Archivage d'images médicales

William Puech

LIRMM, CNRS/ University of Montpellier, FRANCE william.puech@lirmm.fr

Outline

- Introduction
- 2 Les différents formats d'images
- 3 DICOM: Digital Imaging and Communications in Medicine
- 4 Compression JPEG

Outline

- Introduction
- 2 Les différents formats d'images
- 3 DICOM: Digital Imaging and Communications in Medicine
- 4 Compression JPEG

Diversité des images médicales

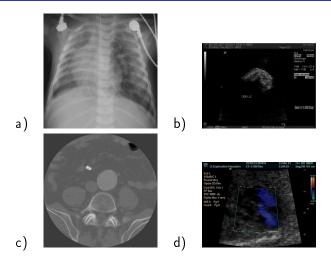
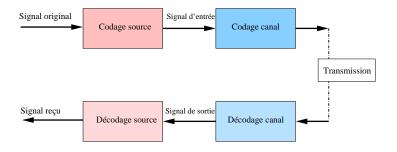
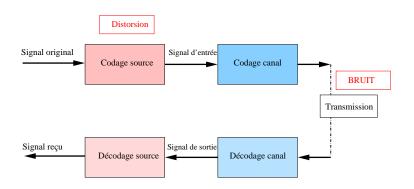
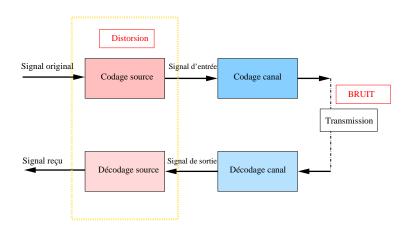




Figure: a) Image radiographique, b)-d) Images échographiques, c) Image scanner Image scanner

Codage pour le transfert et l'archivage d'images



Codage pour le transfert et l'archivage d'images

Codage pour le transfert et l'archivage d'images

Outline

- Introduction
- 2 Les différents formats d'images
- 3 DICOM: Digital Imaging and Communications in Medicine
- 4 Compression JPEG

Format du fichier image

Structure générale

Normes et spécifications. 1 fichier image :

- 1 en-tête (header)
 - code (magic-number)
 - taille image $(I \times h)$
 - taille d'un pixel : 1 bit (binaire), 8 bits (monochrome), 24 bits (3×8 bits : vraies couleurs)
 - couleurs indexées
 - transparence
 - option de codage
 - commentaires
- données images
- infos annexes en fin du fichier (footer)

Format du fichier image

Structure générale

Normes et spécifications. 1 fichier image :

- 1 en-tête (header)
- données images
 - Formats bruts : 1 pixel -> 1 intensité lumineuse
 - ordre de lecture des pixels
 - Formats comprimés -> structure complexe
- infos annexes en fin du fichier (footer)

Formats bruts

Sans perte, en-tête minimum

- PNM (Portable Any Map)
 - code à 2 caractères (P5)
 - 2 entiers : taille (512 512)
 - 1 entier : profondeur (255)
 - commentaires (#auteur)
- PBM (Portable BitMap) : image binaire
- PGM (Portable GrayMap) : image niveaux de gris
- PPM (Portable PixMap): image couleur (vraies couleurs). 3 plans R, G, B
- BMP (BitMap) Format Windows (Possibilité de compression sans perte, Utilisation possible d'1 palette couleur)
- PNG
- TIFF

Compression sans perte

Algo compression sans perte sur 8 bits!!

Image 24 bits -> Image 8 bits -> Compression

Sans perte, en-tête minimum

- TGA (Format True Vision, TARGA): codage RLE
- GIF (Graphic Interchange Format)
 - Basé sur l'algo LZW
 - couleurs indexées (palette 256 teintes max)
 - transparence binaire
 - mode de transmission progressive : entrelacé
 - algo breveté -> droits d'auteurs

Compression sans perte

- PNG (Portable Network Graphic)
 - libre de droit, Basé sur l'algo LZ77
 - codage format brut possible
 - couleurs réelles ou indexées, transparence -> 32 bits
 - mode de transmission : entrelacé
 - codage prédicitif possible
- TIFF (Tagged Image File Format)
 - Développé par Adobe System
 - Tous types d'images : binaire, monochrome, 24 bits, ...
 - transparence
 - compression avec pertes
 - algo RLE + codage prédicitf
- JPEG : compression sans perte possible : codage prédicitif
- JPEG2000 : JPEGLS

Compression avec pertes

- JPEG (Joint Photographic Expert Group)
 - utilisé pour les images réelles complexes (domaine spatial et temporel)
 - ISO, CCITT, JFIF
 - tons continus
 - profondeur variée
 - pas de transparence
 - espace colorimétrique libre : RGB, YUV, YCrCb
 - Facteur de qualité : 10% < FQ < 100%
 - technique de compression destructive (avec pertes) : quantification scalaire dans le domaine spectral
 - souplesse

Compression avec pertes

- TIFF : compression avec pertes basée sur les normes JPEG/JFIF
- JPEG2000 : basé sur la transformée en ondelettes (pleins d'autres fonctionnalités)
- FlashPix : codage pyramidale, utilisé par Kodak, HP, MS
- autres formats : SGI, PICT, RASTER, PSD,

Images monochromes

- Image binaire: 1 pixel = 1 bit (0 noir, 1 blanc). Souvent sur 8 bits (0 noir, 255 blanc)
- Image en niveaux de gris : 1 seule couleur -> tons continus
- 256 niveaux de gris sur 8 bits
- Le système visuel humain (SVH) détecte 60 ndg
- 123 -> 125 ou 121 (pas visible à l'oeil
- pour les applications médicales ou en astronomie : 10 bits/pixel (2048 niveaux de gris), voir 12 bits/pixel (4096 niveaux de gris)
- La densité mesurée en unités Hounsfield (UH) va de -1000 pour l'air à +1000 pour l'os dense cortical, en passant par -50 pour la graisse et 0 pour l'eau. Illustration
- autre que le domaine visible : IR, UV, ...

Outline

- 1 Introduction
- 2 Les différents formats d'images
- 3 DICOM: Digital Imaging and Communications in Medicine
- 4 Compression JPEG

références

http://medical.nema.org

Les acteurs

Acteurs industriels	Acteurs académiques ou institutionnels	
AGFA U.S. Healthcare	American Academy of Ophthalmology	
Boston Scientific	American College of Cardiology	
Camtronics Medical Systems	American College of Radiology	
Carl Zeiss Meditec	American College of Veterinary Radiology	
DeJarnette Research Systems	American Dental Association	
Dynamic Imaging	College of American Pathologists	
Eastman Kodak	Deutsche Röntgengesellschaft	
ETIAM	European Society of Cardiology	
FujiFilm Medical Systems U.S.A.	Healthcare Information and Management	
GE Healthcare	Systems Society	
Heartlab	Medical Image Standards Association of	
Hologic	Taiwan	
IBM Life Sciences	Societa Italiana di Radiologia Medica	
Konica Minolta Medical Corporation	Société Française de Radiologie	
MatrixView	Society for Computer Applications in	
McKesson Medical Imaging Company	Radiology	
MEDIS	Canadian Institute for Health Informatics	
Merge eMed	Center for Devices & Radiological Health	
Philips Medical Systems	Japan Industries Association of Radiological	
RadPharm	Systems (JIRA)	
R2 Technology, Inc.	Korean PACS Standard Committee	
Sectra Imtec AB	National Cancer Institute	
Siemens Medical Solutions USA, Inc.	National Electrical Manufacturers Association	
Sony Europe		
Toshiba America Medical Systems		

Figure: Liste des organisations participant au comité DICOM.

Groupes de travail

Groupes de travail du comité DICOM		
WG-01: Cardiac and Vascular Information	WG-14: Security	
WG-02: Projection Radiography and	WG-15: Digital Mammography and CAD	
Angiography		
WG-03: Nuclear Medicine	WG-16: Magnetic Resonance	
WG-04: Compression	WG-17: 3D	
WG-05: Exchange Media	WG-18: Clinical Trials and Education	
WG-06: Base Standard	WG-19: Dermatologic Standards	
WG-07: Radiotherapy	WG-20: Integration of Imaging and	
	Information Systems	
WG-08: Structured Reporting	WG-21: Computed Tomography	
WG-09: Ophthalmology	WG-22: Dentistry	
WG-10: Strategic Advisory	WG-23: Application Hosting	
WG-11: Display Function Standard	WG-24: Surgery	
WG-12: Ultrasound	WG-25: Veterinary Medicine	
WG-13: Visible Light	WG-26: Pathology	

Figure: Liste des groupes de travail du comité DICOM.

Objectifs et avantages du standard DICOM

- Créé en 1985 par :
 - I'ACR (American College of Radiology)
 - Ia NEMA (National Electric Manufacturers Association)
- Standardiser les données transmises entre les différents appareils de radiologie.
- Format de fichier + protocole de transmission des données (basé sur TCP/IP).
- Faciliter les transferts d'images entre les machines de différents constructeurs.
- Eviter d'avoir pour chaque constructeur de matériel d'imagerie un format de données propriétaire :
 - Problèmes de gestion et de maintenance (incompatibilités, coût, perte d'information) dans les établissements de santé.

Objectifs et avantages du standard DICOM

- Tout numérique possible :
 - Pour éviter le tirage des clichés sur papier argentique
 - Pour diminuer le coût d'une radiographie.
- Amélioration du suivi médical des patients (transfert d'un établissement de santé à un autre).
- Les images au format Dicom accompagnant les dossiers médicaux sont lisibles sur tout matériel informatique compatible.

Objectifs et avantages du standard DICOM

Le standard DICOM couvre de nombreux aspects parmi lesquels :

- la communication des images et des données associées (en mode connecté et par l'utilisation de supports physiques), pour pratiquement l'ensemble des techniques existantes (modalités d'imagerie);
- l'impression des images sur des supports physiques;
- la communication des comptes rendus des procédures d'imagerie;
- la gestion des activités liées à l'acquisition, au traitement et à l'interprétation des images, à travers la gestion de listes de travail;
- la sécurisation des échanges, via un service appelé "accord de stockage", et différents mécanismes de signature des documents;
- la cohérence du rendu des images.

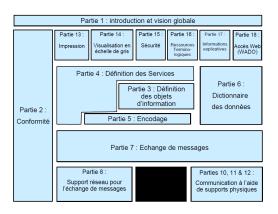


Figure: Les 18 parties relativement indépendantes du standard DICOM.

Chaque champ est défini par :

- pour les encodages explicites :
 - étiquette (tag)
 - représentation de valeur (VR Value Representation) encodée par deux caractères
 - longueur de la valeur
 - valeur
- pour les encodages implicites :
 - étiquette (tag)
 - longueur de la valeur
 - valeur
- Une étiquette est constituée de :
 - numéro de groupe (group number) encodé par deux octets
 - numéro d'élément (element number) encodé par deux octets

- Protocole d'échange d'images :
 - par réseau
 - par l'intermédiaire de supports physiques (cédéroms, DVD, etc.).
- Standard organisé de façon modulaire :
 - notion de Service Object Pair (SOP) associant une classe d'images d'un type particulier (par exemple des images CT (Computed Tomography) ou images de tomographie à rayons X, et un service d'échange donné (par exemple le service "stockage d'image").

- La spécification des éléments de données à transmettre correspond à la notion d'IOD (Information Object Definition).
- Un IOD spécifie une liste d'éléments de données, caractérisant :
 - le contexte général d'obtention de l'image (informations essentielles sur le patient, l'examen, la série),
 - les paramètres d'acquisition (notamment paramètres physiques d'acquisition, algorithme de reconstruction, etc.),
 - les caractéristiques de l'image (taille de l'image, résolution, etc.),
 - les données pixels proprement dites.

Module regroupant les éléments de données relatifs à une même entité d'information

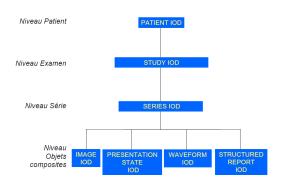


Figure: Modèle hiérarchique des entités DICOM.

Compression d'images sous DICOM

Les standards en compression de données peuvent être classés en deux catégories :

- ceux qui ne font aucune hypothèse sur la nature des données.
- ceux qui s'appuient sur une organisation spatio-temporelle particulière (image 2D ou suite d'images 2D)

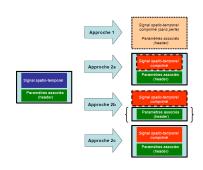


Figure: Approches généralistes et spécifiques pour la compression d'image.

Compression d'images sous DICOM

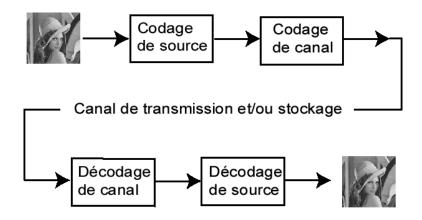
	Avantages	Inconvénients
Approche 1	Généricité	Performances faibles
« compression	Facilité de mise en œuvre	
généraliste »	Coût très faible	
(ex. gzip, compress)		
Approche 2a	Réutilisation d'implémentations	Eventuellement
« compression d'images généraliste » par encapsulation	existantes pour la compression / décompression et la visualisation des images	inadaptée à des données très spécifiques, ou performances sub-
(ex. JPEG, MPEG)	Performances très optimisées	optimales
	Prise en compte du contexte médical (header contenant le nom du patient, les paramètres d'acquisition, etc.)	
Approche 2b	Facilite la diffusion la plus large	Pas de prise en compte
« compression d'images généraliste »	(hors des services spécialisés, et vers le grand public), au moindre coût	du contexte médical (header)
(ex. JPEG, MPEG)	(navigateurs web)	
Approche 2c	Peut permettre d'obtenir des	Coût de développement
« compression d'images spécifique »	performances optimales, découlant d'une très bonne adéquation à la structure des données	inhérent au caractère spécifique

Figure: Avantages et inconvénients des standards généralistes et standards spécifiques.

Outline

- 1 Introduction
- 2 Les différents formats d'images
- 3 DICOM: Digital Imaging and Communications in Medicine
- 4 Compression JPEG

Figure: a) Image Lena, b) Image comprimée.


Figure: a) Image Lena, b) Image comprimée.

Compression

- Contexte : codage ou compression des images numériques
- Pourquoi : réduction de la quantité d'éléments binaires représentant l'information image -> codage de source

$$\textit{Taux decompression} = \frac{\textit{quantitd'in formation image originale (bits)}}{\textit{quantitd'in formation image comprime (bits)}}$$
 (1

Finalité : archivage ou transmission

Bibliographie

Compression des images et des signaux médicaux [COMP 2007]

- Chapitre 2 : État de l'art des méthodes de compression A Baskurt.
- Chapitre 4 : Place des standards dans la compression des images médicales -B. Gibaud, J. Chabriais.
- Chapitre 7 : Compression des images médicales 2D -C.
 Cavaro-Ménard, A. Naït-Ali, O. Deforges, M. Babel.
- ...
- Chapitre 10 : Codage hybride cryptage-marquage-compression pour la sécurisation de l'information médicale -W. Puech, G. Coatrieux.
- Christine CAVARO-MÉNARD et Amine NAÏT-ALI
 Compression des images et des signaux médicaux
 HERMÈS / LAVOISIER, Collection: Traité information et Science du vivant, 2007.