Stéphane Bessy

Maître de conférences en informatique à l' Université de Montpellier.
Enseignant au département informatique de la Faculté des Sciences.
Membre de l'équipe ALgorithmes de Graphes et COmbinatoire (AlGCo) du LIRMM.

   Coordonnées

LIRMM
161 rue Ada
34095 Montpellier Cedex 5
FRANCE
        
Bureau E318
Téléphone: 04 67 41 85 44
Fax: +00 33 (0)4 67 41 85 85
Email: Stephane.Bessy@lirmm.fr

   Thèmes de recherche

Théorie des graphes, algorithmique, optimisation combinatoire.

   Enseignement


Stage Recherche Master 2 info
Licence/Master Informatique, parcours Math-Info
HLIN501: algo de graphes           HLIN502: Système (Td/Tp)
FMIN215: algo géo           HMIN223: Graphes et Structures

   Travaux scientifiques

  1. Two floor building needing 8 colors, S. Bessy, D. Goncalves and J.-S. Sereni, Journal of Graph Algorithms Appl., 19(1), 1--9 (2015).
  2. On independent set on B1-EPG graphs, S. Bessy, M. Bougeret, D. Gonçalves and C. Paul, Conference WAOA 2015, 158--169 (2015).
  3. Cycle Transversals in Tournaments with Few Vertex Disjoint Cycles, J. Bang-Jensen and S. Bessy, Journal of Graph Theory, 79(4), 249--266 (2015).
  4. Disjoint 3-cycles in tournaments: a proof of the Bermond-Thomassen conjecture for tournaments, J. Bang-Jensen, S. Bessy and S. Thomassé, Journal of Graph Theory, 75(3), 284--302 (2014).
  5. (Arc-)disjoint flows in networks , J. Bang-Jensen and S. Bessy, Theor. Comput. Sci., 526: 28--40 (2014).
  6. Enumerating the edge-colourings and total colourings of a regular graph, S. Bessy and F. Havet, Journal of combinatorial Optimization, 25 (4), 523--535 (2013).
  7. Polynomial kernels for Proper Interval Completion and related problems, S. Bessy and A. Perez, Information and Computation, 231: 89--108, (2013), and actes de Fundamentals of Computation Theory 11, Oslo, Volume 6914 (2011), pp 229--239.
  8. Polynomial kernels for 3-leaf power graph modification problems, S. Bessy, C. Paul, A. Perez, Discrete Applied Mathematics, 158: 1732--1744 (2010), and actes de IWOCA 2009 Volume 5874: 72--82, (2009).
  9. Optical index of fault tolerant routings in WDM networks. S. Bessy, C. Lepelletier, Networks, 56 (2): 95--102, (2010).
  10. Partitionning a graph into a cycle and an anticycle, a proof of Lehel's conjecture, S.Bessy, S. Thomassé, Journal of Combinatorial Theory Serie B, 100 (2): 176--180 (2010).
  11. Two proofs of Bermond-Thomassen conjecture for regular tournaments S. Bessy, N. Lichiardopol, J.-S. Sereni, Discrete Mathematics, 310 (3): 557--560 (2010), and
        6th Czech-Slovak International Symposium on Combinatorics (2006).
  12. Kernels for Feedback Arc Set In Tournaments, S.B., F.V. Fomin, S. Gaspers, C. Paul, A. Perez, S. Saurabh, S.Thomassé, Journal of Computer and System Sciences, 77 (6): 1071--1078 (2011), and actes de FSTTCS 2009: 37--47, Kampur, India.
  13. Paths partition with prescribed sources in digraphs, a Chvátal-Erdös condition approach, S. Bessy. Discrete Mathematics, Volume 308 (18): 4108--4115 (2008).
  14. Spanning a strong digraph with alpha cycles: a conjecture of Gallai, S.Bessy, S. Thomassé. Combinatorica, 27 (6): 659--667 (2007), et actes de IPCO X 2004, New-York.
  15. Arc-chromatic number of digraphs in which every vertex has bounded outdegree or bounded indegree, S.Bessy, E. Birmelé, F. Havet. Journal of Graph Theory, 53 (4): 315--332 (2006).
  16. The categorical product of two 5-chromatic digraphs can be 3-chromatic, S.Bessy, S. Thomassé. Note, Discrete Mathematics, 305 (1-3): 344--346 (2005).
  17. Every strong digraph has a spanning strong subgraph with at most n+2α-2 arcs, S.Bessy, S.Thomassé. Journal of Combinatorial Theory Series B, 87: 289--299 (2003).
-----------------------------------------------------------------------
  1. Colorful paths for 3-chromatic graphs, S. Bessy and N. Bousquet, Submitted.
  2. Parameterized Complexity of a coupled-task scheduling problem, S. Bessy and R. Giroudeau, Submitted.
  3. Antistrong digraph, J. Bang-Jensen, S. Bessy, B. Jackson, M. Kriesell. Submitted.
  4. Bounds, Approximation, and Hardness for the Burning Number, S. Bessy, D. Rautenbach. Submitted.
  5. Exponential Domination in Subcubic Graphs, S. Bessy, P. Ochem, D. Rautenbach. Submitted.
  6. Bounds on the Exponential Domination Number, S. Bessy, P. Ochem, D. Rautenbach. Submitted.
  7. Maximal Wiener Index of 2-connected graphs. S. Bessy, F. Dross and R. Skrekovski Preprint.

   Divers

- Liens