Topological arguments and Kolmogorov complexity

Alexander Shen
LIRMM, CNRS & UM2, Montpellier; on leave from ИППИ РАН, Москва

Supported by ANR NAFIT grant
Conditional complexity as distance

\[C(x | y) \], conditional complexity of \(x \) given \(y \), minimal length of a program that maps \(y \) to \(x \) depends on the programming language, is minimal up to \(O(1) \) for some "optimal" languages; one of them is fixed.

\(I \) measures "how far is \(x \) from \(y \)" in a sense, but not symmetric.

Task: given string \(x \) and number \(n \), find \(y \) such that

\[C(x | y) = n + O(1) \]

and

\[C(y | x) = n + O(1) \]

not always possible:

\[C(x) \] should be at least \(n \).
Conditional complexity as distance

- $C(x|y)$, conditional complexity of x given y, minimal length of a program that maps y to x
Conditional complexity as distance

- $C(x|y)$, conditional complexity of x given y, minimal length of a program that maps y to x
- depends on the programming language, is minimal up to $O(1)$ for some “optimal” languages; one of them is fixed
Conditional complexity as distance

- $C(x|y)$, conditional complexity of x given y, minimal length of a program that maps y to x
- depends on the programming language, is minimal up to $O(1)$ for some “optimal” languages; one of them is fixed
- $C(x|y)$ measures “how far is x from y” in a sense, but not symmetric
Conditional complexity as distance

- $C(x|y)$, conditional complexity of x given y, minimal length of a program that maps y to x
- depends on the programming language, is minimal up to $O(1)$ for some “optimal” languages; one of them is fixed
- $C(x|y)$ measures “how far is x from y” in a sense, but not symmetric
- task: given string x and number n, find y such that $C(x|y) = n + O(1)$ and $C(y|x) = n + O(1)$
Conditional complexity as distance

- $C(x|y)$, conditional complexity of x given y, minimal length of a program that maps y to x
- depends on the programming language, is minimal up to $O(1)$ for some “optimal” languages; one of them is fixed
- $C(x|y)$ measures “how far is x from y” in a sense, but not symmetric
- task: given string x and number n, find y such that $C(x|y) = n + O(1)$ and $C(y|x) = n + O(1)$
- not always possible: $C(x)$ should be at least n
Theorem: if $C(x) > 2^n$, there exists y such that $C(x_jy) = n + O(1)$ and $C(y_jx) = n + O(1)$.

Proof uses a game argument. In fact, $C(x) > n + O(\log n)$ is enough but for completely different reasons: simple topological fact: if a continuous mapping of a circle S_1 to \mathbb{R}^2 turns around some point, then any its continuous extension to a mapping of a disk D_2 covers O. Strangely, for $C(x) \gg n$ this argument does not work (only for $C(x) = \text{poly}(n)$).

So $C(x) = n + O(\log n)$ is enough, but two essentially different arguments are needed at both ends.
M. Vyugin theorem and its extension

- Theorem: if $C(x) > 2n$, there exists y such that $C(x|y) = n + O(1)$ and $C(y|x) = n + O(1)$.

Proof uses a game argument in fact $C(x) > n + O(\log n)$ is enough but for completely different reasons: simple topological fact: if a continuous mapping of a circle S^1 to \mathbb{R}^2 turns around some point, then any its continuous extension to a mapping of a disk D^2 covers this point.

Strange, for $C(x) \gg n$ this argument does not work (only for $C(x) \leq \text{poly}(n)$).

So $C(x) = n + O(\log n)$ is enough, but two essentially different arguments are needed at both ends.
M. Vyugin theorem and its extension

- Theorem: if $C(x) > 2n$, there exists y such that $C(x|y) = n + O(1)$ and $C(y|x) = n + O(1)$.
- proof uses a game argument
Theorem: if $C(x) > 2n$, there exists y such that $C(x|y) = n + O(1)$ and $C(y|x) = n + O(1)$.

proof uses a game argument

in fact $C(x) > n + O(\log n)$ is enough
M. Vyugin theorem and its extension

- Theorem: if $C(x) > 2n$, there exists y such that $C(x|y) = n + O(1)$ and $C(y|x) = n + O(1)$.
- proof uses a game argument
- in fact $C(x) > n + O(\log n)$ is enough
- but for completely different reasons
Theorem: if $C(x) > 2n$, there exists y such that $C(x|y) = n + O(1)$ and $C(y|x) = n + O(1)$.

- Proof uses a game argument
- In fact, $C(x) > n + O(\log n)$ is enough
- But for completely different reasons
- Simple topological fact: if a continuous mapping of a circle S^1 to \mathbb{R}^2 turns around some point O, then any its continuous extension to a mapping of a disk D^2 covers O
M. Vyugin theorem and its extension

- **Theorem:** if $C(x) > 2n$, there exists y such that $C(x|y) = n + O(1)$ and $C(y|x) = n + O(1)$.
- proof uses a game argument
- in fact $C(x) > n + O(\log n)$ is enough
- but for completely different reasons
- simple topological fact: if a continuous mapping of a circle S^1 to \mathbb{R}^2 turns around some point O, then any its continuous extension to a mapping of a disk D^2 covers O
- strangely, for $C(x) \gg n$ this argument does not work (only for $C(x) \leq \text{poly}(n)$)
M. Vyugin theorem and its extension

- Theorem: if $C(x) > 2n$, there exists y such that $C(x|y) = n + O(1)$ and $C(y|x) = n + O(1)$.
- Proof uses a game argument
- In fact $C(x) > n + O(\log n)$ is enough
- But for completely different reasons
- Simple topological fact: if a continuous mapping of a circle S^1 to \mathbb{R}^2 turns around some point O, then any its continuous extension to a mapping of a disk D^2 covers O
- Strangely, for $C(x) \gg n$ this argument does not work (only for $C(x) \leq \text{poly}(n)$)
- So $C(x) \geq n + O(\log n)$ is enough, but two essentially different arguments are needed at both ends
Why topology can be useful

I simple example: imagine we want \(C(xjy) = n \) and know that \(C(x) = n \).

I let \(y \) be \(x \), then \(C(xjy) = O(1) \).

I let us remove bits in \(y \) one by one (e.g., from right to left).

I \(C(xjy) \) then changes but gradually: \(C(xjy0) \) and \(C(xjy1) \) are \(C(xjy) + O(1) \).

I at the end \(y \) is empty, and \(C(xjy) = C(xj) = n \).

I discrete intermediate value theorem guarantees that \(C(xjy) = n + O(1) \) for some \(y \) on the way.
Why topology can be useful

simple example: imagine we want $C(x|y) = n$ and know that $C(x) \geq n$.
Why topology can be useful

- simple example: imagine we want $C(x|y) = n$ and know that $C(x) \geq n$.
- let y be x, then $C(x|y) = O(1)$
Why topology can be useful

- simple example: imagine we want $C(x|y) = n$ and know that $C(x) \geq n$.
- let y be x, then $C(x|y) = O(1)$
- let us remove bits in y one by one (e.g., from right to left)
Why topology can be useful

- simple example: imagine we want $C(x|y) = n$ and know that $C(x) \geq n$.
- let y be x, then $C(x|y) = O(1)$
- let us remove bits in y one by one (e.g., from right to left)
- $C(x|y)$ then changes but gradually: $C(x|y0)$ and $C(x|y1)$ are $C(x|y) + O(1)$
Why topology can be useful

- simple example: imagine we want $C(x|y) = n$ and know that $C(x) \geq n$.
- let y be x, then $C(x|y) = O(1)$
- let us remove bits in y one by one (e.g., from right to left)
- $C(x|y)$ then changes but gradually: $C(x|y0)$ and $C(x|y1)$ are $C(x|y) + O(1)$
- at the end y is empty, and $C(x|y) = C(x) \geq n$
Why topology can be useful

- simple example: imagine we want $C(x|y) = n$ and know that $C(x) \geq n$.
- let y be x, then $C(x|y) = O(1)$
- let us remove bits in y one by one (e.g., from right to left)
- $C(x|y)$ then changes but gradually: $C(x|y0)$ and $C(x|y1)$ are $C(x|y) + O(1)$
- at the end y is empty, and $C(x|y) = C(x) \geq n$
- discrete intermediate value theorem guarantees that $C(x|y) = n + O(1)$ for some y on the way
\(O(\log n)\) precision is easy
$O(\log n)$ precision is easy

- to get $C(y|x) = n$ we need to put some n bits of new information (that is not in x) into y
$O(\log n)$ precision is easy

- to get $C(y|x) = n$ we need to put some n bits of new information (that is not in x) into y
- to get $C(x|y) = n$ we need to put in y all the information about x except for n bits
$O(\log n)$ precision is easy

- to get $C(y|x) = n$ we need to put some n bits of new information (that is not in x) into y
- to get $C(x|y) = n$ we need to put in y all the information about x except for n bits
- let p be the shortest program for x, so $|p| = C(x) \geq n$
$O(\log n)$ precision is easy

- to get $C(y|x) = n$ we need to put some n bits of new information (that is not in x) into y
- to get $C(x|y) = n$ we need to put in y all the information about x except for n bits
- let p be the shortest program for x, so $|p| = C(x) \geq n$
- p is incompressible
\(O(\log n)\) precision is easy

- to get \(C(y|x) = n\) we need to put some \(n\) bits of new information (that is not in \(x\)) into \(y\)
- to get \(C(x|y) = n\) we need to put in \(y\) all the information about \(x\) except for \(n\) bits
- let \(p\) be the shortest program for \(x\), so \(|p| = C(x) \geq n\)
- \(p\) is incompressible
- let \(y\) be \(p\) without \(n\) bits
$O(\log n)$ precision is easy

- to get $C(y|x) = n$ we need to put some n bits of new information (that is not in x) into y
- to get $C(x|y) = n$ we need to put in y all the information about x except for n bits
- let p be the shortest program for x, so $|p| = C(x) \geq n$
- p is incompressible
- let y be p without n bits
- plus some random n bits (independent from p)
$O(\log n)$ precision is easy

- to get $C(y|x) = n$ we need to put some n bits of new information (that is not in x) into y
- to get $C(x|y) = n$ we need to put in y all the information about x except for n bits
- let p be the shortest program for x, so $|p| = C(x) \geq n$
- p is incompressible
- let y be p without n bits
- plus some random n bits (independent from p)
- then both $C(x|y)$ and $C(y|x)$ are $n + O(\log n)$
$O(\log n)$ precision is easy

- to get $C(y|x) = n$ we need to put some n bits of new information (that is not in x) into y
- to get $C(x|y) = n$ we need to put in y all the information about x except for n bits
- let p be the shortest program for x, so $|p| = C(x) \geq n$
- p is incompressible
- let y be p without n bits
- plus some random n bits (independent from p)
- then both $C(x|y)$ and $C(y|x)$ are $n + O(\log n)$
- $O(1)$ cannot be obtained in this way (since all the arguments about random and independent bits work with $O(\log n)$ precision only)
Putting pieces together
Putting pieces together

- let p be the shortest program for x, so $|p| = C(x) \geq n$
Putting pieces together

- let \(p \) be the shortest program for \(x \), so \(|p| = C(x) \geq n\)
- let \(q \) be a random (incompressible) string of length \(2n \) when \(p \) is known (independent from \(p \))
Putting pieces together

- let p be the shortest program for x, so $|p| = C(x) \geq n$
- let q be a random (incompressible) string of length $2n$ when p is known (independent from p)
- for every $k \in [0, C(x)]$ and every $l \in [0, 2n]$ consider

$$y_{k,l} = (k\text{-bit prefix of } p, l\text{-bit prefix of } q)$$
Putting pieces together

- let p be the shortest program for x, so $|p| = C(x) \geq n$
- let q be a random (incompressible) string of length $2n$ when p is known (independent from p)
- for every $k \in [0, C(x)]$ and every $l \in [0, 2n]$ consider
 \[y_{k,l} = (k\text{-bit prefix of } p, l\text{-bit prefix of } q) \]
- mapping $(k, l) \mapsto (C(x|y_{k,l}), C(y_{k,l}|x))$
Putting pieces together

- let p be the shortest program for x, so $|p| = C(x) \geq n$
- let q be a random (incompressible) string of length $2n$ when p is known (independent from p)
- for every $k \in [0, C(x)]$ and every $l \in [0, 2n]$ consider

\[y_{k, l} = (k\text{-bit prefix of } p, l\text{-bit prefix of } q) \]

- mapping $(k, l) \mapsto (C(x|y_{k, l}), C(y_{k, l}|x))$
Topological details
Topological details

- mapping is defined on a grid (rectangle)
Topological details

- Mapping is defined on a grid (rectangle)
- And maps neighbor points to a point at $O(1)$ distance

Alternative: repeat the proof for discrete case
Topological details

- mapping is defined on a grid (rectangle)
- and maps neighbor points to a points at $O(1)$ distance
- “Lipschitz continuity”
Topological details

- mapping is defined on a grid (rectangle)
- and maps neighbor points to a points at $O(1)$ distance
- “Lipschitz continuity”
- covers (n, n) with $O(1)$ precision
Topological details

- mapping is defined on a grid (rectangle)
- and maps neighbor points to a points at $O(1)$ distance
- “Lipschitz continuity”
- covers (n, n) with $O(1)$ precision
- reduction to continuous version: interpolation on triangles (linear)
Topological details

- mapping is defined on a grid (rectangle)
- and maps neighbor points to a points at $O(1)$ distance
- “Lipschitz continuity”
- covers (n, n) with $O(1)$ precision
- reduction to continuous version: interpolation on triangles (linear)
- preimage may be not in the grid, but neighbor grid point gives $O(1)$-precision
Topological details

- mapping is defined on a grid (rectangle)
- and maps neighbor points to a points at $O(1)$ distance
- “Lipschitz continuity”
- covers (n, n) with $O(1)$ precision
- reduction to continuous version: interpolation on triangles (linear)
- preimage may be not in the grid, but neighbor grid point gives $O(1)$-precision
- Alternative: repeat the proof for discrete case
Comments
why we need $C(x)$ be polynomial? if $C(x)$ is very large, the value of k may contain a lot of information about z
Comments

- why we need $C(x)$ be polynomial? if $C(x)$ is very large, the value of k may contain a lot of information about z
- it is not necessary (unlike for original Vyugin argument) to have the same targets for $C(x|y)$ and $C(y|x)$
Comments

- why we need \(C(x) \) be polynomial? if \(C(x) \) is very large, the value of \(k \) may contain a lot of information about \(z \)
- it is not necessary (unlike for original Vyugin argument) to have the same targets for \(C(x|y) \) and \(C(y|x) \)
- other applications of the same type of argument: for every \(x, y \) that are almost independent \((I(x : y) \) is small compared to \(C(x) \) and \(C(y) \)) one can find \(z \) such that \(C(x|z) = C(x)/2 + O(1) \) and \(C(y|z) = C(y)/2 + O(1) \)
Comments

- why we need $C(x)$ be polynomial? if $C(x)$ is very large, the value of k may contain a lot of information about z
- it is not necessary (unlike for original Vyugin argument) to have the same targets for $C(x|y)$ and $C(y|x)$
- other applications of the same type of argument: for every x, y that are almost independent ($l(x : y)$ is small compared to $C(x)$ and $C(y)$) one can find z such that $C(x|z) = C(x)/2 + O(1)$ and $C(y|z) = C(y)/2 + O(1)$
- similar statement for halving complexity of three or more strings by adding a condition
Comments

- why we need $C(x)$ be polynomial? if $C(x)$ is very large, the value of k may contain a lot of information about z
- it is not necessary (unlike for original Vyugin argument) to have the same targets for $C(x|y)$ and $C(y|x)$
- other applications of the same type of argument: for every x, y that are almost independent ($I(x : y)$ is small compared to $C(x)$ and $C(y)$) one can find z such that $C(x|z) = C(x)/2 + O(1)$ and $C(y|z) = C(y)/2 + O(1)$
- similar statement for halving complexity of three or more strings by adding a condition
- under the assumption of independence (can be weakened but not eliminated)
why we need $C(x)$ be polynomial? if $C(x)$ is very large, the value of k may contain a lot of information about z

it is not necessary (unlike for original Vyugin argument) to have the same targets for $C(x|y)$ and $C(y|x)$

other applications of the same type of argument: for every x, y that are almost independent ($I(x : y)$ is small compared to $C(x)$ and $C(y)$) one can find z such that $C(x|z) = C(x)/2 + O(1)$ and $C(y|z) = C(y)/2 + O(1)$

similar statement for halving complexity of three or more strings by adding a condition

under the assumption of independence (can be weakened but not eliminated)

an open problem in the general case
Original game argument

I

If \(C(x) > 3n \), there exists \(y \) such that \(C(xjy) \) and \(C(yjx) \) are \(n + O(1) \)

I

we replaced \(2n \) by \(3n \) to simplify explanations (and in any case this is already covered)

I

then show why winning this game is enough

I

and finally show how to win the game
Original game argument

- If $C(x) > 3n$, there exists y such that $C(x|y)$ and $C(y|x)$ are $n + O(1)$
Original game argument

- If $C(x) > 3n$, there exists y such that $C(x|y)$ and $C(y|x)$ are $n + O(1)$
- We replaced $2n$ by $3n$ to simplify explanations (and in any case this is already covered)
Original game argument

- If $C(x) > 3n$, there exists y such that $C(x|y)$ and $C(y|x)$ are $n + O(1)$
- we replaced $2n$ by $3n$ to simplify explanations (and in any case this is already covered)
- we present some game
Original game argument

- If $C(x) > 3n$, there exists y such that $C(x|y)$ and $C(y|x)$ are $n + O(1)$
- we replaced $2n$ by $3n$ to simplify explanations (and in any case this is already covered)
- we present some game
- then show why winning this game is enough
Original game argument

- If $C(x) > 3n$, there exists y such that $C(x|y)$ and $C(y|x)$ are $n + O(1)$
- we replaced $2n$ by $3n$ to simplify explanations (and in any case this is already covered)
- we present some game
- then show why winning this game is enough
- and finally show how to win the game
Dating agency and its task

I two countable sets X and Y

I game starts with a perfect matching, i.e., one to one correspondence between X and Y.

I An element of X or Y can refuse the current partner, then the current relationship $(x; y)$ is dissolved.

I then becomes free; the agency may either find a new pair for x from the dissolved pair (among free elements of Y not tried with x previously) or declare x hopeless and do not try to find a pair for x anymore (#free in Y incremented).

I the refusals appear (and are processed by the agency) one at a time.

I each element can produce $< N$ refusals (parameter of the game), but no restrictions for #(being refused).

I agency obligations:

I $2N$ attempts for each element

I $2N + 3$ hopeless elements; all others in X are ultimately connected to some $y \in Y$ and this connection lasts forever.
Dating agency and its task

- two countable sets X and Y
Dating agency and its task

- two countable sets X and Y
- game starts with a perfect matching, i.e., one to one correspondence between X and Y.

An element of X or Y can refuse the current partner, then the current relationship $(x; y)$ is dissolved. If the refusal appears (and is processed by the agency) one at a time, each element can produce $\leq N$ refusals (parameter of the game), but no restrictions for # being refused.

Agency obligations:

- $2N$ attempts for each element
- $2N$ hopeless elements; all others in X are ultimately connected to some $y \in Y$ and this connection lasts forever.
Dating agency and its task

- two countable sets X and Y
- game starts with a perfect matching, i.e., one to one correspondence between X and Y.
- An element of X or Y can refuse the current partner, then the current relationship (x, y) is dissolved
Dating agency and its task

- two countable sets X and Y
- game starts with a perfect matching, i.e., one to one correspondence between X and Y
- An element of X or Y can refuse the current partner, then the current relationship (x, y) is dissolved
- y then becomes free; the agency may either
Dating agency and its task

- two countable sets X and Y
- game starts with a perfect matching, i.e., one to one correspondence between X and Y.
- An element of X or Y can refuse the current partner, then the current relationship (x, y) is dissolved
- y then becomes free; the agency may either
 - find a new pair for x from the dissolved pair (among free elements of Y not tried with x previously) or
Dating agency and its task

- two countable sets X and Y
- game starts with a perfect matching, i.e., one to one correspondence between X and Y.
- An element of X or Y can refuse the current partner, then the current relationship (x, y) is dissolved
- y then becomes free; the agency may either
 - find a new pair for x from the dissolved pair (among free elements of Y not tried with x previously) or
 - declare x hopeless and do not try to find a pair for x anymore (#free in Y incremented)
Dating agency and its task

- two countable sets X and Y
- game starts with a perfect matching, i.e., one to one correspondence between X and Y.
- An element of X or Y can refuse the current partner, then the current relationship (x, y) is dissolved
- y then becomes free; the agency may either
 - find a new pair for x from the dissolved pair (among free elements of Y not tried with x previously) or
 - declare x hopeless and do not try to find a pair for x anymore (#free in Y incremented)
- the refusals appear (and are processed by the agency) one at a time
Dating agency and its task

- two countable sets X and Y
- game starts with a perfect matching, i.e., one to one correspondence between X and Y.
- An element of X or Y can refuse the current partner, then the current relationship (x, y) is dissolved
 - y then becomes free; the agency may either
 - find a new pair for x from the dissolved pair (among free elements of Y not tried with x previously) or
 - declare x hopeless and do not try to find a pair for x anymore (#free in Y incremented)
- the refusals appear (and are processed by the agency) one at a time
- each element can produce $< N$ refusals (parameter of the game), but no restrictions for #(being refused)
Dating agency and its task

- two countable sets X and Y
- game starts with a perfect matching, i.e., one to one correspondence between X and Y.
- An element of X or Y can refuse the current partner, then the current relationship (x, y) is dissolved
- y then becomes free; the agency may either
 - find a new pair for x from the dissolved pair (among free elements of Y not tried with x previously) or
 - declare x hopeless and do not try to find a pair for x anymore (#free in Y incremented)
- the refusals appear (and are processed by the agency) one at a time
- each element can produce $< N$ refusals (parameter of the game), but no restrictions for $#(being refused)$
- agency obligations:
Dating agency and its task

- two countable sets X and Y
- game starts with a perfect matching, i.e., one to one correspondence between X and Y.
- An element of X or Y can refuse the current partner, then the current relationship (x, y) is dissolved
- y then becomes free; the agency may either
 - find a new pair for x from the dissolved pair (among free elements of Y not tried with x previously) or
 - declare x hopeless and do not try to find a pair for x anymore (#free in Y incremented)
- the refusals appear (and are processed by the agency) one at a time
- each element can produce $< N$ refusals (parameter of the game), but no restrictions for #(being refused)
- agency obligations:
 - $\leq 2N$ attempts for each element
Dating agency and its task

- two countable sets X and Y
- game starts with a perfect matching, i.e., one to one correspondence between X and Y.
- An element of X or Y can refuse the current partner, then the current relationship (x, y) is dissolved
- y then becomes free; the agency may either
 - find a new pair for x from the dissolved pair (among free elements of Y not tried with x previously) or
 - declare x hopeless and do not try to find a pair for x anymore (#free in Y incremented)
- the refusals appear (and are processed by the agency) one at a time
- each element can produce $< N$ refusals (parameter of the game), but no restrictions for #(being refused)
- agency obligations:
 - $\leq 2N$ attempts for each element
 - $\leq 2N^3$ hopeless elements; all others in X are ultimately connected to some $y \in Y$ and this connection lasts forever
Why computable winning strategy is enough
Why computable winning strategy is enough

- $X = Y = \mathbb{B}^*$
Why computable winning strategy is enough

- $X = Y = \mathbb{B}^*$
- initial matching: identity (x, x)
Why computable winning strategy is enough

- $X = Y = \mathbb{B}^*$
- initial matching: identity (x, x)
- u refuses v if $C(v|u) < n$ (here u may be in X or in Y)
Why computable winning strategy is enough

- $X = Y = \mathbb{B}^*$
- initial matching: identity (x, x)
- u refuses v if $C(v|u) < n$ (here u may be in X or in Y)
- less than $N = 2^n$ refusals for each u
Why computable winning strategy is enough

- $X = Y = \mathbb{B}^*$
- initial matching: identity (x, x)
- u refuses v if $C(v|u) < n$ (here u may be in X or in Y)
- less than $N = 2^n$ refusals for each u
- computable behavior
Why computable winning strategy is enough

- $X = Y = \mathbb{B}^*$
- initial matching: identity (x, x)
- u refuses v if $C(v|u) < n$ (here u may be in X or in Y)
- less than $N = 2^n$ refusals for each u
- computable behavior
- agency produces $O(N^3) = O(2^{3n})$ hopeless elements of complexity $3n + O(1)$ (identified by $3n + O(1)$ bit ordinal number)
Why computable winning strategy is enough

- $X = Y = \mathbb{B}^*$
- initial matching: identity (x, x)
- u refuses v if $C(v|u) < n$ (here u may be in X or in Y)
- less than $N = 2^n$ refusals for each u
- computable behavior
- agency produces $O(N^3) = O(2^{3n})$ hopeless elements of complexity $3n + O(1)$ (identified by $3n + O(1)$ bit ordinal number)
- for every x that is not hopeless its final partner y has $C(y|x)$ and $C(x|y)$ at most $n + O(1)$: determined by an ordinal number that is $O(N) = 2^{n+O(1)}$
Why computable winning strategy is enough

- $X = Y = \mathbb{B}^*$
- initial matching: identity (x, x)
- u refuses v if $C(v|u) < n$ (here u may be in X or in Y)
- less than $N = 2^n$ refusals for each u
- computable behavior
- agency produces $O(N^3) = O(2^{3n})$ hopeless elements of complexity $3n + O(1)$ (identified by $3n + O(1)$ bit ordinal number)
- for every x that is not hopeless its final partner y has $C(y|x)$ and $C(x|y)$ at most $n + O(1)$: determined by an ordinal number that is $O(N) = 2^{n + O(1)}$
- but both complexities are at least n, otherwise refused
How to win the game
How to win the game

- each element not currently matched keeps “experience”=(#refusals sent, #refusals received)
How to win the game

- each element not currently matched keeps “experience”=(#refusals sent, #refusals received)
- the first is $< N$; the second a priori is unbounded, but also will be kept $< N$ due to agency strategy
How to win the game

- each element not currently matched keeps “experience”=(#refusals sent, #refusals received)
- the first is < \(N\); the second a priori is unbounded, but also will be kept < \(N\) due to agency strategy
- when \((x, y)\) is terminated, numbers updated
How to win the game

- each element not currently matched keeps “experience”=(#refusals sent, #refusals received)
- the first is $< N$; the second a priori is unbounded, but also will be kept $< N$ due to agency strategy
- when (x, y) is terminated, numbers updated
- invariant: in all pairs people have matching experiences (#sent = #received for the other)
How to win the game

- each element not currently matched keeps “experience”= (#refusals sent, #refusals received)
- the first is $< N$; the second a priori is unbounded, but also will be kept $< N$ due to agency strategy
- when (x, y) is terminated, numbers updated
- invariant: in all pairs people have matching experiences (#sent = #received for the other)
- corollary: #refusals received $< N$
How to win the game

- each element not currently matched keeps “experience”=(#refusals sent, #refusals received)
- the first is $< N$; the second a priori is unbounded, but also will be kept $< N$ due to agency strategy
- when (x, y) is terminated, numbers updated
- invariant: in all pairs people have matching experiences (#sent = #received for the other)
- corollary: #refusals received $< N$
- new partner for x is found if possible (=there is $y \in Y$ with matching experience not tried earlier with x)
How to win the game

- each element not currently matched keeps “experience”=(#refusals sent, #refusals received)
- the first is $< N$; the second a priori is unbounded, but also will be kept $< N$ due to agency strategy
- when (x, y) is terminated, numbers updated
- invariant: in all pairs people have matching experiences (#sent = #received for the other)
- corollary: #refusals received $< N$
- new partner for x is found if possible (=there is $y \in Y$ with matching experience not tried earlier with x)
- otherwise x is declared hopeless
How to win the game

- each element not currently matched keeps “experience”=(#refusals sent, #refusals received)
- the first is $< N$; the second a priori is unbounded, but also will be kept $< N$ due to agency strategy
- when (x, y) is terminated, numbers updated
- invariant: in all pairs people have matching experiences (#sent = #received for the other)
- corollary: #refusals received $< N$
- new partner for x is found if possible (=there is $y \in Y$ with matching experience not tried earlier with x)
- otherwise x is declared hopeless
- invariant: for matching experiences the number of non-matched people in X and Y are the same
How to win the game

- each element not currently matched keeps “experience” = (#refusals sent, #refusals received)
- the first is $< N$; the second a priori is unbounded, but also will be kept $< N$ due to agency strategy
- when (x, y) is terminated, numbers updated
- invariant: in all pairs people have matching experiences (#sent = #received for the other)
- corollary: #refusals received $< N$
- new partner for x is found if possible (=there is $y \in Y$ with matching experience not tried earlier with x)
- otherwise x is declared hopeless
- invariant: for matching experiences the number of non-matched people in X and Y are the same
- $\leq 2N$ attempts for each (experience increases each time)
How to win the game

- each element not currently matched keeps “experience”=(#refusals sent, #refusals received)
- the first is $< N$; the second a priori is unbounded, but also will be kept $< N$ due to agency strategy
- when (x, y) is terminated, numbers updated
- invariant: in all pairs people have matching experiences (#sent = #received for the other)
- corollary: #refusals received $< N$
- new partner for x is found if possible (=there is $y \in Y$ with matching experience not tried earlier with x)
- otherwise x is declared hopeless
- invariant: for matching experiences the number of non-matched people in X and Y are the same
- $\leq 2N$ attempts for each (experience increases each time)
- there are N^2 experience classes; if class reaches $2N$, it stops growing since y can be always found in the class ($< 2N$ are tried earlier with given x), so $O(N^3)$ hopeless
Thanks
Thanks

- to the organizers who invited me to present these arguments
Thanks

- to the organizers who invited me to present these arguments
- to Misha Vyugin and Andrej Muchnik who invented the game argument and its generalization for several strings y_i
Thanks

► to the organizers who invited me to present these arguments
► to Misha Vyugin and Andrej Muchnik who invented the game argument and its generalization for several strings y_i
► to Andrei Romashchenko who invented a generalization of the topological argument (much more ingenious)
Thanks

➤ to the organizers who invited me to present these arguments
➤ to Misha Vyugin and Andrej Muchnik who invented the game argument and its generalization for several strings y_i
➤ to Andrei Romashchenko who invented a generalization of the topological argument (much more ingenious)
➤ to Laurent Bienvenu who convinced me to write this simple argument down
Thanks

- to the organizers who invited me to present these arguments
- to Misha Vyugin and Andrej Muchnik who invented the game argument and its generalization for several strings y_i
- to Andrei Romashchenko who invented a generalization of the topological argument (much more ingenious)
- to Laurent Bienvenu who convinced me to write this simple argument down
- to all colleagues (ESCAPE team in Marseille and Montpellier, participants of Kolmogorov seminar in Moscow)
Thanks

- to the organizers who invited me to present these arguments
- to Misha Vyugin and Andrej Muchnik who invented the game argument and its generalization for several strings y_i
- to Andrei Romashchenko who invented a generalization of the topological argument (much more ingenious)
- to Laurent Bienvenu who convinced me to write this simple argument down
- to all colleagues (ESCAPE team in Marseille and Montpellier, participants of Kolmogorov seminar in Moscow)
- to the audience for following the talk to that point :-/