Mamadou M. Kanté

UCA - LIMOS - CNRS
31/03/2021

Width Parameters Week

Introduction to Clique-Width
PLAN.

1. CLIQUE- WIDTH DEFINITION
2. SOME GRAPH CLASSES OF (UN)BOUNDED CLIQUE- WIDTH
3. DETOUR TO SOME ALGORITHMIC APPLICATIONS
4. HOW TO HAVE EQUIVALENT MEASURE
5. FROM STRUCTURAL POINT OF VIEW: WHY RANK- WIDTH
DETOUR TO HR GRAMMAR

- **R-sourced graph** = graph such that \(\leq R \) vertices are labeled in \(\{k\} = \{1, 2, \ldots, k\} \)

 \[\text{src} : \{k\} \rightarrow V(G) \] : label injective function

- **Basic Graph**: \(E

- 3 operations on R-sourced graphs:

<table>
<thead>
<tr>
<th>Forget: (fgi)</th>
<th>Rename: (ren_i \rightarrow j)</th>
<th>Fusion: (|)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No more vertex is labeled (i):</td>
<td>No vertex is labeled (j):</td>
<td>(G) and (H) R-sourced</td>
</tr>
<tr>
<td>(\text{src}(V(fgi(G))) \subseteq {k} \setminus {i})</td>
<td>(\text{src}(V(\text{ren}_i \rightarrow j(G))) \subseteq {k} \setminus {i, j})</td>
<td>(G | H) : Fuse 1-to-1 sources</td>
</tr>
</tbody>
</table>

\(G \| H = \begin{cases} 1 & \text{if } i = 1 \text{ in } G \text{ or } i = 3 \text{ in } H \text{ and } j = 3 \text{ in } G \text{ or } j = 2 \text{ in } H \text{ and } i, j \text{ are distinct,} \\ 0 & \text{otherwise} \end{cases} \)
Using Basic Graph + 3 Operations one can construct set of terms $T(H_{R_b}, \{\exists y\})$:

- E is a term
- $D_{g_i}(t)$ and $ran_{i-j}(t)$ are terms

- $t_1 \parallel t_2$ is a term
Using Basic Graph + 3 Operations one can construct set of terms $T(\mathcal{HR}_R, \mathcal{F}_A)$:

- ε is a term: $\text{val}(\varepsilon) = 1$

- $\text{fg}_i(t)$ and $\text{ren}_i \rightarrow_j(t)$ are terms

 $\text{val}(\text{fg}_i(t)) = \text{fg}_i(\text{val}(t))$

 $\text{val}(\text{ren}_i \rightarrow_j(t)) = \text{ren}_i \rightarrow_j(\text{val}(t))$

- $t_1 \parallel t_2$ is a term

 $\text{val}(t_1 \parallel t_2) = \text{val}(t_1) \parallel \text{val}(t_2)$
Theorem A: $\text{Two}(G) \leq \mathbb{R} \iff G \in T(H_{\mathbb{R}^{2+1}}, f_\mathcal{E})$

Proof:

Create edges in bag μ
Theorem A: \(\text{Two}(G) \leq k \iff G \in \mathcal{T}(HR_{2k+1}, e_G) \)

Proof:

- Create edges in bag \(\mu \).
- Sources are bags.

 Diagrams showing various graph structures are also present.
Combining Theorem A + Tree Automata + Bodlaender's Theorem

Theorem B (Courcelle '90) Every MSO₂ definable property can be solved in time $O(f{|V|}) \cdot n$, for any n-vertex graph G.

[decision, search, optimise, count, list versions]

<table>
<thead>
<tr>
<th>MSO₂</th>
<th>MSO₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>* incidences: $\text{inc}(x, e)$</td>
<td>* adjacencies: $E(x, y)$</td>
</tr>
<tr>
<td>* FO + $\exists X$, $X \subseteq E \cup V$</td>
<td>* FO + $\exists X$, $X \subseteq V$</td>
</tr>
</tbody>
</table>
Combining Theorem A + Tree Automata + Bodlaender’s Theorem

Theorem B (Courcelle ’90) Every MSO2 definable property can be solved in time $f(two(a)) \cdot n$, for any n-vertex graph G.

[decision, search, optimise, count, list versions].

Natural Question: Is best in terms of graph classes?
Combining Theorem A +
Tree Automata + Bodlaender's Theorem

Theorem B (Courcelle '90) Every MSO₂ definable property can be solved in time $f(two(n)) \cdot n$, for any n-vertex graph G.

[decision, search, optimise, count, list versions].

NATURAL QUESTION: IS BEST IN TERMS OF GRAPH CLASSES?

• YES if language MSO₂ is wanted (Courcelle, Seese, ...)
• NO if we restrict language ...
Detour to Co-Graph

- Basic Graph: •
- 2 Operations:
 + Disjoint union: ⊕
 + Complete join: ⊗

\[
\text{val(terms)} = \int \text{co-graphs}
\]
DETOUR TO CO-GRAPHS

- Basic Graph:
- 2 Operations:
 - disjoint union: \(\oplus \)
 - complete join: \(\otimes \)

val (terms) =

co graphs

- A tree-automata can detect when \(E(x, y) \).
- Combining it with Tree Automata techniques:

Theorem C [Folklore]: Every MSO definable property can be decided in linear time, on co-graphs.

Of course hidden HUGE constant
DETOUR TO CO-GRAPHS

Basic Graph:

Operations:
- disjoint union: \(\oplus \)
- complete join: \(\otimes \)

\[\text{val (terms)} = \text{co graphs} \]

A tree-automata can detect when \(E(x, y) \).
Combining it with Tree Automata techniques:

Theorem C [Folklore]: Every MSO definable property can be decided in linear time on cographs.

BASICS FOR CLIQUE-WIDTH OPERATIONS:
- Colour vertices
- Add edges between colour classes
1. CLIQUE-WIDTH
- **k-labeled graph** = graph with all vertices labeled with a label in Σ_k

 $\text{lab} : V(G) \rightarrow \Sigma_k$: labeling function

 $\text{lab}^{-1}(i)$: label class i

- **Basic Graph**: 1

- **3 operations**: \oplus, $\text{reni} \rightarrow i$, addi

 $\text{addi}(e)$: $i \rightarrow j$

 / all possible edges, no multiple edge

 label$^{-1}(i) \rightarrow$ label$^{-1}(j)$
• k-labeled graph = graph with all vertices labeled with a label in \mathbb{E}^k
 \[\text{lab} : V(G) \rightarrow \mathbb{E}^k \] : labeling function
 \[\text{lab}^{-1}(i) \] : label class i

• Basic Graph : 1

• 3 operations:
 \[\oplus, \text{ren}_{i \rightarrow j}, \text{add}_{i,j} : i \neq j \]
 \[\text{add}_{i,j}(t) : i \neq j \]

\[\text{VR}_k = \{ \oplus, \text{add}_{i,j}, \text{ren}_{i \rightarrow j} : i, j \text{ in } \{1, 2, \ldots, k\} \} \]

• $\text{val}(t) : k$-labeled graph, $t \in T(\text{VR}_k, \mathbb{E}^k)$
Examples

\(t_2 = \text{add}_{1,2} (1 \oplus 2) \quad \text{val}(t_2) = \quad \)

\(t_n = \text{add}_{1,2} (2 \oplus \text{ren}_{2 \to 1} (t_{n-1})) \quad \text{val}(t_3) = \quad \)
Examples

\[t_2 = \text{add}_{1,2} (1 \oplus 2) \]
\[t_n = \text{add}_{1,2} (2 \oplus \text{ren}_{2\rightarrow 1} (t_{n-1})) \]

\[\text{val}(t_2) : \]
\[\text{val}(t_3) : \]

\[\text{val}(t_n) : \]

\[t' = \text{add}_{1,2} (1 \oplus 1 \oplus 2 \oplus 2) \]
\[\text{val}(t') : \]

\[t'' = \text{ren}_{1\rightarrow 3} (t') \]
\[\text{val}(t'') : \]

\[t''' = \text{add}_{1,3} (t' \oplus 1) \]
\[\text{val}(t''') : \]
terms as rooted labeled trees

\[\rightarrow 1 \]
\[\rightarrow \text{add}_{i,j}(t) \lor \text{ren}_{i \rightarrow j}(t) \]
\[\rightarrow t_1 \oplus t_2 \]

Example:
The clique-width of a graph G, $cwd(G)$, is the minimum k such that $G \cong \text{val}(t)$, $t \in T(VR_k, \{\#\})$ (\cong: standard graph isomorphism).

Do not take into account labels.
The clique-width of a graph \(G, \text{cwd}(G) \), is the minimum \(k \) such that
\[G \cong \text{val}(t), \quad t \in T(VR_k) \cup F \]
\((\cong: \text{standard graph isomorphism}) \)

When \(G \cong \text{val}(t) \), we write sometimes \(i(x) \) in \(t \) to refer the vertex \(x \) of \(G \)
it is mapped to by \(x \)
Bound on Clique Width

By definition, \(\text{cud}(G) \leq |V(G)| \). But,

Theorem 5. (Johansson '98): \(\text{cud}(G) \leq n - k \) as long as

\[
2^k < n - k
\]

Proof:

1. \(|V_1| = n - k \)
2. \(k \) vertices = \(V_2 \)
3. Use \(n - k \) labels to construct \(G \in V_1 \) and relabel wrt neighbors in \(V_2 \) \(\leq 2^k \) labels
4. Add 1 by 1 vertices in \(V_2 \): one extra label.

\(V_1 \) can be classified in at most \(2^k \) classes wrt neighborhoods in \(V_2 \).
2. Some Graph Classes of (Un)bounded Clique-Width
Proposition 1: G co graph $\iff G \simeq \text{val}(t)$, $t \in T(VR_a, d^I)$.

Proof:

G_1 $\overset{\times}{\sim}$ G_2

\[
\begin{array}{c}
\text{men}_2 \rightarrow 1 \\
\text{add} \rightarrow 1,2 \\
+ \\
t_1 \\
\text{men}_2 \rightarrow 1 \\
t_2
\end{array}
\]
Proposition 1: G co graph $\iff G \cong \text{val}(t), \quad t \in T(VR_2, q1\bar{q})$.

Proof:

The other direction needs a normalisation: when using $\text{add}_{1,2}$, no edges between vertices labeled 1 and those labeled 2.
Paths.

- $\text{cwd}(P_3) = 2$, $\text{cwd}(P_4) = 3$ (not a cograph).
- $\text{cwd}(P_n) = 3$, $n \geq 4$

\[
t_4 = \text{add}_{2,3} \left(\text{ren}_{3 \rightarrow 2} \left(\text{ren}_{2 \rightarrow 1} \left(\text{add}_{1,3} \left(\text{add}_{1,2} (1 \oplus 2) \oplus 3 \right) \right) \oplus 3 \right) \right)
\]

\[
t_{n+1} = \text{add}_{2,3} \left(\text{ren}_{3 \rightarrow 2} \left(\text{ren}_{2 \rightarrow 1} \left(t_n \right) \right) \oplus 3 \right)
\]

P_{n-1}
Cycles

- $\text{cwdl}(C_4) = 2$ (co-graph)
- $\text{cwdl}(C_5) = 3$
- $\text{cwdl}(C_n) \leq 4$
Distance-HEREDITARY GRAPHS

G is DH \iff G can be obtained from a single vertex by adding twins on pendant vertices.

Proposition 2.1 [Golumbic, Rotics'00]: $cwd(DH) \leq 3$.

Inductive Construction: Let's use the color 1, 2, 1:

1. is never used to create an edge.
2. t_i generates $G[x_1, \ldots, x_i]$; x_{i+1} is twin/pendant of x_j.
3. $t_{i+1} = t_i[i(x_j)/t']$ where t' is:

$$t' = \frac{x_j}{\text{false twins}}$$
Distance-HEREDITARY GRAPHS

G is DH \iff G can be obtained from a single vertex by adding twins or pendant vertices.

Proposition 2.1 [Golumbic, Rotics '00]: \text{cwd}(DH) \leq 3.

Inductive Construction: Let's use the color $1,2, \top$:

1. \top is never used to create an edge.
 - t_i generates $G[x_1, \ldots, x_i]$, x_{i+1} is twin/pendant of x_j
 - $t_{i+1} = t_i[i(x_j)/t]$ where t' is

t:

```
  i(x_0)    i(x_{i+1})
    \downarrow
   \top
```

false twins

```
  i(x_0)    i(x_{i+1})
    \downarrow
  \text{add } i \rightarrow
```

true twins
Distance-HEREDITARY GRAPHS

Distance-HEREDITARY GRAPHS

Proposition 2.1 (Golumbic, Rotics '00): $\text{cwd}(\text{DH}) \leq 3$.

Inductive Construction: Let's use the color 1, 2, 1:

- 1 is never used to create an edge.
- t_i generates $G[x_1, \ldots, x_i]$, x_{i+1} is twin/pendant of x_j.
- $t_{i+1} = t_i[t'/i[x_j]]$ where t' is

\begin{itemize}
 \item false twins
 \[
 t \xrightarrow{\text{add}_1 i}
 \]
 \[
 i(x_0) \xrightarrow{\text{add}_i i} i(x_i)
 \]
 \[
 i(x_0) \xrightarrow{\text{add}_i i} \text{true twins}
 \]
 \item true twins
 \[
 t \xrightarrow{\text{add}_1 i}
 \]
 \[
 i(x_0) \xrightarrow{\text{add}_i i} i(x_i)
 \]
 \[
 i(x_0) \xrightarrow{\text{add}_i i} \text{pendant}
 \]
\end{itemize}
Proposition 2.2: \(\text{cwd}(G) \leq 2^{\text{tw}(G)+1} \)

Proof: \((T, \psi)\) a tree-decomposition of width \(\text{tw}\). Do a proper \((\text{tw}+1)\)-coloring of \(G\).
Proposition 2.2: \(\text{cwd}(G) \leq 2^{tw(G)+1} \)

Proof: Let \((T, f)\) a tree-decomposition of width \(tw \).

1. Do a proper \((tw+1)\)-coloring of \(G \).
2. If \(u \in V(T) \), every edge between \(V_u = \bigcup_{v \leq u} f(v) \) and \(V(G) \setminus V_u \subseteq G[f(u)] \).
3. For \(u \in T \), compute \(t_u \) for \(G[V_u \setminus f(\text{parent}(u))] \) such that each vertex has label \(\text{color}(y) : y \in f(u) \setminus f(\text{parent}(u)) \) for \(xy \in E(G) \).
Proposition 2.2: \(\text{cwd}(G) \leq 2^{\text{tw}(G)} + 1 \)

Proof: Let \(f \) be a tree-decomposition of width \(tw \).

1. Do a proper \((tw+1)\)-coloring of \(G \).
2. If \(u \in V(f) \), every edge between \(V_u = \bigcup_{v \in u} f(v) \) and \(V(G) \setminus V_u \subseteq G[f(u)] \).
3. For each \(u \), compute \(t_u \) for \(G[V_u \setminus f(\text{parent}(u))] \) such that each vertex has label \(\phi \).
4. \(\text{color} \subset y \subset \phi \subset f(\text{parent}(u)), xy \in E(G) \) \}

\[
\begin{align*}
\tau_a & = \text{ren}_{2 \rightarrow 1} (2) \\
\tau_d & = \text{ren}_{1 \rightarrow 3,4,f} (\text{ren}_{2 \rightarrow \phi} (\text{add}_{1,2} (1 + \tau_a))) \\
\tau_b & = \text{ren}_{3 \rightarrow 7,1,2} (3) \\
\tau_c & = \text{ren}_{2 \rightarrow 3,4} (\text{ren}_{1 \rightarrow 3,4} (\text{add}_{1,2,3,1} (\text{add}_{1,2,3,1} (\text{add}_{1,2} (\text{add}_{1,2} (\tau_d + 1 + 2)))))))
\end{align*}
\]
Proposition 2.2: \(\text{cowd}(G) \leq \text{tw}(G) + 1 \)

Proof:
1. \((T, \pi)\) a tree-decomposition of width \(\text{tw} \)
2. Do a proper \((\text{tw} + 1)\)-coloring of \(G\)
3. If \(u \in V(T)\), every edge between \(V_u = \bigcup_{v \leq u} \pi(v)\) and \(V(G) \setminus V_u \subseteq \pi(u)\).
4. For each \(u\), compute \(t_u\) for \(G \in V_u \mid \pi(\text{parent}(u))\)
such that each vertex has label.

\[
\text{color}(y) = y \in \pi(u) \cap \pi(\text{parent}(u)), xy \in E(G) \}
\]

\[
\begin{align*}
t_a &= \text{ren}_{2 \rightarrow 1}(2) \\
t_b &= \text{ren}_{1 \rightarrow 3,4,5}(\text{ren}_{2 \rightarrow 1}(\text{add}_{1,2}(1 + \text{ta}))) \\
t_c &= \text{ren}_{2 \rightarrow 3,4,5}(\text{add}_{1,3,4,5}(1 + \text{ta})))
\end{align*}
\]

\[
\begin{align*}
t_\ell &= \text{add}_{3,4,5,6}(\text{add}_{3,4,5,6}(t_\ell \oplus t_c \oplus t)) \\
t &= \text{add}(i,j)
\end{align*}
\]
Proposition 2.2: \(\text{cwd}(G) \leq \frac{\text{tw}(G) + 1}{2} \)
\(\forall K \in G, \text{tw}(G) = k, \text{cwd}(G) \geq \lceil \frac{k}{2} \rceil - 1 \)

Proposition 2.3: \(\text{cwd}(\text{line}(G)) \leq P(\text{tw}(G)) \)

Proposition 2.4: On \(K_{p,p} \)-subgraph free graphs,
\(f(\text{tw}(G)) \leq \text{cwd}(G) \leq g(\text{tw}(G)) \)
Some Operations on Graphs

- $H \subseteq G$: induced subgraph $c wd(H) \leq c wd(G)$
Some Operations on Graphs

- $H \subseteq G$: induced sub graph
 $\text{cwd}(H) \leq \text{cwd}(G)$

- $\overline{G} = \text{complement of } G$
 $\text{cwd}(\overline{G}) \leq 2 \cdot \text{cwd}(G)$

- any term in $T(V^R, \{r, s\})$ is equivalent to
 some using binary $\bigoplus_R^f : R \subset [k] \times [k], f : [k] \rightarrow [k]$ edges added between operands by R

- easy now to construct \overline{G}: replace \bigoplus_R^f by $\bigoplus_{\overline{R}}^f$
- any term with \bigoplus_R^f translates into one in $T(V^R, \{r, s\})$
Some Operations on Graphs

- \(H \subseteq G \): induced subgraph
 \[\text{cwd}(H) \leq \text{cwd}(G) \]

- \(\overline{G} \): complement of \(G \)
 \[\text{cwd}(\overline{G}) \leq 2 \times \text{cwd}(G) \]

- Substitution: \(v \in V(G) \), \(V(G) \cap V(H) = \emptyset \)
 \(G \in G[H] \)
 \[V(G^-) = V(G) \cup V(H) \setminus \{v\} \]
 \[E(G^-) = E(G \setminus v) \cup E(H) \cup \Delta_G(v) \times V(H) \]

\(V(H) \) is a module in \(G^- \)
Some Operations on Graphs

- \(H \subseteq G \): induced subgraph
 \[\text{cwd}(H) \leq \text{cwd}(G) \]
- \(\overline{G} = \text{complement of } G \)
 \[\text{cwd}(\overline{G}) \leq 2 \cdot \text{cwd}(G) \]

Substitution: \(v \in V(G), V(G) \cap V(H) = \emptyset \)
\[G \cong G[H/v] \]

\[V(G') = V(G) \cup V(H) \]
\[E(G') = E(G) \cup E(H) \cup N_G(v) \times V(H) \]

\(V(H) \) is a module in \(G' \)

Observation 2.1: \(\text{cwd}(G') = \max \{ \text{cwd}(G), \text{cwd}(H) \} \)
\[\text{val}(t_G) \cong G, \quad \text{val}(t_H) \cong H \]
\[\text{val} \left(t_G \left[\left(\bigcup_{n \in \mathbb{N}} \left(t_H \right) \right) / l(v) \right] \right) \cong G' \]
Some Operations on Graphs

- $H \subseteq G$: induced subgraph
 \[\text{cwd}(H) \leq \text{cwd}(G) \]
- \overline{G} = complement of G
 \[\text{cwd}(\overline{G}) \leq 2 \cdot \text{cwd}(G) \]

Substitution:
- $V(G), V(G) \cap V(H) = \emptyset \implies G \cong G[H/\sigma]$
- $V(G') = V(G) \cup V(H) \setminus \sigma$
- $E(G') = E(G[\sigma]) \cup E(H) \cup \sigma E(H) \cup \sigma V(H)$

$V(H)$ is a module in G'

Observation 2.1
- $\text{cwd}(G') = \max \left\{ \text{cwd}(G), \text{cwd}(H) \right\}$
- $\text{val}(t_G) \cong G$, $\text{val}(t_H) \cong H$
- $\text{val}(t_G \left[(0, (t_H)) \right] / d(v)) \cong G'$

Theorem 2.1: For every graph G
- $\text{cwd}(G) = \max \left\{ \text{cwd}(H) : H \subseteq G \text{ prime} \right\}$
 every module is either all or a singleton.
Corollary of Theorem 2.1

Theorem 2.1: For every graph G

$$\text{cwd}(G) = \max \{ \text{cwd}(H) : H \subseteq G \text{ prime } \}$$

Any hereditary graph class with prime graphs of bounded clique width has bounded clique-width.

Examples: (P_5, Δ)-free, chordal $(\cdot \cdots \cdots)$-free, (\circ, \bullet)-free, (\circ, \circ)-free, (P_5, \bigcirc)-free, ...

Complete classification for those excluding a one-vertex extension of P_4, graphs of size ≤ 4

non perfect $(4K_1, C_4, C_5)$-free, ...
Some graph classes have undecidable MS$_1$-theory. Yet, others can encode some with undecidable theories. If $\text{Cwd}(G) = k \iff G \approx \text{val}(t)$, $t \in T(\forall R_k, \exists t)$

- t a rooted labeled tree
- A bottom-up tree-automata to decide whether $xy \in E(G)$

By tree-automata \equiv MSOL on trees, and techniques to compute tree-automata from MSOL formulas, we have:
UNBOUNDED CLIQUE-WIDTH

A) **SUPER-LOGIC**

Some graph classes have undecidable Π_1-MSO_1-theory. Yet, others can encode some with undecidable theories.

- If $\text{cwd}(t) = k \Leftrightarrow G \cong \text{val}(t), \ t \in T(V_{R_{k}}, P_{t})$

 - t a rooted labeled tree
 - A bottom-up tree-automata to decide whether $xy \in E(G)$

 \Rightarrow By tree-automata $\equiv \Pi_{1}$-MSO_1 on labeled trees, and techniques to compute tree-automata from Π_{1}-MSO_1 formulas, we have:

For every Π_{1}-MSO_1 formula φ, there is a deterministic tree-automata A_{φ} such that

$$G \models \varphi \iff t \in L(A_{\varphi})$$
Some graph classes have undecidable \forallS. -Theory.
Yet, others can encode some with undecidable theories.

If $\text{cwd}(G) = k \iff G \equiv \forall \text{val}(t), t \in T(VR_k, \\psi)$

- If a rooted labeled tree
- A bottom-up tree-automata to decide whether $xy \in E(G)$

By tree-automata \equiv MSOL on labeled trees, and techniques to compute tree-automata from MSOL formulas, we have:

For every MSOL formula Φ, there is a deterministic tree-automata A_Φ such that $G \models \Phi \iff t \in L(A_\Phi)$

MSOL decidable on graphs of clique-width k.
UNBOUNDED CLIQUE-WIDTH

A) **SUPER-LOGIC**

Some Graph classes have undecidable MSO$_1$-Theory. Yet, others can encode some with undecidable theories.

- If $\text{Cwd}(G) = k \iff G \cong \text{valit}(t), t \in T(VR_k, \Pi)$
- If a rooted labeled tree
- A bottom-up tree-automata to decide whether $xy \in E(G)$

By tree-automata \equiv MSO$_1$ on labeled trees, and techniques to compute tree-automata from MSO$_1$ formulas, we have:

For every MSO$_1$ formula φ, there is a deterministic tree-automata T_A such that

$G \models \varphi \iff t \in L(T_A)$

Examples:
- All graphs
- Grids
- Planar graphs of degree ≤ 3
- Split graphs
- Bipartite graphs

MSO$_1$ decidable on graphs of clique-width $\leq k$.

\[\text{Cwd}(G) = k \iff G \cong \text{valit}(t), t \in T(VR_k, \Pi) \]
A SUPER-LOGIC

Some graph classes have undecidable MSO-theory. Yet, some can encode some with undecidable theories.

- If \(\text{Cwd}(G) = k \iff G \cong \text{val}(t), t \in T(V R_k, \Pi) \)
- A rooted and labeled tree
- A bottom-up tree-automata to decide whether \(xy \in E(G) \)

By tree-automata \(= \text{MSOL on labeled trees} \), and techniques to compute tree-automata from MSOL formulas, we have:

For every MSOL formula \(\varphi \), there is a deterministic tree-automata \(A \) such that

\[G \models \varphi \iff t \in L(A \varphi) \]

MSO, decidable on graphs of clique-width \(k \).

Examples:
- All graphs
- Grids
- Planar graphs of degree \(\leq 3 \)
- Split graphs
- Bipartite graphs encoding

But bounds are bad
(B) Use Hands and Case analysis

B.1: Square Grids

\[\text{cwl}(G_{n,n}) = n+1 \]

Upper Bound

Lower bound

Do case analysis depending on whether a subtree contains a full row or column.
UNBOUNDED CLIQUE-WIDTH

(B) Use Hands and Case analysis

B.2 Unit interval graphs

\[\text{universal unit-interval graph} \]

\[cwd = n + 1 \]
Use Hands and Case analysis

B.3. Split graphs

For any term, there is node \(\mu \) such that
\[
\frac{n(n+1)}{6} \leq |V(G_n)| \leq \frac{n(n+1)}{3}
\]
Look at the edges in the other side incident with it: counting will contradict that \(\text{cwd} < n/72 \).
Some difficulties to deal with clique-width

 redistribution

\[C_{\geq} : \text{the only monotone operation.} \]

- The audience knows how hard it can be to study structure with \(C_{\geq} \).
- Few graph classes are \(wqo \) under \(C_{\geq} \).
- Computing such parameters with broad algorithmic applications is \(NP \)-Hard.
- One can expect \(FPT \) polynomial time.
- But, particularly hard for clique-width.
- Only one polynomial time algorithm: \(\text{cwd}(G) \leq 3 \).
- One can compute exactly for Bounded treewidth.
3. Detour to Some Algorithmic Applications

- Courcelle et al. Theorem give intractable
 FPT algorithm:
- Your own DP if you want a better one.

Assume a term is given
3.1. Independent Set

Do a bottom-up traversal and compute for μ and $\lambda \subseteq \mathbb{R}$

$$\text{tab}_{\mu}[\lambda] = \max \left\{ X : \text{tab}^\mu_0(X) = X \right\}$$

- μ_1:
 $$\text{tab}_{\mu}[\lambda] = \max \left\{ \text{tab}_{\mu_1}[\lambda], \text{tab}_{\mu_2}[\lambda] \right\}$$

- μ_2:
 $$\text{tab}_{\mu}[\lambda] = \left\{ \begin{array}{ll}
 \text{tab}_{\mu_1}[\lambda] & \text{if } j \notin \lambda \\
 \max \left\{ \text{tab}_{\mu_1}[\lambda], \text{tab}_{\mu_2}[\lambda] \right\} & \text{otherwise}
 \end{array} \right.$$
3.1. Independent Set

- Do a bottom-up traversal and compute for μ and $\lambda \in [k]$

\[\text{tab}_\mu[\lambda] = \max \left\{ \right. \left. X : \text{tab}_\mu(X) = X \right\} \]

- $\mu:\text{tabula}=\max\{\text{tab}_\mu, \text{tab}_\mu[U] \}$

- $i \in \lambda : \text{tab}_\mu[\lambda] = \max \left\{ \text{tab}_\mu[U], \text{tab}_\mu[\lambda \setminus \{i\}] \right\}$

- $i \in \lambda : \text{tab}_\mu[\lambda] \left\{ \right. \left. \right\} \text{tab}_\mu[U] \text{if } j \notin \lambda \}

- $\text{tab}_\mu[\lambda] = \emptyset \text{ if } \{i, j\} \subseteq \lambda$

- time: $= 2^{k+1} n \text{ if } t \text{ given}$

- 2^k: optimal under ETH
As for the previous algorithm, keep the labels for each colouring.

Assume you want to check whether G is 2-colorable.

For each node u, keep the following for G_u:

For each proper 2-coloring (X_1, X_2, \ldots, X_d)

$$(C_1, C_2, \ldots, C_d) : C_i = \{j \in E : i \in \text{lab}(X_j)\}$$

At most $2^{|E|}$ possible entries

We update similarly as previous algorithm.
3.2. Chromatic Number

- As for the previous algorithm, keep the labels for each colouring.

- Assume you want to check whether G 2-colorable.

- For each node u, keep the following for G_u:
 - for each proper 2-coloring $(X_1, X_2, ..., X_d)$
 - $(G_1, G_2, ..., G_k): G_i = \{ j \in \mathbb{Z}_d : i \in \text{lab}(X_j) \}$

- At most $2^d \cdot k$ possible entries

- We update similarly as previous algorithm

- A clever one with $(2^d - 2)^k$ possible entries.
 No $(2^d - 2 - \varepsilon)^k$ one under SETH $\forall \varepsilon > 0$
3.2. Chromatic Number

- As for the previous algorithm, keep the labels for each colouring.
- For a proper coloring $\chi = (X_1, X_2, \ldots, X_\ell)$, associate the following function:
 \[\ell \mapsto \{ x_j : \text{lab}(x_j) = \ell \} \]
3.2. Chromatic Number

- As for the previous algorithm, keep the labels for each colouring.

- For a proper coloring $\mathbf{X} = (X_1, X_2, \ldots, X_k)$, associate the following function:
 \[
 L \mapsto [\mathbf{X}] \quad \text{where} \quad \forall j \in \left[\text{lab}(X_j) = L \right]
 \]

- $k \leq n \Rightarrow n^k$ possible such functions.

- The update is the same as previously.
3.8. Chromatic Number

• As for the previous algorithm, keep the labels for each coloring.

• For a proper coloring $\chi = (X_1, X_2, \ldots, X_d)$, associate the following function:

$$\chi : L \rightarrow [2^k]$$

$$L_j : \text{lab}(x_j) = L_j$$

• $d \leq n \Rightarrow 2^k$ possible such functions.

• The update is the same as previously.

• Optimal under ETH: no $n^{o(\log k)}$
3.3 Hamiltonian Path

• If \(P \) is a Hamiltonian path, and \(u \) a node, \(PN \{G_u\} \) is a collection of paths.

• Construct the multigraph \(M(P) \) on \(\{e_k\} \)

\[
\text{# of subpaths from } \quad i \xrightarrow{\text{lab}(i)} j \quad \text{to} \quad j \xrightarrow{\text{lab}^{-1}(j)} i
\]

• \(n^2 \) possible such multigraphs.

• \(P \cup Q \) a Hamiltonian Path \(\iff \) an alternating Eulerian tour on \(M(P) \cup M(Q) \).
3.3 HAMILTONIAN PATH

• If P is a HAM PATH, and u a node,
 $P \cap V(G_u)$ is a collection of paths.

• Construct the multigraph $M(P)$ on E_k

 \[
 \text{# of subpaths from } \quad \frac{\text{i \ in } \text{lab}(i) \text{ to } \text{lab}^{-1}(j)}{\text{\ for all } j}
 \]

• N^k possible such multigraphs.

• PU a HAM PATH (\Rightarrow) an alternating eulerian
 tour on $M(P) \cup M(Q)$.

• $P_1 \equiv P_2$ if $M(P_1)$ and $M(P_2)$
 • Same connected components
 • Same degree sequence
3.3 Hamiltonian Path

- If P is a Hamiltonian path, and u a node, $P \cup V(G_u)$ is a collection of paths.

- Construct the multi graph $\mathcal{M}(P)$ on $[k]$.

 \[
 \text{# of subpaths from } \quad i \rightarrow \mathcal{b}(i) \text{ to } \mathcal{b}^{-1}(j). \quad j
 \]

- N^k possible such multi-graphs.

- $P \cup Q$ a Hamiltonian path (\Rightarrow) an alternating Eulerian tour on $\mathcal{M}(P) \cup \mathcal{M}(Q)$.

- $P_1 \approx P_2$ if $\mathcal{M}(P_1)$ and $\mathcal{M}(P_2)$
 - Same connected components
 - Same degree sequence

- N^k possible entries, no $n^{o(k)}$ under ETH.
Many other examples

- Any domination-like problem with degrees on finite/co-finite subsets of \(\mathbb{N} \)
- Computation of graph polynomials.

...
4. Some equivalent measures
Look at Neighborhoods

important, how the neighborhoods are

Layout
Look at Neighborhoods

important: how the neighborhoods are any function describing it is good

Layout
- CWD: number of twin classes (with a symmetry).
Look at Neighborhoods

Important: how the neighborhoods are any function describing it is good

Layout
- CUD: number of twin classes (with a symmetry).
- Others: distinct neighborhoods, rank-width, boolean-width, H-join, etc.
5. Why RANK-WIDTH
\[\forall e \in E(T) : \begin{array}{c|ccc} x & y & z \\ \hline u & 0 & 0 & 0 \\ v & 0 & 0 & 0 \\ v & 1 & 0 & 0 \end{array} \]

\[w(e) = \text{rk} (A[X_e, X_e]) \]

RANK-WIDTH

Layout: \((T, L), L : V(G) \rightarrow \text{leaves of } T \)
RANK-WIDTH

\[\forall e \in E(T) : \begin{array}{ccc}
 x & y & z \\
 u & 0 & 0 \\
 v & 0 & 0 \\
 w & 1 & 0 \\
\end{array} \]

\[A[X_e, X_e] \]

\[w(e) = \text{rk} (A[X_e, X_e]) \]

\[\text{wd}(T, L) = \max_{e \in E(T)} \frac{1}{2} w(e) \]

Layout : \((T, L), L : V(T) \to \text{leaves of } T\)
Rank-Width

For all $e \in E(T)$:

$\forall e \in E(T): \begin{array}{c|ccc}
\chi & \gamma & \omega & z \\
\hline
u & 0 & 0 & 0 \\
v & 0 & 0 & 0 \\
w & 1 & 0 & 0 \\
\end{array}$

$A[e, \overline{e}] = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
\end{bmatrix}$

$w(e) = \text{rk}(A[e, \overline{e}])$

$\text{wd}(T, L) = \max_{e \in E(T)} \frac{1}{2} w(e)$

$\text{wd}(G) = \min_{(T, L) \text{ layout}} \text{wd}(T, L)$

Layout: (T, L), $L: V(G) \rightarrow \text{leaves of } T$
Proposition 5.1 \[\text{rwd}(G) \leq \text{cwd}(G) \leq 2^{\text{rwd}(G)+1} \]

Proof: \((T,L)\) a layout, root it at \(r = \text{subdivide an edge} \)

For \(u \in V(T) \), compute \(tu \) for \(G_u \) s.t.

\[\text{lab}(x) = \text{lab}(y) \iff N(x) \cap V(G_u) = N(y) \cap V(G_u) \]
Proposition 5.1 \[\text{rank-width} \]

For \(\gamma \in \mathbb{N} \), let \(\gamma \) be a layout, root it at \(r \).

\[\forall \mu \in V(T), \text{ compute } t_{\mu} \text{ for } G \mu \text{ s.t. } \]

\[\text{deg}(x) = \text{deg}(y) \iff N(x) \cap V(G \mu) = N(y) \cap V(G \mu) \]

at most \(2^\text{rank-width} \) such twin classes.

\[t_{\mu} = \bigcirc \text{ add } (t_{\mu} \oplus \text{ Oren } i \oplus (t_{\mu})) \]

\[(i, j') \in R_{\mu} \]

\[R_{\mu} = \{(i, j') : \exists x \in G \mu, y \in G \mu, xy \in E, \text{ labeled resp. } i \text{ and } j \} \]
Proposition 5.1 \(rwd(G) \leq \omega d(G) \leq 2^{rwd(G) + 1} - 1 \)

Proposition 5.2 \(rwd(DH) = 1 \)

Proof: same proof idea as for clique-width. \(\square \)
Proposition 5.1
\[\mathrm{rwd}(G) \leq \omega_d(G) \leq 2^{\mathrm{rwd}(G)+1} - 1 \]

Proposition 5.2
\[\mathrm{rwd}(DH) = 1 \]

Proposition 5.3
\[\mathrm{rwd}(G) = \max_{H \leq G} \{ \mathrm{rwd}(H) \} \] for a prime with split decomposition.
Proposition 5.1 \[\text{rw}d(G) \leq \text{cwd}(G) \leq 2 \]

Proposition 5.2 \[\text{rw}d(DH) = 1 \]

Proposition 5.3 \[\text{rw}d(G) = \max_{H \subseteq G} \text{rw}d(H) \] (prime w.t. split-decomposition)

Observation 5.1 \[H \subseteq G, \text{ then } \text{rw}d(H) \leq \text{rw}d(G) \]

Proposition 5.4 \[\text{rw}d(G) \leq \text{tw}(G) + 1 \]
Proposition 5.1: \[\text{rwd}(G) \leq \text{cwd}(G) \leq 2^{\text{rwd}(G) + 1} - 1 \]

Proposition 5.2: \[\text{rwd}(DH) = 1 \]

Proposition 5.3: \[\text{rwd}(G) = \max \{ \text{rwd}(H) \mid H \leq_i G \} \]

Observation 5.4: If \(H \leq_i G \), then \(\text{rwd}(H) \leq \text{rwd}(G) \).

But more operations.
- Adding a row to other rows does not increase rank.
- Similarly for column.

\(\begin{bmatrix} x & y \\ \end{bmatrix} \)
RANK WIDTH and STRUCTURE

- Adding a row to other rows does not increase rank.
 Similarly for column.

\[
\begin{bmatrix}
\end{bmatrix}
\]

\[
\begin{array}{cccccccc}
\text{x} & \text{y} & \text{z} & \text{w} & \text{v} & \text{u} \\
\hline
\text{x} & 0 & 1 & 1 & 1 & 0 & 0 \\
\text{y} & 1 & 0 & 1 & 0 & 0 & 0 \\
\text{z} & 1 & 1 & 0 & 0 & 0 & 0 \\
\text{w} & 1 & 0 & 0 & 0 & 1 & 0 \\
\text{v} & 0 & 0 & 0 & 1 & 0 & 0 \\
\text{u} & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]
RANK-WIDTH and STRUCTURE

- Adding a row to other rows does not increase rank.
- Similarly for column.

\[
\begin{bmatrix}
? & ? \\
? & ?
\end{bmatrix}
\]

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
<th>v</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x+y</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x+z</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x+w</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>x+m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[G \ast x = \text{local complementation at } x\]
RANK-WIDTH and STRUCTURE

- adding a row to other rows does not increase rank.
- similarly for column.

\[\begin{bmatrix} x \end{bmatrix} \]

\[
\begin{array}{cccccccc}
\hline
x & y & z & w & u & v & m \\
\hline
x & 0 & 1 & 1 & 1 & 0 & 0 \\
x+y & 1 & 0 & 0 & 1 & 0 & 0 \\
x+z & 1 & 0 & 0 & 1 & 0 & 0 \\
x+w & 1 & 1 & 1 & 0 & 1 & 0 \\
x+m & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline
\end{array}
\]

\[G \ast x = \text{local complementation at } x \]

\[G \ast x = (G \setminus N(x)) \cup G \upharpoonright N(x) \]

\[Y \]

\[Z \]

\[x \]

\[w \]

\[m \]
RANK-WIDTH and STRUCTURE

- adding a row to other rows does not increase rank
- similarly for column.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
<th>v</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>x+y</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>x+z</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>x+w</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>x+u</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

local complementation at x

\[G \# x = (G \setminus N(x)) \cup (G[N(x)]) \]

H vertex-minor of G if H \subseteq G',

G' = successive local complementations on G.
Proposition 5.5: If \(H \) is a vertex-minor of \(G \), then \(\text{pwd}(H) \leq \text{pwd}(G) \).
Proposition 5.5: If \(H \) is a vertex-minor of \(G \), then \(\text{pwd}(H) \leq \text{pwd}(G) \).

Proof sketch.

Old notion: already used by Bouquet to characterize circle graphs by a finite list of obstructions.
Graphs of bounded rank-width are wqo by vertex-minor and have no infinite anti-chain.
Graphs of bounded rank-width are wqo by vertex-minor:
no infinite anti-chain.

Every hereditary class of bounded rank-width is characterized by a finite list of obstructions.
Graphs of bounded rank-width are wqo by vertex-minor.
no infinite anti-chain.

Every hereditary class of bounded rank-width is characterized by a finite list of obstructions.

One has a bound on the size of obstructions for rank-width k.
Graphs of bounded rank-width are wqo by vertex-minor, no infinite anti-chain.

Every hereditary class of bounded rank-width is characterized by a finite list of obstructions.

One has a bound on the size of obstructions for rank-width k:

- Vertex-minor is CMS_1-definable

\Rightarrow One can recognize graphs of rank-width k.

Graphs of bounded rank-width are wqo by vertex-minor
no infinite anti-chain.

Every hereditary class of bounded rank-width
is characterized by a finite list of obstructions.

One has a bound on the size of obstructions
for rank-width k:
- vertex-minor is CMS_1-definable
 \Rightarrow one can recognize graphs of rank-width k.

A combinatorial recognition algorithm
Graphs of bounded rank-width are wqo by vertex-minor.

Every hereditary class of bounded rank-width is characterized by a finite list of obstructions.

One has a bound on the size of obstructions for rank-width k:
- Vertex-minor is C_{175}-definable
- One can recognize graphs of rank-width k.

A combinatorial recognition algorithm

The rank function is submodular and symmetric

\Rightarrow Obstruction set system like brambles = tangles
Graphs of bounded rank-width are wqo by vertex-minor.

• Every hereditary class of bounded rank-width is characterized by a finite list of obstructions.
• One has a bound on the size of obstructions for rank-width k:
 - vertex-minor is CMS_4-definable
 \Rightarrow One can recognize graphs of rank-width k.
• A combinatorial recognition algorithm
• The rank function is submodular and symmetric
 \Rightarrow Obstruction set system like brambles.
• HUN: Looks like a lot tree-width, but suited for dense graphs.
Graphs of bounded rank-width are wqo by vertex-minor
no infinite anti-chain.

Every hereditary class of bounded rank-width
is characterized by a finite list of obstructions.

One has a bound on the size of obstructions
for rank-width k:
- vertex-minor is $C^m_{1,1}$-definable
 \Rightarrow One can recognize graphs of rank-width k.

A combinatorial recognition algorithm

The rank function is submodular and symmetric
\Rightarrow Obstruction set system like brambles.

HUN: Looks like a lot tree-width, but suited
for dense graphs.

YES INDEED GENERALISE PRELIMINARY RESULTS FROM
GRAPH/MATROID MINOR THEORY
MERCI