment of bad triangles. Let A ⊆ E(G) be an optimal solution, CA a clique
partition witness for A. A bad triangle xyz together with cliques X, Y , Z, as defined in Subfigure 2a
are replaced by cliques C′

1, C′
2, and C′

3 defined in Subfigure 2b. Subfigure 2c show the treatment of
cliques in CA that intersect C′

i in an edge. By definition of C′
i, such clique is not a subclique of Ci

and hence a triangle.

on two vertices are exactly the Ci
j , so if B = C ′i and A ∈ CA, the intersection has also size at324

most 1, and we covered all the cases for |C ∩B|.325

Now for every vertex x ∈ V (G), if x does not belong to C ′1, C ′2 and C ′3, then it belongs326

to the same cliques as in CA (where the Ci
j have been reduced to an edge and a singleton).327

For the vertices of C ′1, C ′2 and C ′3 different from x, y, z, we replaced one sub-clique of Ci by328

another. Finally x belongs to C ′1 and C ′3, y to C ′1 and C ′2 and z to C ′2 and C ′3.329

Suppose uv is an edge of E(G−A′). If uv belongs to one of the C ′i, then by definition of330

the Ci
j and because we removed all these triangles, uv only belongs to one clique. For the331

other edges of E(G−A′), the fact that uv belongs to exactly one clique of C′A follows from the332

fact that A′ differs on those edges from A only because we added some edges of the Ci
j , and333

CA differs on these vertices only because we changed Ci
j into the remaining edge outside C ′i.334

Overall CA′ is indeed a clique partition for G−A′. Moreover, to obtain it, we removed at335

least one bad triangle from CA (CA) without adding one. This ends the proof of the claim. J336

Finally, we can repeat the process until CA′ is without any bad triangles, which ends the proof337

of the lemma. J338

Before we show that indeed all cliques at L-distance at least 5 from S are intact in some339

optimal solution, we show another auxiliary lemma that is rather simple consequence of340

Lemma 8, namely that there is a clique partition witness for some optimal solution A such341

that no two cliques CA that intersect the same clique C ∈ C at L-distance at least 4 from S in342

an edge can intersect. This is important later to show that indeed no vertex in a clique C ∈ C343

at L-distance 5 from S will be in two cliques in CA that are not subsets of C.344

I Lemma 10. There exists an optimal solution A ⊆ E(G) without any bad triangles and345

clique partition witness CA for G−A such that for every C ∈ C of L-distance at least 4 and346

every w ∈ C, if Cw
1 and Cw

2 are the two cliques in CA containing w, then either Cw
1 ∩C = {w}347

or Cw
1 ∩ C = {w}.348

Proof. Let A ⊆ E(G) be an optimal solution for G without any bad triangles and clique349

partition witness CA for G − A minimizing the number of pairs (C, w) for which C is at350
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L-distance at least 4, w ∈ C and the two cliques, denoted Cw
1 and Cw

2 , in CA containing w351

intersect C in two vertices. Furthermore, it follows from Lemma 5 that C ∈ C<k+7, as the352

clique containing C as a subclique in CA would intersect Cw
1 in two vertices. Since there are353

no bad triangles and C is at L-distance at least 4, it follows that Cw
1 ⊆ C and Cw

2 ⊆ C and in354

particular Cw
1 ∪ Cw

2 is a clique in G. Indeed, our goal is to replace Cw
1 and Cw

2 by a clique D355

such that Cw
1 ∪Cw

2 ⊆ D ⊆ C. We start by setting D = Cw
1 ∪Cw

2 . We will also keep a track of356

cliques we will remove from CA. This set will be D and initialize it as D = {C1, C2}.357

Similarly to the proof of Lemma 8, the only reason why we cannot replace C1 and C2 by358

D and obtain a solution that removes a subset of edges of A is because there exist two vertices359

v1, v2 ∈ D and a clique C12 ∈ CA with {v1, v2} ⊆ C12. Observe, that by our assumption there360

is no bad triangle and C12 ⊆ C. We let D = D ∪ C12 and D = D ∪ C12 and repeat until361

there is no such pair of vertices. Note that every vertex in G is in at most two cliques of CA.362

Therefore, this process has to stop after at most 2|C| steps.363

When there are no two vertices in D that appear together in a different clique, we remove364

D from CA and replace it by D and {v}. For every vertex that appear in D, we removed365

one clique that it appeared in. Hence, every vertex appear in at most 2 cliques and we can366

always add a singleton to clique partition witness for vertices that are only in one clique.367

Moreover, no two cliques intersect in two vertices, since D is the only clique we added, and we368

removed/changed all the cliques that intersected D in at least two vertices. Finally, all edges369

in G−A remain covered, we only potentially covered some additional edges in D.370

Note that this procedure does not introduce any bad triangles or new pair (C ′, w′) for371

which C ′ is at L-distance at least 4, w′ ∈ C ′ and the two cliques in CA containing w′ intersect372

C ′ in two vertices. As it also removes one such pair, we obtain a contradiction with the choice373

of A. We can therefore deduce that A does not contain such pair (C, w) and the lemma374

follows. J375

Finally, we can state the main lemma of this section.376

I Lemma 11. There exists an optimal solution A for G and a clique partition witness CA for377

G−A such that for every clique C ∈ C at L-distance at least 5 it holds that C ∈ CA.378

Proof. Let A be an optimal solution without any bad triangles and clique partition witness379

CA for G−A such that for every C ∈ C of L-distance at least 4 and every w ∈ C, if Cw
1 and380

Cw
2 are the two cliques in CA containing w, then either Cw

1 ∩C = {w} or Cw
1 ∩C = {w}. Note381

that existence of such a solution is guaranteed by Lemma 10. Moreover let (A, CA) be such382

an optimal solution satisfying properties in Lemma 10 that minimizes the number of cliques383

C ∈ C of L-distance at least 5 such that C /∈ CA. We claim that A satisfies the properties of384

the lemma.385

For a contradiction let C ∈ C be a clique at L-distance at least 5 and let C1, . . . , Cp be the386

cliques in CA that intersects C in at least 2 vertices. Since there is no bad triangle, it follows387

that Ci ⊆ C for all i ∈ [p] and by optimality of A, p = 1 (else
⋃

i∈[p] Ci is missing at least388

one edge). We claim that C = C1. Else let v ∈ C \ C1. Note that C ∈ C<k+7 and hence by389

Observation 4 v does not have a neighbor in S. In particular all neighbors of v are covered by390

two cliques in C, one of those cliques is C and let the other clique be Cv. Moreover, Let Cv
1391

and Cv
2 be the two cliques in CA containing v. Since v ∈ C \ C1 both Cv

1 and Cv
2 are subsets392

of Cv. However, Cv is either in C≥k+7 and CA contains Cv and the cliques Cv
1 and Cv

2 are393

Cv and {v} respectively, or Cv ∈ C<k+7, in which case Cv is at L-distance at least 4 from S,394

because it shares a vertex with the clique C at L-distance at least 5 from S. It follows by the395

choice of A that either Cv ∩ Cv
1 = {v} or Cv ∩ Cv

2 = {v}, but then again either Cv
1 or Cv

2 is396

the singleton {v}. However then the clique partition witness (CA \ {C1, {v}}) ∪ {C1 ∪ {v}}397

defines a better solution. It follows that indeed C ∈ CA for all cliques in C at L-distance at398

least 5 in G. J399
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We are now ready to present our main reduction rule. Note that it would seem that we400

could remove just the vertices that do no appear in a clique at distance at most 4. However,401

because of the cliques in C≥k+7 at the first four levels, we would be potentially left with many402

cliques at L-distance infinity that we cannot remove because all of their vertices are in a large403

clique at L-distance at most 4 from S. While this case could have been dealt with separately,404

we can actually show a stronger claim, i.e., that we can remove all edges from G that are405

covered by a clique at L-distance at least 5 from S. Note that in this case we cannot easily406

claim that if (G, k) is YES-instance then so is the reduced instance and we crucially need the407

fact that cliques at L-distance at least 5 are kept in clique partition witness of some optimal408

solution.409

I Reduction Rule 2. Remove all edges uv ∈ E(G) such that {u, v} ⊆ C for some clique C410

with distL(C) ≥ 5. Afterwards remove all isolated vertices from G.411

Let D be the set of cliques at L-distance at least 5 from S, V5 the set of vertices that412

appear in a clique in D and in a clique in C \ D and G′ be the graph obtained after applying413

the reduction rule and let C′ = C \ D ∪
⋃

v∈V5
{v}. Note that C′ is a clique partition witness414

for G′ − S and that {v}, for v ∈ V5, is a clique at L-distance at least 5.415

Proof of safeness. Let D, V5, G′, C′ be as described above and let A be an optimal solution416

for G′, that is G′ −A is a line graph, and let CA be clique partition witness for G′ −A. By417

Lemma 11, we can assume that
⋃

v∈V5
{v} ⊆ CA. We will show that (CA \

⋃
v∈V5
{v}) ∪ D418

is a clique partition witness for G − A. Clearly each edge in G − A is either covered by419

(CA \
⋃

v∈V5
{v}) or by D. It is also easy to see that every vertex is in precisely two cliques.420

Moreover, two cliques in D intersect in at most 1 vertex, because D ⊆ C and similarly two421

cliques in CA intersect in at most one vertex. Finally, let D ∈ D and C ∈ (CA \
⋃

v∈V5
{v}).422

Clearly, D∩C ⊆ V5. Moreover, for {u, v} ⊆ D, the edge uv is not in G′ and hence {u, v} 6⊆ C.423

Hence, |D ∩ C| ≤ 1.424

On the other hand, let A be an optimal solution for G and a clique partition witness CA425

for G − A such that for every clique C ∈ C at L-distance at least 5 it holds that C ∈ CA.426

Note that the existence of (A, CA) is guaranteed by Lemma 11. We claim that G′ − A is a427

line graph. By the choice of (A, CA), it follows that D ⊆ CA. Moreover, for every edge e that428

is covered by a clique in D it holds that e /∈ E(G′). It follows rather straightforwardly that429

CA \ D ∪
⋃

v∈V5
{v} is indeed a clique partition witness for G′ −A. J430

5 Finishing the Proof431

Suppose now that G, S, and C correspond to the instance after applying Reduction Rules 1 and 2.432

Clearly all cliques in C are either at L-distance at most 4 from S or there are singletons at dis-433

tance 5 or infinity, depending on whether the singleton intersects a clique in C<k+7 or a clique in434

C≥k+7, respectively. It follows from Lemma 6 that there are at most O
(
k4) cliques at distance435

at most 4. We let M be any minimal w.r.t. inclusion set of vertices such that for every clique436

C in C at L-distance at most 4 it holds that |M ∩C| ≥ min{|C|, k + 7}. Such a set M can be437

easily obtained by including arbitrary min{|C|, k + 7} vertices from every clique C at distance438

at most 4 and then removing the vertices v such that |(M \ {v}) ∩ C| ≥ min{|C|, k + 7} for439

all C ∈ C at L-distance at most 4. From this construction it is easy to see that |M | = O
(
k5).440

I Reduction Rule 3. Remove all vertices in V (G) \ (S ∪M) from G.441

Proof of safeness. Let the clique partition witness C′ for G− (S∪M) be {C∩M | C ∈ C, C∩442

M 6= ∅}. Since line graphs are characterized by a finite set of forbidden induced subgraphs, it is443

easy to see that if G−A is a line graph, for some A ⊆ E(G), then G[S∪M ]−A = (G−A)[S∪M ]444
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is also a line graph. For the other direction, let A ⊆ E(G) be such that G[S ∪M ]−A is line445

graph. We will show that G − A is a line graph. Let CA be a clique partition witness for446

G[S ∪M ] − A. Now let C′A be the set we obtain from CA by adding to it all the singleton447

cliques in C that do not contain a marked vertex and for every clique C ∈ CA for which there448

exists C ′ ∈ C with C \ S ⊆ C ′, we replace C by C ′ ∪ (C ∩ S).449

First let us verify that every vertex in V (G) is in precisely two cliques in C′A. It is easy to450

see that this holds for v ∈ S ∪M , because CA is a clique partition witness for G[S ∪M ]−A451

and we only added new cliques containing vertices in V (G) \ (M ∪ S) or extended existing452

cliques in CA by vertices in V (G) \ (M ∪ S). Now let v ∈ V (G) \M and let C1, C2 ∈ C be two453

cliques that contain v. Because all cliques in C at L-distance at least 5 are singletons and we454

keep all vertices of the cliques at L-distance at most 4 of size less than k + 7, it follows that455

C1 and C2 either both contain at least k + 7 vertices or one of them, say C2, is a singleton456

and the other, C1, contains at least k + 7 vertices. If C2 is a singleton, then C2 ∈ C′A. Else for457

Ci, i ∈ {1, 2}, with |Ci| ≥ k + 7 there is C ′i ∈ C′ with |C ′i| ≥ k + 7 and C ′i ⊆ Ci. By Lemma 5,458

CA contains a clique CA
i such that CA

i \ S = C ′i \Ci. By the construction of C′A it now follows459

that C′A contains CA
i ∪ Ci. From Lemma 4 it follows that if u ∈ S is adjacent to at least 7460

vertices in a clique in C, then it is adjacent to the whole clique. Hence CA
i ∪Ci indeed induces461

a complete subgraph of G−A. It follows that v is indeed in precisely two cliques in C′A. Note462

that above also shows that the sets in C′A induce cliques in G−A. Furthermore every edge in463

G−A either has both endpoints in S ∪M and are covered by a clique C in CA such that C′A464

contains a superset of C, or they are in the same clique of size at least k + 7 in C that is a465

subset of a clique in C′A as well.466

It remains to show that |C1 ∩ C2| ≤ 1 for all cliques in C′A. If |C1 ∩ C2| ≥ 2, then at least467

one of the vertices in C1 ∩ C2 has to be outside S ∪M . But then from the above discussion468

follows that C1 \ S and C2 \ S are in C, |C1 \ S| ≥ k + 7, |C2 \ S| ≥ k + 7 and at least k + 7469

vertices from each of C1 \ S and C2 \ S are in G[S ∪M ]. Clearly, C1 \ S and C2 \ S intersect470

in at most one vertex, let us denote it u, and the other vertices in the intersection of C1471

and C2 are in S. Let v be arbitrary vertex in C1 ∩ C2 ∩ S. Note that v is adjacent to at472

least 7 vertices in both C1 \ S and C2 \ S and by Lemma 4 it is adjacent to all vertices in473

(C1∪C2)\S. Since G− (S \{v}) is a line graph, it follows that G[(C1∪C2)\ (S \{v})] is a line474

graph. Every vertex in C1 \ (S ∪ {u}) is in exactly one other clique in C. This clique intersects475

C2 \ (S ∪ {u}) in at most one vertex. Therefore, there is a pair of vertices w1 ∈ C1 \ (S ∪ {u}),476

w2 ∈ C2 \ (S ∪ {u}) such that w1w2 /∈ E(G). Now uvw1 and uvw2 are two odd triangles (any477

vertex in Ci \ (S ∪ {u, wi}) is adjacent to three vertices of the triangle uvwi) that share a478

common edge, however uvw1w2 is not a K4. Hence, G[(C1 ∪ C2) \ (S \ {v})] is not a line479

graph, a contradiction. It follows that if two cliques in C of size at least k + 7 intersect in480

a vertex in G− S, then no vertex in S is adjacent to both cliques and consequently no two481

cliques in C′A intersect in at least two vertices.482

It follows that C′A is indeed a clique partition witness for G − A and by point 2. in483

Theorem 2, G−A is indeed a line graph. J484

We are now ready to proof Theorem 1.485

I Theorem 1. Line-Graph Edge Deletion admits a kernel with O
(
k5) vertices.486

Proof. We start the algorithm by finding the set S of at most 6k vertices such that for every487

v ∈ S the graph G− (S \ {v}) is a line graph. This is simply done by greedily finding maximal488

set of pairwise edge-disjoint forbidden induced subgraphs. Afterwards, we construct a clique489

partition witness C for G−S by using the algorithm of Lemma 3. Finally, we apply Reduction490

Rules 1, 2, and 3 in this order. By the discussion above Reduction Rule 3, after applying491

all the reduction rules, the resulting instance has O
(
k5) vertices. The correctness of the492

kernelization algorithm follows from the safeness proofs of the reduction rules. J493
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A Proof of Lemma 3550

I Lemma 3. Given a graph G, there is an algorithm that in time O (|E(G)|+ |V (G)|) decides551

whether G is a line graph and if so, constructs a clique partition witness for G.552

Proof. The algorithm by Degiorgi and Simon construct the input graph G by adding vertices553

one at a time, at each step it chooses a vertex to add that is already adjacent to at least one554

previously-added vertex. That is it construct graphs G1, G2, . . ., Gn = G such that Gi is a555

connected subgraph of G on i vertices. At each step it maintains a graph Hi such that Gi is a556

line graph of Hi. In here, we can actually keep a clique partition witness Ci for Gi such that557

there is a bijection ϕi between vertices of Hi and clique in Ci such that uv ∈ E(Hi) if and558

only if |ϕi(u) ∩ ϕi(v)| = 1.559

The algorithm heavily relies on the Whitney’s isomorphism theorem that implies that if560

the underlying graph of Gi has at least 4 vertices, then the underlying graph Hi is unique561

up to isomorphism. When adding a vertex v to a graph Gi for i ≤ 4, the algorithm simply562

brute-forces the possibilities for Hi and Ci.563

When adding a vertex v to Gi when i > 4, let S be the subgraph of Hi formed by the edges564

that correspond to the neighbors of v in Gi. Check that S has a vertex cover consisting of one565

vertex or two non-adjacent vertices, i.e., there are cliques C1 and C2 in Ci with Ci ∩ C2 = ∅566

and S ⊆ C1 ∩C2. If there are two vertices in the cover, add an edge (corresponding to v) that567

connects these two vertices in Hi and add v to both C1 and C2. If there is only one vertex u568

in the cover, then add a new vertex to Hi, adjacent to this vertex, add v to the clique ϕi(u)569

in Ci and add a new clique {v} to Ci to create Ci+1. J570

https://doi.org/10.1137/0210021
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