On parameterized Multicut

Jean Daligault

Joint work with Nicolas Bousquet, Christophe Paul, Anthony Perez, Stéphan Thomassé (LIRMM)

CIRM

October 18, 2010
1 Reducing the treewidth

2 Multicut is FPT
Multicut

Input: graph G, set of requests (pairs of vertices of G), integer k
Output: TRUE if there exist k edges of G which disconnect every request
Multicut

Input: graph G, set of requests (pairs of vertices of G), integer k
Output: TRUE if there exist k edges of G which disconnect every request

- NP-complete
- No constant-factor Approx (Under the Unique Games Conj.)
- FPT in $k + \text{number of requests}$
- FPT in k (PolyKernel) on Trees
- 2-F.P.Approx
Question

Is Multicut FPT in the solution size k, ie algorithm in $f(k) \times Poly(n)$?
Reducing the treewidth

Joint work with Christophe Paul, Anthony Perez and Stéphan Thomassé.

Result
Multicut can be reduced to graphs of treewidth bounded in k.
Key Idea

When \((z, t)\) is a request \(\forall t \in T \rightarrow\) request \((z, x)\) is *Irrelevant*

\[T \text{ large enough (in } k): \]
\[\exists x \in T \text{ s.t.} \]
\[\text{If } |F| \leq k \text{ cuts } z \text{ from } T - x \]
\[\text{Then } F \text{ cuts } z \text{ from } x.\]
Remark

We can now assume that each vertex has a bounded (in k) number of requests.
Remark

We can now assume that each vertex has a bounded (in k) number of requests.

Stronger version:

T big enough (in k, l):

$\exists x \in T$ s.t.

If $|F| \leq k$ disconnects z from $|S| \geq |T| - l \subseteq T - x$

Then F disconnects z from x.
Gathered Set: For every k-cut, only 1 component has 'size' > 1
Gathered Sets

Gathered Set: For every k-cut, only 1 component has 'size' > 1

Theorem (Main Reduction Rule)
Big gathered set of terminals: there exists an irrelevant request
Treewidth reduction

Structure: Large treewidth \rightarrow large grid minor
Structure: Large treewidth \rightarrow large grid minor
Easy: in a true grid, big gathered set:
Clean Subgrid?

Idea: There are either:

- Many jumps \rightarrow a large Clique-Minor
- or a 'Clean' Subgrid
Theorem (Robertson & Seymour)

Grid + many 'jumps' (= non-planar edges) with endpoints:
- Far away from the border
- Far away from each other
- Long jumps

... has a large Clique-Minor.
Without a large Clique-Minor

Treewidth Reduction

An instance of Multicut with large treewidth but no large Clique-Minor has a ’clean’ subgrid with either

- An ’empty’ zone \rightarrow edge contraction
- terminals everywhere \rightarrow large gathered set \rightarrow irrelevant request

Hence instances of Multicut with large treewidth but no large Clique-Minor can be reduced.
Large Clique-Minor

Instance with a large clique minor: transformation into:

- \(k + 1 \) - connected minor
- Small 'vertex cover' of the requests
- Many distance-layers
Large Clique-Minor

Instance with a large clique minor: transformation into:

- $k + 1$ - connected minor
- Small 'vertex cover' of the requests
- Many distance-layers

Once again: Terminals far apart form a gathered set, ie either large empty zone (edge contraction) or a gathered set (irrelevant requests).
Joint work with Nicolas Bousquet and Stéphan Thomassé
Joint work with Nicolas Bousquet and Stéphan Thomassé

Result

Multicut is FPT in the solution size k.
Key Idea

Multicut FPT on Treewidth 2 graphs?
Key Idea

Multicut FPT on Treewidth 2 graphs?

A bounded (in k) number of petals
Branch on the partition of the solution edges w.r.t the petals
The problem is now 2-SAT, i.e. Polynomial!

N. Bousquet, J. Daligault, C. Paul, A. Perez, S. Thomassé
Key Idea

Multicut FPT on Treewidth 2 graphs?

- Bounded (in k) number of Petals
- Branch on the partition of the solution edges w.r.t. the Petals
- The problem is now 2-SAT, i.e. Polynomial!
Multicut is FPT

Request R is cut if:
- $x_A \leq 2$ or $x_D \geq 2$
- $x_A \geq 1$ or $x_D \leq 1$
- $x_A \leq 2$ or $x_D \geq 1$
- $x_A \geq 1$ or $x_D \leq 2$

N. Bousquet, J. Daligault, C. Paul, A. Perez, S. Thomassé
Outline
Reducing the treewidth
Multicut is FPT

Multicut on a Flower

Request R is cut \iff "$x_A \leq 2$" or "$x_D \leq 2$" and "$x_A \geq 1$" or "$x_D \geq 1$" and "$x_A \leq 2$" or "$x_D \leq 2$" and "$x_A \geq 1$" or "$x_D \geq 1$"
Request R is cut \iff:

"$x_A \leq 2$" or "$x_D ??$" and
Request R is cut \iff

"$x_A \leq 2$" or "$x_D \geq 2$" and

"$x_A \geq 1$" or "$x_D \geq 2$" and
Request \(R \) is cut \(\iff \):

- "\(x_A \leq 2 \)" or "\(x_D \geq 2 \)"
- "\(x_A \geq 1 \)" or "\(x_D \geq 1 \)"
- "\(x_A \leq 2 \)" or "\(x_D \geq 2 \)"
- "\(x_A \geq 1 \)" or "\(x_D \geq 1 \)"
Iterative compression

Marx & Razgon (ESA 2009)
Multicut is equivalent to Richer Multicut where:
- The input contains a $(\leq k + 1)$-Vertex-Multicut Y
- The solution has to split Y
Iterative compression

Marx & Razgon (ESA 2009)

Multicut is equivalent to *Richer Multicut* where:
- The input contains a \((\leq k + 1)\)-Vertex-Multicut \(Y\)
- The solution has to split \(Y\)
Outline of the proof

- Branch to decide the partition of the solution edges in the components
- Break components with 3 or more attachment vertices (technical, branching)
- Bounded number of important cuts in a Cherry
- Reduce (branching) Lemons
Lemonification

xy-lemon, connectivity λ.
Lemonification

xy-lemon, connectivity λ.

$d(x) = d(y) = \lambda$
Lemonification

xy-lemon, connectivity \(\lambda \).

- \(d(x) = d(y) = \lambda \)
- Backbone
Lemonification

xy-lemon, connectivity λ.

- $d(x) = d(y) = \lambda$
- Backbone
- Slices
Lemonification

xy-lemon, connectivity λ.

- $d(x) = d(y) = \lambda$
- Backbone
- Slices
- Lemonize the Lemons & reduce

N. Bousquet, J. Daligault, C. Paul, A. Perez, S. Thomassé
Lemonification

xy-lemon, connectivity λ.

- $d(x) = d(y) = \lambda$
- Backbone
- Slices
- Lemonize the Lemons & reduce
Lemonification

$x y$-lemon, connectivity λ.

- $d(x) = d(y) = \lambda$
- Backbone
- Slices
- Lemonize the Lemons & reduce

Cuts can be partitioned into a bounded number of **linearly ordered sets**
Conclusion and perspectives

Result

Multicut is FPT in the solution size.
Conclusion and perspectives

Result

Multicut is FPT in the solution size.

Questions:

- Multiflow? FPT in k?
- (No) Polynomial Kernel for Multicut?
Thanks for your attention!