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Class Resolution (Y':'. 4)

o If there exists r such that C ¥V r contains all graphs, then C is
somewhere dense,

o Otherwise C is nowhere dense
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CHARACTERISATION OF ND

N Let C be an unbounded size wnfinite
class of graphs, let F be a graph with at least one edge and let g be
a positive integer. Then the following conditions are equivalent:

(1) C ¢s a class of nowhere dense graphs,

(2) for every integer v, CV 1T s not the class of all finite
graphs,

(3) for every integer v, CVr 1s not the class of all finite
graphs,

(4) C 1s a uniformly quasi-wide class,

(5) H(C) s a quasi-wide class,

S log |G|
6) lim limsu =1,
(6) T—00 Geewp log|G|

log ||G
(7) lim 1imsup—(—)~—g—!—‘—H =1,
T GeeTr 1Og‘G)

log V.,
(8) lim limsup log V.(G) =
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T— 00 Gel log]G,

S log X»(G)
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L logx (G)
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12) Ilm limsu i
(12) p—oo Gee P log|G|

log wcol, (G)

=0,

13) lim limsu =0,
(13) p—ico Gee P log|G|

(14) for every integer c, the class Coe K. ={GeK.: G € C} 15 a
class of nowhere dense graphs,

log(#F C
_(15) lim lim sup Og(# =6)
1—o00 GeCvi ‘Gl

(16) for every polynomzal P, the class C' of the 1-transitive fm-
ternal augmentations of directed graphs G with A (G) <

P(Vy(G)) and G € C form a class of nowhere dense graphs,
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CHARACTERISATION OF ROUNDED
EXPANSION CLASSES

- Let € be a class of graphs. Then the
following conditions are equwalent

(1) C has bounded expanston,

(2) for every integer v, SUPgee V1 (G) <

(3) for every integer r, SUPece Vi (G) <

(4) for every integer P, SUDgee Xp(G) <

(5) for every integer P, Supge col (G]

(6) for every integer p, SUPGee Wcolp(G)

(7) for every integer c, the class C e o K. = {G Ke: G € C} has
bounded expansion,

(8) C has low tree-width colorings,

(9) € has low tree-depth colorings,

(10) for every integer p, there exists an integer X(p) such that
every graph G € C has a p-centered colorings using at
most X(p) colors,

(11) for every integer k, the class @' of the 1-transitive frater-
nal augmentations of directed graphs G with A~ (G) < k
and G € C form a class with bounded expansion,

(12) the class @ is a degenerate class of graphs (that 1s: V,(G)
15 bounded on €) and there ezists a function F such that
every orientation G of a graph G € @ has a transitive
fraternal augmentatzon G = G, C G, C - C @i c ...
where A™(Gy) < Q(A™(G),1),

(13) there ezists a function f such that every graph G € C has
a transitwve fraternal augmentation G = G, C Gz o C
Gi C - where A- (G)<f()
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