CLASSIFYING GRAPH

CLASSES

(AND CLASSES OF FINITE STRUCTURES)

JAROSLAN NEŠETŘIL

DEPARTMENT OF APPLIED MATH (KAM)

R

INSTITUTE OF THEORETICAL CS (ITI)

CHARIEC IJNIVERSITY

CHARLES UNIVERSITY PRAGUE

LUMINY OCT 18,2010 A JOINT PROJECT
WITH

PATRICE OSSONA DE MENDEZ

EHESS

AB,...,F,D,...

FINITE RELATIONAL STRUCTURES WITH GIVEN SIGNATURE

(THINK OF GRAPHS)

 $A \longrightarrow B$ $A \le B$

EXISTENCE OF A HOMOMORPHISM

HOMOMORPHISM QUASI ORDER

HOMOMORPHISM ORDER (DEFINED ON CORE-GRAPHS)

SPECTACULAR PROPERTIES OF HOMOMORPHISM ORDER

de

- DENSE
- UNIVERSAL
- : 00 CONNECTED

CACTI-LIKE

(UNDIRECTED)

(DIRECTED)

o KI

UNDIRECTED

DIRECTED

$$F + \Rightarrow = \{A : F + \Rightarrow A\}$$

 $FORB(F)$
 $FORB(S)$
 $FOR S = \{F_A, ..., F_E\}$

THM ANY NP PROBLEM

POLYNOMIALLY EQUIVALENT TO

MEMBERSHIP FORB (5') FOR

A LIFT (EXPLANSION T'OF E)

(KUN, N.)

THM | ANY HOMOMORPHISM

CLOSED FIRST ORDER DEFINABLE CLASS

18 OF FORM 5 ->

(ROSSMAN)

$$D = \{A: A \rightarrow D\}$$

CSP(D)

(FEDER, VARDI) - CSP (N. PULTR)

```
(N. PULTR)
 FINITE DUALITY
  FORB(S) = (SP(D))
          CHARACTERIZED
FINITE
DUALITIES
                             KOMAREK
  COMBINATORICS
                            N.,TARDIF
   (F A SET OF TREES)
                          LAROSE, LOTTEN,
   (D' DISMANTABLE
                          TARDIF
                              ATSERIAS
 _ LOGIC
   (ONLY FO DEFINABLE CSP)
                              ROSSMAN
   HOMOMORPHISM
```

HOMOMORPHISM
POSET

BOUNDS

GAPS

CUTS

BOUNDS

(HEYTING POSETS)

6

P- RESTRICTED DUALITY

A CLASS OF STRUCTURES

5 ⊆ €

FORB(5) NO = CSP(D) NO

.

DUALITY

RESTRICTED DUALITY

HAS ALL RESTRICTED DUALITIES

IFF

CONNECTED

FOR EVERY FINITE SET 5 C SUCH THAT

THERE EXISTS DF SUCH TONION OF DF) $(P \cap FORB(F) = P \cap CSP(DF)$

- BOUNDED DEGREE GRAPHS HAVE
 ALL RESTRICTED DUALITIES
 (HAGGKVIST, HELL)
 - PLANAR GRAPHS HAVE ARD

 (N., P.OSSONA DE MENDEZ)

PLANAR - RESTRICTED DUALITY

WHICH CLASSES HAVE
ARD?

CHARACTERIZATION BY

_ METRIC PROPERTIES OF HOMOMORPHISM ORDER

- ORIENTED AND ACYCLIC LIFTS

- BY SUBDIVISIONS

- BY FO DEFINABILITY

(MODULO LERDÖS- HAJNAL

CONJECTURE)

dist
$$(A_1B) = 2^{-k}$$

 $k = \min \{ |C| : C \rightarrow A \neq C \leftrightarrow B \}$
 $c \leftrightarrow A \neq C \rightarrow B$

$$\varepsilon > 0$$

$$\Phi^{\varepsilon}(A) = \min\{|B| : A \rightarrow B\}$$

$$dist(A|B) < \varepsilon$$

THM (N., POM)

FOR A CLASS &

- 4 HAS ALL RESTRICTED DUALITIES
- 2) SUP $\phi^{\epsilon}(A) < \infty$ A \(\epsilon \)
 (FOR EVERY \(\epsilon \)

COMPLETION DEFINES dist OF THE HOMOMORPHISM ORDER

DUALITIES IN & CHARACTERIZED (F, D) DUALITY IN IS A CONNECTED EITHER F GRAPH MULTIPLICATIVE OR D IS A

GRAPH

EXAMPLES OF ARD

CLASSES WITH BOUNDED EXPANSION

$$\varphi \subseteq \varphi \nabla \circ \subseteq \varphi \nabla 1 \subseteq \varphi \nabla 2 \subseteq \varphi \nabla 1 \subseteq$$

QVi = ALL GRAPHS WHICH

WE OBTAIN FROM GRAPHS

IN Q BY CONTRACTING

SUBGRAPH WITH RADIUS Si

					• • • • • • • • • • • • • • • • • • • •	
φ	ган	BOUND	BOUNDED		EXPANSION	
IF		RAPHS		6 di	HAVE	
BOUNDED EDGE DENSITY:						
(suP SeYVi	[E(G)]	,	< ∞		

THM (N., POM)

ANY E WITH BOUNDED EXPANSION HAS ALL RESTRICTED DUALITIES.

ESSENTIALLY
BEST POSSIBLE

CLASS RESOLUTION IN TIME

6 = 6 do = 6 d1 = 6 d5 = ...

TIME

DEF (PLOTKIN, RAD, SMITH)

P. Di IS THE CLASS OF ALL

i- SHALLOW MINORS (SHALLOW MINORS)
AT DEPTH i

OF GRAPHS FROM C

DEPTH OF A MINOR = MAX RADIUS

OF CONTRACTED

SUBGRAPH

(AU GRAPHS ARE SIMPLE)

Class Resolution (r=1)

- If there exists r such that $C \nabla r$ contains all graphs, then C is somewhere dense,
- ullet Otherwise ${\cal C}$ is nowhere dense

EXAMPLES

PLANAR

e 7i = e

△ ≤ d BOUNDED DEGREE

FORBIDDEN TOPOLOGICAL MINOR

SCALLING OF ALL GRAPHS

- CLASS RESOLUTION CAPTURES MANY
 COMBINATORIAL PROPERTIES
- TIME IS A GOOD PARAMETRIZATION
 LEADS TO EFFECTIVE ALGORITHMS

- LEADS TO DICHOTOMY

DEF

9 IS SOMEWHERE DENSE

IF THERE EXISTS io SUCH THAT

4 Via 15 THE CLASS OF ALL GRAPHS

P IS HOWHERE DENSE OTHERWISE

ND VS SD DICHOTOMY

ENOT ARBITRARY DEF

POSSIBLE TO DESCRIBE BY

MANY (VIRTUALLY ALL)

GRAPH PARAMETERS:

a, w, x, wcol

ALSO BY

EDGE DENSITIES OF

e di ... shallow MINORS

Ψ & i SHA LLOW TOPOLOGICAL MINORS

Y 学· SHALLOW IMMERSIONS

ALSO BY COUNTING

CHARACTERISATION OF ND

Let ${\mathbb C}$ be an unbounded size infinite class of graphs, let ${\mathsf F}$ be a graph with at least one edge and let ${\mathsf q}$ be a positive integer. Then the following conditions are equivalent:

- (1) C is a class of nowhere dense graphs,
- (2) for every integer r, $C \nabla r$ is not the class of all finite graphs,
- (3) for every integer r, $\mathbb{C}\widetilde{\nabla} r$ is not the class of all finite graphs,
- (4) C is a uniformly quasi-wide class,
- (5) H(C) is a quasi-wide class,
- (6) $\lim_{r \to \infty} \limsup_{G \in \mathcal{C} \setminus r} \frac{\log ||G||}{\log |G|} = 1$
- (7) $\lim_{r \to \infty} \limsup_{G \in \mathcal{C} \ \tilde{\forall} \ r} \frac{\log \|G\|}{\log |G|} = 1$
- (8) $\limsup_{r\to\infty} \limsup_{G\in\mathcal{C}} \frac{\log \nabla_r(G)}{\log |G|} = 0,$
- (9) $\limsup_{r\to\infty} \limsup_{G\in\mathcal{C}} \frac{\log \overline{\nabla}_r(G)}{\log |G|} = 0$,
- (10) $\lim_{p\to\infty} \limsup_{G\in\mathcal{C}} \frac{\log \chi_p(G)}{\log |G|} = 0$,
- (11) $\lim_{i \to \infty} \limsup_{G \in \mathcal{C} \vee i} \frac{\log \chi(G)}{\log |G|} = 0,$
- (12) $\lim_{p\to\infty}\limsup_{G\in\mathcal{C}}\frac{\log\operatorname{col}_p(G)}{\log|G|}=0,$
- (13) $\lim_{p\to\infty} \limsup_{G\in\mathcal{C}} \frac{\log \operatorname{wcol}_p(G)}{\log |G|} = 0$,
- (14) for every integer c, the class $\mathbb{C} \bullet K_c = \{G \bullet K_c : G \in \mathbb{C}\}$ is a class of nowhere dense graphs,
- $\lim_{i \to \infty} \limsup_{G \in \mathcal{C} \vee i} \frac{\log(\#F \subseteq G)}{\log|G|} < |F|,$
- (16) for every polynomial P, the class \mathbb{C}' of the 1-transitive fraternal augmentations of directed graphs \vec{G} with $\Delta^-(\vec{G}) \leq P(\nabla_0(G))$ and $G \in \mathbb{C}$ form a class of nowhere dense graphs,

like granizandonness! one graph anough!

Inclusion map of some hereditary classes.

EXPLANATION | I.

log - DENSITY:

log ||G|| < 1+E ...

11611<161

[GRAD]

Vr (C) = max HEGVR

11411

'r-degeneracy"

MCOLA

#y TO THE LEFT WHICH ARE P-REACHABLE

(KIERSTED, YANG)

XP = LOW TREE DEPT DECOMPOSITION

ANY & CLASSES INDUCE SUBGRAPH WITH TREE DEPTH & P

td(G) = MIN HIGHT OF A ROOTED TREE T SUCH THAT G⊆ CLOS (T)

"ANCESTOR RELATION"

EXPLANATION	皿
-------------	---

r- INDEPENDENT

1-1'nd = ind

 $A \subseteq V(G)$ dist_G (×14) > r.

QUASIWIDE 8

Yr 3 s(r) Yr 3N:

ACER HOLDS

 $|G|>N \Rightarrow 3 S (|S| \leq s(r))$

G-S HAS r-INDEPENDENT

1A/>r

~ SCATTERED SETS

ND
$$\iff$$
 $\lim_{r\to\infty} \limsup_{G\in\mathcal{C}} \frac{\log \nabla_{r(G)}}{\log |G|} = 0$

ALHOST LINEAR ALGORITHMS

SPECIAL CASE

 $f(r) = \lim_{K \to K} \sup_{K \to K} \nabla_{r}(G) < \infty$

BOUNDED EXPANSION = degenerated

EXPANSION FUNCTION

- CONSTANT (PROPER MINOR)
- EXPONENTIAL (REGULAR d)
- POLYNOMIAL (GEOMETRIC)

- EXERY GROWTH POSSIBLE
ARBITRARY FAST

SMALL EXPANSION -> GOOD PROPERTIES

- SUBEXPONENTIAL GROWTH

W

SUBLINEAR SERARATORS

(DVORAK, NORINE)

XPANSION C

- EXPANSION C'
YIELDS SMALL CLASS

(# OF LABELLED GRAPHS)

- SUBEXPONENTIAL CLIQUE - GROWTH

E IS HYPERFINITE AND THUS

AK J Cle) G-che wel

EVERY MONOTONNE PROPERTY IS TESTABLE IN THE BOUNDED DEGREE MODEL

(BENJAMINI, SCHRAMM, SKAPIRA) EXTENSION OF

W-EXPANSION i -> DUL W(G) GERTI

SUB-EXPONENTIAL W- EXPANSION

Log w(G) = 0

(q!)

(VERY) SMALL EXPANSION

SUBLINEAR SEPARATORS SMALL CLASS

PROPERTIES
TESTABLE
IN THE BOUNDED
DE GREE MODEL

INCLUDES ALL PROPER MINOR CLOSED CLASSES

CHARACTERISATION OF BOUNDED EXPANSION CLASSES

following conditions are equivalent: Let $\mathcal C$ be a class of graphs. Then the

- (1) C has bounded expansion,
- (2) for every integer r, $\sup_{G \in \mathfrak{C}} \nabla_r(G) < \infty$,
- (3) for every integer r, $\sup_{G \in \mathcal{C}} \widetilde{\nabla}_r(G) < \infty$,
- (4) for every integer p, $\sup_{G \in \mathcal{C}} \chi_p(G) < \infty$,
- (5) for every integer p, $\sup_{G \in \mathcal{C}} col_p(G) < \infty$,
- (6) for every integer p, $\sup_{G \in \mathcal{C}} wcol_p(G) < \infty$,
- (7) for every integer c, the class $\mathcal{C} \bullet K_c = \{G \bullet K_c : G \in \mathcal{C}\}\ has$ bounded expansion,
- (8) C has low tree-width colorings,
- (9) C has low tree-depth colorings,
- (10) for every integer p, there exists an integer X(p) such that every graph $G \in \mathcal{C}$ has a p-centered colorings using at most X(p) colors,
- (11) for every integer k, the class \mathbb{C}' of the 1-transitive fraternal augmentations of directed graphs \vec{G} with $\Delta^-(\vec{G}) \leq k$ and $G \in \mathbb{C}$ form a class with bounded expansion,
- (12) the class \mathcal{C} is a degenerate class of graphs (that is: $\nabla_0(G)$ is bounded on \mathcal{C}) and there exists a function F such that every orientation \vec{G} of a graph $G \in \mathcal{C}$ has a transitive fraternal augmentation $\vec{G} = \vec{G}_1 \subseteq \vec{G}_2 \subseteq \cdots \subseteq \vec{G}_i \subseteq \cdots$ where $\Delta^-(\vec{G}_i) \leq Q(\Delta^-(\vec{G}), i)$,
- (13) there exists a function f such that every graph $G \in \mathcal{C}$ has a transitive fraternal augmentation $\vec{G} = \vec{G}_1 \subseteq \vec{G}_2 \subseteq \cdots \subseteq \vec{G}_i \subseteq \cdots$ where $\Delta^-(\vec{G}_i) \leq f(i)$.

11.

EXAMPLES OF BOUNDED EXPANSION

(+ D. WOOD)

BOUNDED EXPANSION

1

LINEAR ALGORITHM FOR SUBGRAPH
PROBLEM

LINEAR ALGORITHM FOR COLORING

$$\chi = \chi_1 \leq \chi_2 \leq \chi_3 \leq \ldots \leq \chi_{\infty} = td$$

STAR COLORING 1

CENTERED

HOMOMORPHISM ORDER

COUNTING

X

DECISION PROBLEM

STATISTICS TESTING

DENSE GRAPHS

(LOVA'SZ &)

VERY SPARSE GRAPHS (BENJAMINI, SCHRAMM)

deno
$$(F_1G) = \frac{\# F \subseteq G}{|G|}$$

LOOKING FOR THE EXPONENT (DEGREE OF FREEDOM)

- HOW MANY VERTICES CAN BE
CHOSEN INDEPENDENTLY WHEN
LOOKING FOR A COPY OF F.

THM |

FOR EVERY INFINITE CLASS OF GRAPHS

6

AND EVERY GRAPH F

Lim Limput
$$log(\#F\subseteq G)$$
 $i\rightarrow\infty$ $G\in UVi$ $log(G)$

WHERE & (F) IS INDEPENDENCE NUMBER

DEGREES OF FREEDOM -> RANDOMNESS - $g_F(G) = \frac{hom(F_1G)}{ICICLE}$ -> LIMITS

-> REGULARITY - TREE REDUCTIONS

COROLLARY

P NOWHERE DENSE

T

lim limsup log (#F=G)

Ni >00 GEQUI log |G|

{.∞,0,1,...,α(ε)}

FOR EVERY F.

WITH AT LEAST ONE EDBE SOTHAT LEFT LIFTS

PROOF

IT SUFFICES TO PROVE

PROOF COMBINES ALL CHARACTERIZATIONS

_ TREE DEPTH to

- LOW TREE DEPTH DECOMPOSITIONS

- STEPPING UP LEMMA
FOR "(KIF) - SUNFLOWERS"

- COUNTING OF COLORED TREES

PROOF I

FIRST CASE: F = K2

(TRICHOTOMY THM)

EVERY INFINITE CLASS

LIMIT THE

lim limmy log IGI

Ninos GERVI log IGI

ξ-∞,0,1,23

@ IS NOWHERE IFF DENSE <1

(IS SOMEWHERE IFF DENSE

THM (CHARACTERIZATION BY ORIENTATIONS

LET & BE A CLASS OF GRAPHS.

- THE CLASS OF ALL GRAPHS IN & HAS ARD
- @ HAS BOUNDED EXPANSION.

ORIENTATION

THM

(CHARACTERIZATION) BY SUBDIVISIONS

LET & BE A TOPOLOGICALLY CLOSED CLASS OF GRAPHS.

- 1 C HAS ARD
- 2 PHAS BOUNDED EXPANSION.

SUBDIVISION

ANY SUBDIVISION BELONGS TO E

III

TOPOLOGICALLY CLOSED

ERDÖS - HAJNAL CONJ.

BY: M×M -> H SUCH $\chi(G) \geq f(n,\ell) \Rightarrow \exists G' \subseteq G$ $\chi(G') \geq h$ girth $(G') \geqslant \ell$.

$$\begin{array}{c} \ell = 4 \text{ (R\"ODL)} \\ \hline \text{WEAK ODD GIRTH CONJ.} \\ \hline \exists \ \widetilde{f} : \mathbb{N}^3 \longrightarrow \mathbb{N} \quad \text{such that} \\ \hline \chi(G) \geqslant \widetilde{f}(n_1\ell_1s) \Rightarrow \exists \ G' \subseteq G \\ \hline \chi(G) \geqslant \widehat{f}(n_1\ell_1s) \geqslant n \ \& \ \text{odd} \ (G') \geqslant \ell \\ \hline \text{EITHER} \quad \chi(G') \geqslant n \ \& \ \text{odd} \ (G') \geqslant \ell \\ \hline \text{OR} \quad G' \text{ is } \leq s \quad \text{Subdivision} \\ \hline \end{array}$$

or G' is $\leq s$ OF Kn.

THM	(CHARA	(CHARACTERIZATION	
	FO	DEFINABILITY	ा व्यक्ति

LET & BE MONOTONAE TOPOLOGICALLY CLOSED.

ASSUME WOGC.

- 1. CHAS ARD
- 2. E HAS BOUNDED EXPANSION
- 3. FOR EVERY P THERE EXISTS

 A GRAPH HP WITH ODD

 GIRTH >P SUCH THAT

 CSP(HP) Ne is

 EQUIVALENT (ON e)

 WITH FO FORMULA Da:

¥GEQ (GFQ ⇔ G→Hg)

OPEN PROBLEMS (DREAMS)

- IS THERE A NOWHERE DENSE

CLASS & WHICH IS

ALGEBRAICALLY UNIVERSAL

— IS THERE A GOOD STATISTICS

OF SHALLOW TOPOLOGICAL

SUBGRAPHS

STATISTICS OF POWERS

OF MATRICES

"SD ANALYSIS"

P.OSSONA DE MENDEZ, J.N.

GRAPH SPARSITY

(TO APPEAR)

