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Abstract22

We initiate the parameterized complexity study of minimum t-spanner problems on directed graphs.23

For a positive integer t, a multiplicative t-spanner of a graph G is a spanning subgraph H such24

that the distance between any two vertices in H is at most t times the distance between these25

vertices in G, that is, H keeps the distances in G up to the distortion (or stretch) factor t. An26

additive t-spanner is defined as a spanning subgraph that keeps the distances up to the additive27

distortion parameter t, that is, the distances in H and G differ by at most t. The task of Directed28

Multiplicative Spanner is, given a directed graph G with m arcs and positive integers t and k,29

decide whether G has a multiplicative t-spanner with at most m − k arcs. Similarly, Directed30

Additive Spanner asks whether G has an additive t-spanner with at most m− k arcs. We show31

that32

Directed Multiplicative Spanner admits a polynomial kernel of size O(k4t5) and can be33

solved in randomized (4t)k · nO(1) time,34

Directed Additive Spanner is W[1]-hard when parameterized by k even if t = 1 and the35

input graphs are restricted to be directed acyclic graphs.36

The latter claim contrasts with the recent result of Kobayashi from STACS 2020 that the problem37

for undirected graphs is FPT when parameterized by t and k.38
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1 Introduction49

Given a (directed) graph G, a spanner is a spanning subgraph of G that approximately50

preserves distances between the vertices of G. Graph spanners were formally introduced51

by Peleg and Schäffer in [14] (see also [15]). Originally, the concept was introduced for52

constructing network synchronizers [15]. However, graph spanners have a plethora of53

theoretical and practical applications in various areas like efficient routing and fast computing54

of shortest paths in networks, distributed computing, robotics, computational geometry and55

biology. We refer to the recent survey of Ahmed et al. [1] for the introduction to graph56

spanners and their applications.57

We are interested in the classical multiplicative and additive graphs spanners in unweighted58

graphs. Let G be a (directed) graph. For two vertices u, v ∈ V (G), distG(u, v) denotes59

the distance between u and v in G, that is, the number of edges (arcs, respectively, for60

the directed case) of a shortest (u, v)-path. Let t be a positive integer. It is said that a61

spanning subgraph H of G is a multiplicative t-spanner if distH(u, v) ≤ t · distG(u, v), i.e.,62

H approximates distances in G within factor t. A spanning subgraph H of G is called an63

additive t-spanner if distH(u, v) ≤ distG(u, v) + t, that is, H approximates the distances in64

G within the additive parameter t. The standard task in the graph spanner problems is,65

given an allowed distortion parameter t, find a sparsest t-spanner, i.e., a spanner with the66

minimum number of edges. We consider the parameterized versions of this task:67

68

Input: A (directed) graph G and integers t ≥ 1 and k ≥ 0.
Task: Decide whether there is a multiplicative t-spanner H with at most |E(G)|−k

edges (arcs, respectively).

Multiplicative Spanner parameterized by k + t

69

and70

71

Input: A (directed) graph G and nonnegative integers t and k.
Task: Decide whether there is an additive t-spanner H with at most |E(G)| − k

edges (arcs, respectively).

Additive Spanner parameterized by k + t

72

Informally, the task of these problems is to decide whether we can delete at least k edges73

(arcs, respectively, for the directed case) in such a way that all the distances in the obtained74

graph are t-close to the original ones.75

Previous work. We refer to [1] for the comprehensive survey of the known results and76

mention here only these that directly concern our work. First, we point that the considered77

graph spanner problems are computationally hard. It was already shown by Peleg and78

Schäffer in [14] that deciding whether a undirected graph G has a multiplicative t-spanner79

with at most m edges is NP-complete even for fixed t = 2. In fact, the problem is NP-80

complete for every fixed t ≥ 2 [2]. Moreover, for every t ≥ 2, it is NP-hard to approximate81

the minimum number of edges of a multiplicative t-spanner within the factor c log n for some82

c > 1 [10]. The same complexity lower bounds for directed graphs were also shown by Cai [2]83

and Kortsarz [10]. Additive t-spanners for undirected graphs were introduced by Liestman84
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and Shermer in [11, 12]. In particular, they proved in [12], that for every fixed t ≥ 1, it is85

NP-complete to decide whether a graph G admits an additive t-spanner with at most m86

edges. It was shown by Chlamtác et al. [4] that for every integer t ≥ 1 and any constant87

ε > 0, there is no polynomial-time 2log1−ε /t3-approximation for the minimum number of88

edges of an additive t-spanner unless NP ⊆ DTIME(2polylog(n)).89

The aforementioned hardness results make it natural to consider these spanner problems90

in the parameterized complexity framework. The investigation of Multiplicative Spanner91

and Additive Spanner on undirected graphs was initiated by Kobayashi in [8] and [9].92

In [8], it was proved that Multiplicative Spanner admits a polynomial kernel of size93

O(k2t2). For Additive Spanner, it was shown in [9] that the problem can be solved in94

time 2O((k2+kt) log t) · nO(1), that is, the problem is FPT when parameterized by k and t.95

Our results. We initiate the study of Multiplicative Spanner and Additive Spanner96

on directed graphs and further refer to them as Directed Multiplicative Spanner and97

Directed Additive Spanner, respectively. We show that Directed Multiplicative98

Spanner admits a kernel of size O(k4t5). We complement this result by observing that the99

problem can be solved in (4t)k · nO(1) time by a Monte Carlo algorithm with false negatives.100

Then we prove that Directed Additive Spanner becomes much harder on directed graphs101

by showing that the problem is W[1]-hard even when t = 1 and the input graphs are restricted102

to be directed acyclic graphs (DAGs).103

Organization of the paper. In Section 2, we introduce basic notions used in the paper. In104

Section 3, we prove that Directed Multiplicative Spanner admits a polynomial kernel105

and sketch an FPT algorithm. In Section 4, we show hardness for Directed Additive106

Spanner. We conclude in Section 5 by stating some open problems.107

2 Preliminaries108

Parameterized Complexity and Kernelization. We refer to the recent books [5, 6, 7] for109

the detailed introduction. In the Parameterized Complexity theorey, the computational110

complexity is measured as a function of the input size n of a problem and an integer parameter111

k associated with the input. A parameterized problem is said to be fixed-parameter tractable112

(or FPT) if it can be solved in time f(k)·nO(1) for some function f . A kernelization algorithm113

for a parameterized problem Π is a polynomial algorithm that maps each instance (I, k) of114

Π to an instance (I ′, k′) of Π such that115

(i) (I, k) is a yes-instance of Π if and only if (I ′, k′) is a yes-instance of Π, and116

(ii) |I ′|+ k′ is bounded by f(k) for a computable function f .117

Respectively, (I ′, k′) is a kernel and f is its size. A kernel is polynomial if f is polynomial.118

It is common to present a kernelization algorithm as a series of reduction rules. A reduction119

rule for a parameterized problem is an algorithm that takes an instance of the problem and120

computes in polynomial time another instance that is more “simple” in a certain way. A121

reduction rule is safe if the computed instance is equivalent to the input instance.122

Graphs. Recall that an undirected graph is a pair G = (V, E), where V is a set of vertices123

and E is a set of unordered pairs {u, v} of distinct vertices called edges. A directed graph124

G = (V, A) is a pair, where V is a set of vertices and A is a set of ordered pairs (u, v) of125

vertices called arcs; note that we allow u = v, i.e., D can have loops. We use V (G) and126

E(G) (A(G), respectively) to denote the set of vertices and the set of edges (set of arcs,127
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23:4 Parameterized Complexity of Directed Spanner Problems

respectively). For a (directed) graph G and a subset X ⊆ V (G) of vertices, we write G[X] to128

denote the subgraph of G induced by X. For a set of vertices S, G−S denotes the (directed)129

graph obtained by deleting the vertices of S, that is, G− S = G[V (G) \ S]; for a vertex v,130

we write G − v instead of G − {v}. Similarly, for a set of edges (arcs, respectively) S (an131

edge or arc e, respectively), G− S (G− e, respectively) denotes the graph obtained by the132

deletion of the elements of S (the deletion of e, respectively). A (directed) graph H is a133

spanning subgraph of G if V (G) = V (H). We write P = v1 · · · vk to denote a path with the134

vertices v1, . . . , vk and the edges (arcs, respectively) {v1, v2}, . . . , {vi−k, vk}; v1 and vk are135

the end-vertices of P and we say that P is an (v1, vk)-path. The length of the path is the136

number of edges (arcs, respectively). For a (u, v)-path P1 and a (v, w)-path P2, we denote by137

P1 ◦ P2 the concatenation of P1 and P2. We use similar notation for walks. For two vertices138

u, v ∈ V (G), distG(u, v) denotes the distance between u and v in G, that is, the length of a139

shortest (u, v)-path; we assume that distG(u, v) = +∞ if there is no (u, v)-path in G. Let t140

be a positive integer. It is said that a spanning subgraph H of G is a multiplicative t-spanner141

if distH(u, v) ≤ t · distG(u, v). A spanning subgraph H of G is called an additive t-spanner if142

distH(u, v) ≤ distG(u, v) + t.143

3 Directed multiplicative t-spanners144

In this section, we consider Directed Multiplicative Spanner. We show that the145

problem admits a polynomial kernel and then complement this result by obtaining an FPT146

algorithm. These results are based on locality of multiplicative spanners in the sense of the147

following folklore observation.148

I Observation 1. Let t be a positive integer. A spanning subgraph H of a directed graph G149

is a multiplicative t-spanner if and only if for every arc (u, v) ∈ A(G), there is a (u, v)-path150

in H of length at most t.151

Let t be a positive integer and let G be a directed graph. For an arc a = (u, v) of G, we152

say that a (u, v)-path P is an t-detour for a if the length of P is at most t and P does not153

contain a. By Observation 1, to solve Directed Multiplicative Spanner for (G, t, k), it154

is necessary and sufficient to identify k arcs that have t-detours that do not contain selected155

arcs. Then H can be constructed by deleting these arcs.156

3.1 Polinomial kernel for Directed Multiplicative Spanner157

In this subsection, we show that Directed Multiplicative Spanner admits a polynomial158

kernel.159

I Theorem 1. Directed Multiplicative Spanner has a kernel of size O(k4t5).160

Proof. Let (G, t, k) be an instance of Directed Multiplicative Spanner.161

Notice that loops do not contribute to the distances between vertices and, therefore, can162

be deleted without changing the distances. This gives the following straightforward reduction163

rule.164

I Reduction Rule 1. If G has a loop a, then set G := G− a and k := k − 1.165

We apply the rule exhaustively and stop if k = 0 by the following rule.166

I Reduction Rule 2. If k = 0, then return a trivial yes-instance of Directed Multiplic-167

ative Spanner and stop.168
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From now we assume that this is not the case, that is, from now G is a graph without169

loops and k > 0.170

We say that a ∈ A(G) is a t-good if G has a t-detour for a. Let S be the set of t-good171

arcs. Clearly, S can be constructed in polynomial time by making use of Dijkstra’s algorithm.172

We follow the idea of Kobayashi [8] for constructing a polynomial kernel for undirected173

case and show that if S is sufficiently big, then (G, t, k) is a yes-instance of Directed174

Multiplicative Spanner.175

B Claim 2. If |S| ≥ 1
2 k(t + 1)((k − 1)t + 2), then (G, t, k) is a yes-instance of Directed176

Multiplicative Spanner.177

Proof of Claim 2. Let |S| ≥ 1
2 k(t + 1)((k − 1)t + 2). For every a ∈ S, let Pa be a t-detour178

for a.179

Let S0 = ∅. For i = 1, . . . , k, we iteratively construct sets of arcs S1, . . . , Sk such that

S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊆ S

and sets of arcs Ri such that Ri ⊆ Si \ Si−1 and |Ri| = (k − i)t + 1 for i ∈ {1, . . . , k} using180

the following procedure. For i = 1, . . . , k,181

select an arbitrary set Ri of size (k − i)t + 1 in S \ Si−1,182

set Si = Si−1 ∪ {(A(Pa) ∩ S) ∪ {a} | a ∈ Ri}.183

We show by induction, that the sets S1, . . . , Sk and R1, . . . , Rk exist. Since |S \ S0| =184

|S| ≥ (k − 1)t + 1, we conclude that R1 of size (k − 1)t + 1 can be selected. Assume185

that the sets Sj and Rj have been constructed for 0 ≤ j < i ≤ k. Observe that because186

|{(A(Pa) ∩ S) ∪ {a} | a ∈ Rj}| ≤ (t + 1)|Rj |,187

|Sj \ Sj−1| ≤ |Rj |(t + 1) = ((k − j)t + 1)(t + 1)188

for 1 ≤ j < i. Therefore,189

|Si−1| ≤
i−1∑
j=1

(((k − j)t + 1)(t + 1)). (1)190

Notice that191

1
2k(t + 1)((k − 1)t + 2) =

k∑
j=1

(((k − j)t + 1)(t + 1)). (2)192

Then by (1) and (2),193

|S \ Si−1| ≥
k∑

j=i

(((k − j)t + 1)(t + 1)) ≥ (k − i)t + 1.194

This means that Ri can be selected and we can construct Si.195

Now we select arcs ai ∈ Ri for i = k, k − 1, . . . , 1. Since |Rk| = 1, the choice of ak is196

unique. Assume that ak, . . . , ai+1 have been selected for 1 < i + 1 ≤ k. Then we select an197

arbitrary198

ai ∈ Ri \ {A(Paj ) | i + 1 ≤ j ≤ k}.199

Because |{A(Paj
) | i + 1 ≤ j ≤ k}| ≤ (k − i)t and |Ri| = (k − i)t + 1, ai exists.200
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23:6 Parameterized Complexity of Directed Spanner Problems

Let i ∈ {1, . . . , k}. By the choice of ai, we have that ai /∈ A(Paj ) for i < j ≤ k. From the201

other side, ai /∈ A(Pj) for 1 ≤ j < i, because ai ∈ Ri and Ri does not contain the arcs of202

Pa for a ∈ Rj for 1 ≤ j < i by the construction of the sets R1, . . . , Rk. We obtain that the203

t-detours Pai for i ∈ {1, . . . , k} do not contain any aj for j ∈ {1, . . . , k}. By Observation 1,204

H = G− {a1, . . . , ak} is a multiplicative t-spanner. Therefore, (G, t, k) is a yes-instance of205

Directed Multiplicative Spanner. J206

By Claim 2, we can apply the next rule:207

I Reduction Rule 3. If |S| ≥ 1
2 k(t + 1)((k − 1)t + 2), then return a trivial yes-instance of208

Directed Multiplicative Spanner and stop.209

From now, we assume that |S| < 1
2 k(t + 1)((k − 1)t + 2).210

The analog of Reduction Rule 3 is a main step of the kernelization algorithm of Kobay-211

ashi [8] for the undirected case, because it almost immediately allows to upper bound the212

total number of edges of the graph. However, the directed case is more complicated, since213

the arcs of t-detours for a ∈ S may be outside S contrary to the undirected case, where all214

the edges of t-detours are in cycles of length at most t + 1 and, therefore, have t-detours215

themselves. We use the following procedure to mark the crucial arcs of potential detours.216

Marking Procedure. Let G′ = G− S.217

(i) For every (u, v) ∈ S, find a shorted (u, v)-path P in G′ and if the length of P is at most218

t, then mark the arcs of P .219

(ii) For every ordered pair of two distinct arcs (u1, v1), (u2, v2) ∈ S,220

(a) find a shortest (u1, u2)-path P1 in G′ and if the length of P1 is at most t, then mark221

the arcs of P1,222

(b) find a shortest (v2, v1)-path P2 in G′ and if the length of P2 is at most t, then mark223

the arcs of P2,224

(c) find a shortest (v1, u2)-path P3 in G′ and if the length of P3 is at most t, then mark225

the arcs of P3.226

Observe that marking can be done in polynomial time by Dijkstra’s algorithm. Denote227

by L the set of marked arcs. Our final rule constructs the output instance.228

I Reduction Rule 4. Consider the graph H = (V (G), S ∪ L). Delete the isolated vertices of229

H, and for the obtained G∗, output (G∗, t, k).230

We argue that the rule is safe.231

B Claim 3. (G, t, k) is a yes-instance of Directed Multiplicative Spanner if and only232

if (G∗, t, k) is a yes-instance.233

Proof of Claim 3. Suppose that (G, t, k) is a yes-instance of Directed Multiplicative234

Spanner. Then, by Observation 1, there are k distinct arcs a1, . . . , ak ∈ S with their t-235

detours P1, . . . , Pk, respectively, such that ai /∈
⋃k

j=1 A(Pj). Notice that a1, . . . , ak ∈ A(G∗).236

Consider i ∈ {1, . . . , k} and let ai = (u, v).237

Suppose that Pi does not contain arcs from S. Then Pi is a (u, v)-path in G′ = G− S.238

By the first step of Marking Procedure, there is a t-detour P ′i for ai whose arc are in G′ and239

are marked. Then P ′i is a t-detour for ai in G∗ and aj /∈ A(P ′i ) for j ∈ {1, . . . , k}.240

Assume that Pi contains some arcs from S. Let e1, . . . , es be these arcs (in the path order241

with respect to Pi starting from u). Note that e1, . . . , es ∈ A(G∗) and they are distinct from242

a1, . . . , ak. Let ej = (xj , yj) for j ∈ {1, . . . , s}. Then Pi can be written as the concatenation243

of the paths Pi = Q1 ◦ x1y1 ◦Q2 ◦ · · · ◦ xsys ◦Qs+1, where Q1 is the (u, x1)-subpath of Pi,244
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Qj is the (yj−1, xj)-subpath of Pi for j ∈ {2, . . . , s}, and Qs+1 is the (ys, v)-subpath of Pi;245

note that some of the paths Q1, . . . , Qs+1 may be trivial, i.e., contain a single vertex. Let246

j ∈ {1, . . . , s+1}. If Qj is trivial, then Q′j = Qj is a path in G∗, because the vertices incident247

to the arcs of S are vertices of G∗. Suppose that Qj is not trivial. If j = 1, then by step248

(ii)(a) of Marking Procedure, there is a (u, x1)-path Q′1, whose arcs are in G′ and are marked,249

and the length of Q′1 at at most the length of Q1. For j = s + 1, we have that by step (ii)(b),250

there is a (ys, v)-path Q′s+1, whose arcs are in G′ and are marked, and the length of Q′s+1251

is at most the length of Qs+11. Suppose that 2 ≤ j ≤ s. Then by step (ii)(c), there is a252

(yj−1, xj)-path Q′j , whose arcs are in G′ and are marked, and the length of Q′j is at most the253

length of Qj . Consider the (u, v)-walk Wi = Q′1 ◦ x1y1 ◦Q′2 ◦ · · · ◦ xsys ◦Q′s+1. We have that254

W ′
i is a (u, v)-walk of length at most t in G∗ such that aj /∈ A(Wi) for j ∈ {1, . . . , k}. This255

implies that G∗ has a t-detour P ′i in G∗ such that aj /∈ A(P ′i ) for j ∈ {1, . . . , k}.256

We obtain that for every i ∈ {1, . . . , k}, ai ∈ A(G∗) has a t-detour P ′i such that257

a1, . . . , ak /∈ A(P ′i ). By Observation 1, we conclude that G∗ − {a1, . . . , ak} is a multi-258

plicative spanner for G∗, that is, (G∗, t, k) is a yes-instance of Directed Multiplicative259

Spanner.260

For the opposite direction, assume that (G∗, t, k) is a yes-instance of Directed Multi-261

plicative Spanner. By Observation 1, there are k distinct arcs a1, . . . , ak ∈ A(G∗) with262

their t-detours P1, . . . , Pk, respectively, such that ai /∈
⋃k

j=1 A(Pj). Since G∗ is a subgraph of263

G, a1, . . . , ak have the same t-detours in G. By Observation 1, (G, t, k) is a yes-instance. J264

To upper bound the size of G∗, observe that Marking Procedure marks at most t arcs265

for each a ∈ S in step (i), that is, at most |S|t arcs are marked in this step. In step (ii), we266

mark at most 3t arcs for each ordered pair of arcs of S. Hence, at most 3|S|(|S| − 1)t arc are267

marked in total in the second step. Since |S| < 1
2 k(t + 1)((k − 1)t + 2), we have that G∗ has268

O(k4t5) arcs. Because G∗ has no isolated vertices, the number of vertices is O(k4t5).269

Since each of the reduction rules and Marking Procedure can be done in polynomial time,270

we conclude that the total running time of our kernelization algorithm is polynomial. J271

3.2 FPT algorithm for Directed Multiplicative Spanner272

Combining Theorem 1 with the brute-force procedure that guesses k arcs of G and verifies273

whether the deletion of these arcs gives a multiplicative t-spanner, we obtain the straightfor-274

ward 2O(k log(kt)) + nO(1) algorithm for Directed Multiplicative Spanner. If we use the275

intermediate steps of the kernelization algorithm, then the running time may be improved to276

(kt)2k · nO(1). Namely, we can execute Reduction Rules 1–3 of the kernelization algorithm.277

Then we either solve the problem or obtain an instance, where the set S of t-good arcs278

has size at most 1
2 k(t + 1)((k − 1)t + 2) − 1 ≤ k2t2. Then for every R ⊆ S of size k, we279

check whether G−R is a multiplicative t-spanner by computing the distances between every280

pair of vertices. However, we can slightly improve the parameter dependence by making281

use of the random separation technique proposed by Cai, Chan, and Chan in [3] (we refer282

to [5, Chapter 5] for the detailed introduction to the technique). In this subsection, we283

briefly sketch a Monte Carlo algorithm with false negatives for Directed Multiplicative284

Spanner.285

I Theorem 4. Directed Multiplicative Spanner can be solved in time (4t)k · nO(1) by286

a Monte Carlo algorithm with false negatives.287

Proof. Let (G, t, k) be an instance of Directed Multiplicative Spanner. In the same288

way as in the proof of Theorem 1, we can assume that G has no loops. Otherwise, we289
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23:8 Parameterized Complexity of Directed Spanner Problems

iteratively delete loops and decrease the parameter k. If k = 0 or t = 1, then the problem is290

trivial: if k = 0, then (G, t, k) is a yes-instance, and if k > 0 and t = 1, then (G, t, k) is a291

no-instance, because G has no loops. From now we assume that k ≥ 1 and t ≥ 2.292

By Observation 1, to solve Directed Multiplicative Spanner for (G, t, k), it is293

necessary and sufficient to identify k arcs that have t-detours that do not contain selected294

arcs. We use random separation to distinguish the arcs that have t-detours and the arcs of295

the detours. We randomly color the arcs of G by two colors red and blue. An arc is colored296

red with probability 1
t and is colored blue with probability t−1

t . Then we try to find k red297

arcs that have t-detours composed by blue arcs. Let R be the set of arcs colred red and let298

B the set of blue arcs. For (u, v) ∈ R, it can be checked in polynomial time whether (u, v)299

has a t-detour with blue arcs by finding the distance between u and v in GB = (V (G), B).300

Then we greedily construct the set S of all red arcs with blue t-detours. If |S| ≥ k, then we301

conclude that (G, t, k) is a yes-instance by Observation 1.302

Suppose that (G, t, k) is a yes-instance of Directed Multiplicative Spanner. Then by
Observation 1, there are k distinct arcs a1, . . . , ak and their t-detours P1, . . . , Pk, respectively,
such that a1, . . . , ak /∈ L =

⋃k
i=1 A(Pi). Notice that |L| ≤ tk. Then the probability that the

considered random coloring colors the arcs a1, . . . , ak red is at least t−k and the probability
that the arcs of L are colored blue is at least ( t−1

t )tk. We have that( t− 1
t

)t

=
(

1− 1
t

)t

≥ 1
4 .

Therefore, the probability that the arcs a1, . . . , ak are red and their t-detours are blue is at303

least (4t)−k. Respectively, the probability that the random coloring fails to color the arcs304

a1, . . . , ak red and their t-detours blue is at most 1− 1
(4t)k . This implies that if we iterate305

our algorithm for (4t)k colorings, then we either find a solution and stop or we conclude that306

(G, t, k) is a no-instance with the mistake probability at most
(

1− 1
(4t)k

)(4t)k

≤ e−1. This307

gives us a Monte Carlo algorithm with running time (4t)k · nO(1). J308

The same approach can be used for undirected graphs and it can be shown that Multi-309

plicative Spanner can be solved in (4t)k · nO(1) time improving the running time given310

in [8].311

The algorithm from Theorem 4 can be derandomized by using universal sets [13] instead312

of random colorings. Since this part is standard (see [5, Chapter 5]), we leave it to the313

interested readers.314

4 Directed additive t-spanners315

In this section, we consider Directed Additive Spanner and show that the problem is316

hard on DAGs even if t = 1.317

I Theorem 5. Directed Additive Spanner is W[1]-hard on DAGs when parameterized318

by k only even if t = 1.319

Proof. We reduce from the Independent Set problem. Given a graph G and a positive320

integer k, the problem asks whether G has an independent set of size at least k. Independent321

Set parameterized k is well-known to be one of the basic W[1]-complete problems (see [5, 6]).322

Let (G, k) be an instance of Independent Set. Denote by v1, . . . , vn the vertices of G.323

For every i ∈ {1, . . . , n}, construct three vertices xi, yi, zi and arcs (xi, yi), (yi, zi), (xi, zi).324

For every i, j ∈ {1, . . . , n} such that i < j, do the following:325
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{vi, vj} ∈ E(G)

yi

zi

xi

xj

yj

zj

yi

zi

xi

xj

yj

zj

{vi, vj} /∈ E(G)

Figure 1 Construction of D.

if {vi, vj} ∈ E(G), then construct a directed (zi, xj)-path Pij of length 4,326

if {vi, vj} /∈ E(G), then construct a directed (xi, zj)-path Qij of length 4.327

Denote the obtained directed graph by D (see Figure 1). It is straightforward to verify that328

D is a DAG. We show that (G, k) is a yes-instance of Independent Set if and only if329

(D, 1, k) is a yes-instance of Directed Additive Spanner.330

Suppose that I = {vi1 , . . . , vik
} is an independent set of size k in G. Let331

R = {(xi1 , zi1), . . . , (xik
, zik

)}. We show that D′ = D − R is an additive t-spanner for332

D.333

We claim that for every two vertices u and w of D, each shortest (u, w)-path in D contains334

at most one arc of R. The proof is by contradiction. Assume that there are u, w ∈ V (D) and335

a shortest (u, w)-path P such that P contains at least two arcs of R. Let (xi, zi) and (xj , zj)336

be such arcs and let i < j. By the construction, (xi, zi) occurs before (xj , zj) in P . Since the337

arcs of R correspond to vertices of the independent set I, vi and vj are not adjacent in G.338

Therefore, D contains the (xi, zj)-path Qij of length 4. Since P is a shortest path containing339

(xi, zi) and (xj , zj), the (zi, xj)-subpath of P should have length at most 2. However, by the340

construction, the distance between zi and xj is at least 4; a contradiction proving the claim.341

Now let u and w be two vertices of D. Let P be a shortest (u, w)-path in D. If P is a342

path in D′, then distD′(u, w) = distD(u, w). Suppose that P is not a path in D′. Then P343

contains a unique arc (xi, zi) ∈ R by the proved claim. Let P1 be the (u, xi)-subpath of P344

and let P2 be the (zi, w)-subpath. Let P ′ = P1 ◦ xiyizu ◦ P2. Observe that P ′ is a path in345

D′. Since the length of P ′ is the length of P plus 1, distD′(u, w) ≤ distD(u, w) + 1. This346

implies that D′ is an additive 1-spanner of D.347

Now we assume that (D, 1, s) is a yes-instance of Directed Additive Spanner. Then348

there is a set of k arcs R ⊆ A(D) such that D′ = D−R is an additive 1-spanner. Observe that349

if (u, v) ∈ R, then D has an (u, v)-path P . Otherwise, distD′(u, v) = +∞ and distD′(u, v) >350

distD(u, v) + 1. Therefore, R ⊆ {(x1, z1), . . . , (xn, zn)}. Let R = {(xi1 , zi1), . . . , (xik
, zik

)}.351

We claim that I = {vi1 , . . . , vik
} is an independent set of G. Assume that this is not the case352

and there are vi, vj ∈ I such that vi and vj are adjacent in G. Let i < j. Consider the vertices353

xj and zj of D. Since {vi, vj} ∈ E(G), P = xizi ◦ Pij ◦ xjzj is an (xi, zj)-path of length354

6, that is, distD(xi, zj) ≤ 6. The path P ′ = xiyizi ◦ Pij ◦ xjyjzj has length 8. Any other355

(xi, zj)-path in D′ uses at least two paths of length 4: one of the paths Pii′ and Qii′ for some356

i′ ∈ {1, . . . , n} such that i′ 6= j, and one of the paths Pj′j and Qj′j for some j′ ∈ {1, . . . , n}357

such that j′ 6= i. This means that distD′(xi, zj)− distD(xi, xj) ≥ 2 contradicting that D′ is358

an additive 1-spanner. We conclude that I is an independent set of G and, therefore, (G, k)359

is a yes-instance of Independent Set. J360

5 Conclusion361

We proved that Directed Multiplicative Spanner admits a kernel of size O(k4t5) can362

be solved in (4t)k · nO(1) randomized time. We also demonstrated that Directed Additive363
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Spanner is W[1]-hard even when t = 1 and the input graphs are restricted to DAGs. The364

latter result leads to the question whether Directed Additive Spanner is tractable on365

some special classes of directed graphs, like planar directed graphs. We believe that this366

problem may be interesting even if the distortion parameter t is assumed to be a constant.367

Another possible direction of research is considering different types of directed graph368

spanners. For example, what can be said about the roundtrips spanners introduced by369

Roditty, Thorup, and Zwick [16]? A spanning subgraph H of a directed graph G is a370

multiplicative t-roundtrip-spanner if for every two vertices u and v, distH(u, v)+distH(v, u) ≤371

t(distG(u, v) + distG(v, u)), that is, H approximates the sum of the distances between any372

two vertices in both directions. Is the analog of Directed Multiplicative Spanner for373

roundtrip spanners FPT? Notice that we cannot use Observation 1 that is crucial for our374

results for the new problem. Consider, for example, the directed graph G constructed as375

follows: construct two vertices u and v and an arc (u, v), and then add a (u, v)-path P1 and376

a (v, u)-path P2 of arbitrary length ` ≥ 2 that are internally vertex disjoint. Then it is easy377

to see that H = G− (u, v) is a 2-roundtrip spanner for G. However, H has no short detour378

for (u, v). It also possible to define additive t-roundtrip-spanners and consider the analog379

of Directed Additive Spanner. We conjecture that this problem is at least as hard as380

Directed Additive Spanner.381
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