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Abstract

An automated classification system of pizza sauce spread using colour vision and support vector machine (SVM) was developed.

To characterise pizza sauce spread with low dimensional colour features, a sequence of image processing algorithms was developed.

After image segmentation from the background, the segmented image was transformed from red, green, and blue (RGB) colour

space to hue, saturation, and value (HSV) colour space. Then a vector quantifier was designed to quantify the HS (hue and sat-

uration) space to 256-dimension, and the quantified colour features of pizza sauce spread were represented by colour histogram.

Finally, principal component analysis (PCA) was applied to reduce the 256-dimensional vectors to 30-dimensional vectors. With the

30-dimensional vectors as the input, SVM classifiers were used for classification of pizza sauce spread. It was found that the

polynomial SVM classifiers resulted in the best classification accuracy with 96.67% on the test experiments.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The sauce is everything and can be a signature part of

the pizza (Burg, 1998). Therefore, the quality of pizza

sauce spread is an influential factor while evaluating the

whole quality of a pizza. In the pizza industry, the
quality evaluation of pizza sauce spread is still per-

formed manually by trained inspectors, which is tedious,

laborious, and costly, and is easily influenced by physi-

ological factors, thus inducing subjective and incon-

sistent evaluation results. Increased popularity and

consumption of pizzas have necessitated the automated

quality evaluation of pizza sauce spread. Sun and

Brosnan (2003a) analysed images of pizza sauce spread
based on simple thresholding segmentation that in-

cluded three steps. Firstly the whole pizza image was

segmented from the white background using the red,

green, and blue (RGB) model. Then by setting the hue,

saturation, and intensity (HSI) values in the following
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ranges ½220; 14�, ½0; 125� and ½0; 200�, respectively, seg-
mentation of pizza sauce from pizza base was achieved.

Finally, segmentation of the light zones of pizza sauce

was accomplished by setting the HSI values as follows:

½2; 14�, ½53; 125� and ½106; 200�, respectively. The most

disadvantage of the method is that it is likely to become
tuned to one type of image (e.g., a specific sensor, scene

setting, illumination, and so on), which limited its

applicability. The performance of the algorithm de-

grades significantly when the colour and the intensity of

the illuminant are changed.

Image analysis techniques have been used increas-

ingly for food quality evaluation over the past decades

(Brosnan & Sun, 2004; Kavdir & Guyer, 2002; Park &
Chen, 2000; Sun, 2000, 2004; Sun & Brosnan, 2003b; Sun

& Du, 2004; Wang & Sun, 2001). In image analysis for

food products, colour is an influential attribute of visual

information and powerful descriptor for measurement.

Colour vision offers a tremendous amount of spatial

resolution that can be used to quantify the colour dis-

tribution of ingredients. Colour features of an object can

be extracted by examining every pixel within the object
boundaries and have proven successful for the objective

measurement of many types of food products with

applications ranging from fruit, grain, meat, to vegetable
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Nomenclature

~v assumed vector of two-dimensional HS col-

our space
~ui eigenvector of the covariance matrix

cy!i new colour feature vector
~uð�Þ non-linear transformation
~w normal to the hyperplane

cx!i quantified colour feature vectors
~c two-dimensional code-vector

r sigma term of Gaussian radial basis function

kernels

ni nonnegative slack variable

ai coefficient obtained by solving a convex

quadratic programming problem
ki eigenvalue of the covariance matrix
~x,~xi,~xj input vector

b bias term

C parameter used to penalise variables ni
CM covariance matrix

CS set of 256 colours as the codebook

d degree of polynomial kernels

f classification function
H high dimensional feature space

h hue component of HSV colour space

i, m, n index variable

k kernel function

l number of pizza sauce spread samples

M assumed number of colours
nb normalised blue component of RGB colour

space

ng normalised green component of RGB colour

space

nr normalised red component of RGB colour

space

P probability distribution function

Q vector quantifier
R partitioned region of the HS space

RS set of 256 regions

s saturation component of HSV colour space

T transformation matrix

v value component of HSV colour space

VS assumed vector set of two-dimensional HS

colour space

yi class of acceptable or unacceptable quality
level
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(Daley & Thompson, 1992; Jahns, Nielsen, & Paul, 2001;

Leemans, Magein, & Destain, 1998; Ruan et al., 2001).

Among the applications, one would expect most appli-

cations to be based on RGB colour space (Ahmad, Reid,
Paulsen, & Sinclair, 1999; Lu, Tan, Shatadal, & Gerrard,

2000) andHSI colour space (Sun & Brosnan, 2003a; Tao,

Heinemann, Vargheses, Morrow, & Sommer, 1995).

However, L�a�b� colour space has also been used for

colour features extraction (Vizhanyo & Felfoldi, 2000).

Classification identifies objects by classifying them

into one of the finite sets of classes, which involves

comparing the measured features of a new object with
those of a known object or other known criteria and

determining whether the new object belongs to a par-

ticular category of objects. A wide variety of approaches

have been taken towards this task in the food quality

evaluation. They have a common objective that is to

simulate a human decision-maker’s behaviour. Support

vector machine (SVM) is a state-of-the-art classification

technique, which has a good theoretical foundation in
statistical learning theory (Vapnik, 1998). SVM fixes the

classification decision function based on structural risk

minimisation instead of the minimisation of the mis-

classification on the training set to avoid overfitting

problem. It performs binary classification problem by

finding maximal margin hyperplanes in terms of a subset

of the input data (support vectors) between different

classes. If the input data are not linearly separable, SVM
firstly maps the data into a high dimensional feature
space, and then classifies the data by the maximal margin

hyperplanes. Moreover, SVM is capable of learning in

high-dimensional feature space with fewer training data.

Recently, SVM has been successfully applied to numer-
ous classification problems, such as electronic nose data

(Pardo & Sberveglieri, 2002; Trihaas & Bothe, 2002) and

bakery process data (Rousu et al., 2003).

In this paper, a hybrid image processing algorithm was

firstly developed to segment the pizza sauce spread from

the background. Then the RGB colour space was trans-

formed to hue, saturation and value (HSV) colour space,

and the image was represented by hue and saturation
(HS) colour components to ensure illumination indepen-

dence. An efficient colour quantification method was

presented to characterise the colour contents in the images

of pizza sauce spread, which were represented by colour

histogram. After that, principal component analysis

(PCA) was applied to reduce the dimensionality of the

colour feature vectors, and finally, the SVM classifica-

tion techniques were employed for grading pizza sauce
spread.
2. Materials and methods

2.1. Computer vision system

The samples of pizza sauce spread were provided by

Green Isle Foods (Naas, Ireland), which were categor-
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ised into five quality levels by the qualified inspection
personnel in the company, i.e., reject underwipe,

acceptable underwipe, even spread, acceptable overwipe

and reject overwipe. The image acquisition system used

in this study consists of a Dell Workstation 400 equip-

ped with an IC-RGB frame grabber (Imaging Technol-

ogy, US), and a high quality 3-CCD Sony XC-003P

camera. The images of pizza sauce spread were captured

under two fluorescent lamps with plastic light diffusers.
The overall sequence of digital image processing algo-

rithms for classification of pizza sauce spread was

presented in Fig. 1.
Fig. 2. The block diagram of image segmentation algorithm.

2.2. Image segmentation

To partition the image of pizza sauce spread from the

background, a gradient-based segmentation approach

was developed, which includes five steps, i.e., edge

detection, morphological dilation, flood filling, image

smoothing and mask operation. For the pizza image
that differs greatly in contrast from the background, the

Sobel operator (Sobel, 1970) was applied to detect the

edge of pizza. The threshold value employed by Sobel

operator for edge detection was determined using Otsu’s

method (Otsu, 1979). To eliminate the gaps in the edges,

morphological dilation was implemented to the edge

image. Then a flood filling operation (Soille, 1999) was

performed to fill the holes in the image and a disk
structure element was used to smooth the object by

eroding the image twice. Finally, mask operation was

applied to the original image to obtain the region of

interest, i.e., the pizza sauce spread. The block diagram
Image acquisition

Colour space
transformation

Colour
quantification

Image segmentation

Dimensionality
reduction by principal
component analysis

Classification using
support vector

machines

Fig. 1. The overall sequence of digital image processing algorithms for

classification of pizza sauce spread.
of image segmentation algorithm sequences was shown

in Fig. 2.
2.3. Colour space transformation

Since colour is invariant with respect to camera po-

sition and pizza orientation, it is one of the most sig-

nificant features for pizza measurement. The images of

pizza sauce spread were taken by the CCD camera and

saved in the three-dimensional RGB colour space.
Unfortunately, the RGB colour space used in computer

graphics is device dependent, which is designed for

specific devices, e.g. cathode-ray tube (CRT) display.

Therefore, the RGB space has no accurate definition for

a human observer, where the proximity of colours in the

space does not indicate colour similarity in perception.

Colour space transformations are effective means for

distinguishing colour images, which is an operation on
the original colour space to produce a new transformed

space. Linear transformation is the simplest method for

colour conversion from the RGB space to others. Sev-

eral linear transformations are used for transmitting

videos and representing colour images. For example,

YUV (standard colour space used in European TVs,

where Y is linked to the component of luminance, and U
and V are linked to the components of chrominance)
and i1i2i3 (Ohta, Kanade, & Sakai, 1980) are obtained

by linear transformation through simple matrix multi-

plications. Other colour space transformations are more

complex, such as HSV and L�a�b�, which are generated

by non-linear transformations.

Compared to the other colour spaces, HSV is an

intuitive colour space, which is a user-oriented colour

system based on the artist’s idea of tint, shade and tone.
HSV separates colour into three components, i.e., hue

(H), saturation (S) and value (V). H distinguishes among

the perceived colours, such as red, yellow, green and

blue. S refers to how far a colour is from a grey of equal

intensity, and V represents the brightness of a reflecting

object. For efficient classification of pizza sauce spread,
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the RGB colour space was transformed to HSV space.
Given the normalised r; g; b 2 ½0; . . . ; 1�, the transfor-

mation to HSV is achieved by the following equations:

v ¼ maxðnr; ng; nbÞ ð1Þ

s ¼ v�minðnr; ng; nbÞ
v

ð2Þ

Let

tr ¼ v� nr

v�minðnr; ng; nbÞ ;

tg ¼ v� ng

v�minðnr; ng; nbÞ ;

tb ¼ v� nb

v�minðnr; ng; nbÞ ;

then

6h¼

5þ tb if nr¼maxðnr;ng;nbÞ and ng¼minðnr;ng;nbÞ
1� tg if nr¼maxðnr;ng;nbÞ and ng 6¼minðnr;ng;nbÞ
1þ tr if ng¼maxðnr;ng;nbÞ and nb¼minðnr;ng;nbÞ
3� tb if ng¼maxðnr;ng;nbÞ and nb 6¼minðnr;ng;nbÞ
3þ tg if nb¼maxðnr;ng;nbÞ and nr¼minðnr;ng;nbÞ
5� tr otherwise

8>>>>>><
>>>>>>:

ð3Þ
where h; s; v 2 ½0; . . . ; 1�.

2.4. Colour quantification

Generally, the HSV colour space is discretised to 256

levels at each channel, which yields a very large number
of colours (256 · 256 · 256). In order to limit the

dimensionality of the colour features of the pizza sauce

spread, the colour space must be reduced and quantified

into a smaller number of colours, which was realised by

the following three steps. Firstly, to reduce the effect of

illumination on the system, the value component (V )
was not used for colour features extraction of pizza

sauce spread. Then, a vector quantifier (Gray, 1984) was
designed to quantify the remaining two-dimensional

space, i.e., hue and saturation. Finally, colour histogram

was employed to represent the distribution of colour

features in the image of pizza sauce spread.

After ignoring the value component, the two-dimen-

sional HS space was assumed to consist of MðM � 256Þ
colours: VS ¼ f~v1;~v2; . . . ;~vMg, where the vectors were

two-dimensional, i.e., ~vm ¼ ðvm;1; vm;2Þ, m ¼ 1; 2; . . . ;M .
The hue and saturation components were quantified into

16 intervals respectively to produce a set of 256 colours

as the codebook: CS ¼ f~c1;~c2; . . . ;~c256g, where the code-
vectors were two-dimensional, i.e., ~cn ¼ ðcn;1; cn;2Þ,
n ¼ 1; 2; . . . ; 256. In this way, the HS space was parti-

tioned into 256 regions: RS ¼ fR1;R2; . . . ;R256g. Thus, a
vector quantifier (Q) was generated, which mapped the

vector set VS containing M inputs into a finite set CS
containing 256 outputs: Qð~vmÞ ¼~cn, if ~vm 2 Rn. The

aforementioned quantification yielded a collection of 256

distinct colours in HS space.
The colour histogram method is one of the simplest
and most popular approaches to characterise colour

information in the images. Using the 256-colour quan-

tified HS space, the distribution of colour content in the

image of pizza sauce spread was represented by a colour

histogram. Column III in Fig. 3 showed five examples of

quantified colour histogram of pizza sauce spread. The

abscissa is the index of code-vector n and the ordinate

is the frequency of occurrence.

2.5. Dimensionality reduction by principal component

analysis

In real implementation, the quantified 256-dimen-

sional vectors are still too large to allow fast and accu-
rate classification. The large feature vectors will increase

the complexity of the classifier and the classification

error. PCA is one of the powerful techniques for

dimensionality reduction (Calvo, Partridge, & Jabri,

1998), which transforms original feature vectors from

large space to a small subspace with lower dimensions.

The basic approach of PCA is first to compute the

covariance matrix (CM) of the quantified 256-dimen-
sional vectors. The eigenvalue ki and eigenvector ~ui of
the covariance matrix (CM) can be obtained by solving

the eigenstructure decomposition CM~ui ¼ ki~ui. In prac-

tice, there are two ways to compute the eigenvalues and

eigenvectors: singular value decomposition (SVD) and

regular eigen-computation (Zhao, Chellappa, & Krish-

naswamy, 1998). Taken the eigenvectors~ui as its rows, a
transformation matrix (T ) is formed. The new colour
feature vectors cy!i are obtained by cy!i ¼ T cx!i, which

maps the quantified 256-dimensional vectors to a smal-

ler vectors.

The first principal component accounts for the most

significant characteristic of the original data with the

maximum variance. Each succeeding component ac-

counts for less significant characteristic with as much of

the remaining variability as possible. Practically, the last
few principal components can be truncated from the

back of the transformation matrix. These principal

components correspond to useless characteristics that

are essentially noise.

2.6. Classification using SVM

The classification of pizza sauce spread into accept-

able and unacceptable quality levels can be considered

as a binary categorisation problem. Suppose there are l
samples of pizza sauce spread in the training data, and

each sample is denoted by a vector~xi, which represents

the colour features of the pizza sauce spread. The clas-

sification of pizza sauce spread can be described as the
task of finding a classification function f :~xi ! yi; yi 2
f�1;þ1g using training data. Subsequently, the classi-

fication function f is used to classify the unseen test



Fig. 3. Results of the image segmentation and colour features extraction algorithms. Column I: original images of the pizza sauces; column II:

segmentation results; column III: colour histograms of the segmented images. Row 1: reject underwipe; row 2: acceptable underwipe; row 3: even

spread; row 4: acceptable overwipe; row 5: reject overwipe.
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data. If f ð~xiÞ > 0, the input vector ~xi is assigned to the

class yi ¼ þ1, i.e., the acceptable quality level, otherwise

to the class yi ¼ �1, i.e., the unacceptable quality level.
For the linearly separable training vectors, the clas-

sification function f has the following form:

f ð~xÞ ¼ sgnð~wT~xþ bÞ ð4Þ

where ~w is the normal to the hyperplane and b is a bias

term, which should satisfy the following conditions:

yið~wT~xi þ bÞP 1 i ¼ 1; 2; . . . ; l ð5Þ

The SVM is trying to find the optimal separating

hyperplane that maximises the margin between positive
and negative samples. The margin is 2=k~wk, thus the

optimal separating hyperplane is the one minimising
1
2
~wT~w, subject to constraints (5), which is a convex

quadratic programming problem.

For the linearly non-separable case, constraints (5)
are relaxed by introducing a new set of nonnegative

slack variables fniji ¼ 1; 2; . . . ; lg as the measurement of

violation of the constraints (Vapnik, 1998) as follows:

yið~wT~xi þ bÞP 1� ni i ¼ 1; 2; . . . ; l ð6Þ

The optimal hyperplane is the one that minimises the

following formula:

1

2
~wT~wþ C

Xl

i¼1

ni ð7Þ

where C is a parameter used to penalise variables ni,
subject to constraints (6).
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For nonlinearly separable case, the training vectors~xi
can be mapped into a high dimensional feature space H
by a non-linear transformation ~uð�Þ. The training vec-

tors become linearly separable in the feature space H
and then separated by the optimal hyperplane described

as before. In many cases, the dimension of H is infinite,

which makes it difficult to work with ~uð�Þ explicitly.

Since the training algorithm only involves inner prod-

ucts in H , a kernel function kð~x;~yÞ is used to solve the
problem, which defines the inner product in H :

kð~x;~yÞ ¼ h~uð~xÞ; ~uð~yÞi ð8Þ
Polynomial kernels and Gaussian radial basis function

(RBF) kernels are usually applied in practice and are

defined as:

kð~x;~yÞ ¼ ð~x~y þ bÞd ð9Þ

kð~x;~yÞ ¼ expð�k~x�~yk2=2r2Þ ð10Þ
where b is the bias term and d is the degree of polyno-

mial kernels.

The classification function then has the following
form in terms of kernels:

f ð~xÞ ¼ sgn
Xl

i¼1

yiaikð~xi;~xÞ
"

þ b

#
ð11Þ

where ai can be obtained by solving a convex quadratic

programming problem subject to linear constraints. The

support vectors are those~xi with ai > 0 in Eq. (11).
3. Results and discussion

In this study, 120 images of pizza sauce spread were

captured for classification, including 60 acceptable levels

(15 acceptable underwipe, 25 even spread and 20 accept-

able overwipe) and 60 unacceptable levels (30 reject un-
derwipe and 30 reject overwipe). The image segmentation

algorithm of pizza sauce spread described above was

implemented by using Matlab (Mathworks, 1992) under

Windows NT 4.0 on aDell Workstation 400. Five images

of pizza sauce spread were chosen to demonstrate the

performance of the algorithm as shown in Fig. 3. The first

column (I in Fig. 3) shows five original images including

two unacceptable quality levels, i.e., reject underwipe
(Fig. 3-I1) and reject overwipe (Fig. 3-I5), and three

acceptable quality levels, i.e., acceptable underwipe (Fig.

3-I2), even spread (Fig. 3-I3), and acceptable overwipe

(Fig. 3-I4). The segmentation results of the five original

images were shown in the second column (II in Fig. 3),

where the regions of pizza sauce spread were preserved

well and the background regions were set with black

colour. Based on visual judgement, it can be seen that
the segmentation is satisfactory.

After that, the segmented image was converted from

RGB colour space to HSV colour space by Eqs. (1)–(3).
Then, the vector quantifier described in Section 2.4 was
applied to extract the colour features of the pizza sauce

spread. The quantified colour histogram of the five

segmented images in the second column of Fig. 3 were

shown in the third column of Fig. 3. It can be observed

that the histograms differ sequentially from Fig. 3-III1

(reject underwipe) to Fig. 3-III5 (reject overwipe) with

the sauce spread on the pizza base increasing. In Fig. 3-

III1, there are four big peaks (greater than 100), which
are located in the following ranges ½1; 13�, ½17; 27�,
½33; 39� and ½241; 251�, respectively. However, in Fig. 3-

III5, there are only two big peaks located in the ranges

½1; 13� and ½242; 251�, respectively. Fig. 3-III1 (reject

underwipe) and Fig. 3-III5 (reject overwipe) are unac-

ceptable levels for too little sauce or too much sauce.

Contrastively, there are three big peaks in Fig. 3-III2,

III3 and III4, respectively, which are all acceptable
levels, namely acceptable underwipe, even spread, and

acceptable overwipe. The big peak located in the range

½33; 39� disappears in the three acceptable levels, and the

big peak located in ½17; 27� decreases gradually from the

acceptable underwipe to the acceptable overwipe. Based

on the colour histogram, it is not difficult to classify the

five images into acceptable and unacceptable levels. The

three images of acceptable levels have three big peaks,
while the other two images of unacceptable levels have

four or two big peaks. The illustrational results indicate

that the colour contents in the images of pizza sauce

spread can be characterised efficiently by the algorithm

developed.

256-dimensional vectors are still too large to classify

accurately with small sample sizes. Meanwhile, it is easy

to find that there are a number of portions of the
quantified colour histogram with zero value. PCA was

applied to reduce the dimensionality of the colour fea-

tures. The analysis showed that 99.98% of the total

variation is explained by the first 30 principal compo-

nents. The results were visualised by a scatter plot

(shown in Fig. 4), where the abscissa corresponds to the

first principal component explained 51.76% of the total

variation and the ordinate corresponds to the second
principal component explained 17.46% of the total

variation. The samples of pizza sauce spread of the

unacceptable levels, i.e., reject underwipe and reject

overwipe, were mostly located in the right and left part

of the plot, respectively. And the samples of pizza sauce

spread of the acceptable levels were mostly located in the

middle part of the plot.

Sixty images of pizza sauce spread were randomly
selected for training and the remaining 60 images for test.

The first 30 principal components of each sample were

used as input to the classifiers. The SvmFu (Ryan, 2002)

implementation of SVMs was used for classification of

pizza sauces in all experiments. Besides a linear SVM

classifier, polynomial classifiers and RBF classifiers were

trained and tested using the kernels defined in Eqs. (9)



Fig. 4. PCA plot of the first two principal components.

Fig. 5. The illustration of three SVM classifiers.
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and (10), respectively. A range of parameters for the

polynomial and RBF SVM classifiers were selected to

eliminate any biased performance of the SVMs that may

be caused by inappropriate choice of parameters. The

parameters of polynomial SVM were the combinations

of bias b and degree d, with b 2 f0; 1; 2; 3; 4; 5; 6g, and
d 2 f1; 2; 3; 4; 5g. The values r 2 f0:2; 0:5; 0:8; 1:0; 1:2;
1:5; 2:0; 2:5g were selected for the RBF SVM classifiers.
The penalty parameter C in Eq. (7) was set as the default

value 1.0 by the SvmFu algorithm (Ryan, 2002).

The classification results with linear SVM and RBF

SVM classifiers are listed in Table 1. On the test experi-

ments, the RBF kernel with r ¼ 0:5 resulted in the best

classification rate of 95.00%. Table 2 shows the classifi-

cation results of the polynomial SVM with different
Table 1

The classification results with linear SVM and RBF SVM classifiers

Classifiers Linear SVM RBF SVM

0.2 0.5 0.8

Rate (%) 60.00 70.00 95.00 91.67

Table 2

The classification results (%) of polynomial SVM with different combination

Bias b Degree d

1 2 3

0 60.00 91.67 63.33

1 60.00 93.33 96.67

2 60.00 96.67 93.33

3 60.00 96.67 93.33

4 60.00 96.67 93.33

5 60.00 96.67 91.67

6 60.00 96.67 91.67
combinations of bias b and degree d. The polynomial
SVM classifiers ð1; 3Þ, ð1; 4Þ, ð2; 2Þ, ð2; 3Þ, ð2; 4Þ, ð2; 5Þ,
and ð2; 6Þ achieved the best classification accuracy of

96.67% on the test experiments. In fact, the polynomial

SVM classifiers with d ¼ 1 are linear SVM classifiers,

which performed worse than any other classifiers with

only 60.00% accuracy. Fig. 5 illustrates visually the use of

three SVM classifiers for classification of samples of

pizza sauce spread characterised by the first two princi-
pal components. The decision boundaries of a RBF, a

polynomial and a linear SVM classifier were demon-

strated by the contours plotted in different type of line.

As shown in Fig. 5, it was impossible to separate the data

set linearly, which was the reason why only 60.00%

accuracy was achieved by the linear SVM classifier.
1.0 1.2 1.5 2.0 2.5

90.00 91.67 85.00 66.67 68.33

s of bias b and degree d

4 5 6

88.33 61.67 68.33

96.67 95.00 68.33

95.00 95.00 68.33

95.00 95.00 68.33

95.00 95.00 68.33

95.00 95.00 68.33

95.00 95.00 68.33
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The decision boundaries of the RBF SVM classifier and
the polynomial SVM classifier can separate the data set

with comparative error. Therefore, the performance of

the RBF SVM classifier was comparable with the poly-

nomial SVM classifier as shown in Tables 1 and 2.

Although the component V was eliminated to reduce

the effect of illumination on the developed computer

vision system, the lighting system is still an important

prerequisite of image acquisition for quality evaluation
of pizza sauce spread. Fortunately, the lighting hard-

ware used is common and readily available for appli-

cation. In a real inspection task where the illumination

is changeable, the new classifier can be obtained by

training with samples captured under new lighting

conditions.

In practice, binary classification of the pizza sauce

spread can satisfy the general requirement of industrial
applications. However, it seems a little arbitrary and still

cannot satisfy the requirement of multi-classification.

Although SVM is originally developed for binary clas-

sification, several SVM algorithms have been developed

for handling multi-classification problem. One approach

is by using a combination of several binary SVM clas-

sifiers, such as one-versus-all (Vapnik, 1998), one-ver-

sus-one (Kreßel, 1999), and Directed Acyclic Graph
(DAG) SVM (Platt, Cristianini, & Shawe-Taylor, 2000),

while the other is by directly using a single optimisation

formulation (Crammer & Singer, 2001). Our future re-

search will involve in dealing with the multi-classifica-

tion problem of pizza sauce spread using SVM in details.
4. Conclusions

The results presented here have demonstrated the

ability of the approach based on colour vision and

support vector machine to classify pizza sauce spread.

Being a user-oriented colour space, HSV was employed

and the component V was eliminated to reduce the effect

of illumination. The vector quantification and PCA

techniques successfully reduced the dimensionality of
colour features of pizza sauce spread obtained from the

remaining HS space. With the first 30 principal com-

ponents as the input, an overall accuracy of 96.67% was

achieved by the polynomial SVM classifiers ð1; 3Þ, ð1; 4Þ,
ð2; 2Þ, ð2; 3Þ, ð2; 4Þ, ð2; 5Þ, and ð2; 6Þ, and 95.00% accu-

racy was obtained using the RBF SVM classifier with

r ¼ 0:5.
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