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Abstract. Recently lexicographic breadth first search (LexBFS) has been shown to be a very
powerful tool for the development of linear time, easily implementable recognition algorithms for
various families of graphs. In this paper, we add to this work by producing a simple two LexBFS sweep
algorithm to recognize the family of cographs. This algorithm extends to other related graph families
such as P4-reducible, P4-sparse, and distance hereditary. It is an open question whether our cograph
recognition algorithm can be extended to a similarly easy algorithm for modular decomposition.
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1. Introduction. We introduce a new1 linear time algorithm to recognize
cographs, namely, graphs with no induced path on four vertices (P4). Although several
optimal cograph recognition algorithms already exist, our algorithm is of interest for
several reasons: it is conceptually and practically simpler than previous algorithms; it
returns both positive and negative certificates; it is lexicographic breadth first search
(LexBFS) based, introducing a new variant LexBFS−; it is the foundation of recog-
nition algorithms for other related families of graphs; and finally, it could potentially
be generalized to a simple linear time graph modular decomposition algorithm.

Cographs or complement reducible graphs have the property of being defined both
recursively and by a simple forbidden induced subgraph characterization, namely, no
induced P4 [9]. Cographs are the family of graphs constructed from a single vertex
under the closure of the operations of union and complementation or, equivalently,
union and join. As shown in [9] these operations uniquely define a tree representation
referred to as a cotree. The certificate returned by our algorithm is either a cotree
representation if the graph is a cograph or an induced P4.

Cographs arise in applications such as examination scheduling problems [26], au-
tomatic clustering of index terms [17], and recently in the recognition of read-once
functions [16]. Surprisingly, despite the structural simplicity of cographs, construct-
ing linear time recognition algorithms has been challenging. The first linear time
algorithm to recognize cographs and construct the cotree was achieved by Corneil,
Perl, and Stewart [10] in 1985. The algorithm examines each vertex in turn, inserts
it into the cotree if the graph is a cograph, and returns an induced P4 otherwise. A
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‡LIAFA, CNRS-Université Paris 7-Denis Diderot, Paris Cedex 05, F-75251 France (michel.habib@

liafa.jussieu.fr).
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parallel cograph recognition algorithm appeared in [13]. Recently, Habib and Paul
[19] have used vertex splitting to produce a new linear time recognition algorithm
for cographs. Despite being optimal, each of these algorithms requires more complex
data structures or algorithmic techniques than our new algorithm.

The motivation for studying cographs lies not only in their simplicity but also in
their extension to other families and to modular decomposition. In fact, our cograph
algorithm has already been extended to recognize distance hereditary, P4-reducible,
and P4-sparse graphs [3]. Distance hereditary graphs are characterized by the property
that the distance between any two connected vertices of an induced subgraph equals
their distance in the original graph. Their relationship to cographs stems from the
fact that for any vertex v and integer k, the set of vertices at distance k from v induces
a cograph. The family of P4-reducible graphs requires that each vertex belongs to at
most one induced P4, and the P4-sparse graphs are defined by the restriction that
any set of five vertices induces at most one P4. These two graph families belong to
the P4-heirarchy, which is a set of graph families defined by various restrictions on
the number or types of allowed induced P4s. Additional families in the P4-heirarchy,
parity graphs and house, hole, domino (HHD)-free graphs, are related to cographs
and may also be recognizable by similar algorithms.

There are several methods for decomposing or revealing the structure of a graph.
A graph is decomposed by splitting the graph into smaller subgraphs in a well-defined
manner. The ultimate goal is to decompose a graph into its most basic building blocks
or prime subgraphs. An important consequence of the decomposition process is the
construction of a tree representation of the graph (see, for example, [22]). Such a
tree representation of a graph can lead to the simplification of difficult graph related
problems, such as transitive orientation [24] and NP-hard problems such as maximum
size clique, maximum size stable set, minimum coloring, and minimum clique covering,
for restricted families of graphs.

Modular decomposition is one such decomposition scheme. Unfortunately, al-
gorithms for modular decomposition are notorious for being either linear time and
impractical or less efficient. The optimal theoretical algorithms (see [23, 14, 24, 12])
are linear in time; however, the best practical algorithms are only O(|V |+ |E| log |V |)
[14, 20] and O(|V |+ |E| ·α(|V |, |E|)) [14], where α(|V |, |E|) is the inverse Ackermann
function. Recent results are proving hopeful that a simple linear time algorithm may
exist for finding the modular decomposition of a graph. The motivation for this
discussion lies in the relationship between cographs and modular decomposition.

Cographs are exactly those graphs that are completely decomposable with re-
spect to modular decomposition; i.e., they are the graphs whose prime subgraphs are
single vertices. Additionally, the cotree is exactly the modular decomposition tree
for cographs. The cotree is algorithmically significant as a tool for dynamic pro-
gramming algorithms, thereby reducing NP-hard problems such as coloring, clique
detection, hamiltonicity, etc., on arbitrary graphs to fast polynomial time problems
on cographs [9]. As we will show, our results provide a very natural cotree construc-
tion algorithm from two LexBFS orderings of the vertices. Since the algorithm was
easily extended to construct tree representations of distance hereditary, P4-reducible,
and P4-sparse graphs, a natural question is whether there exists a generalized algo-
rithm to construct the modular decomposition tree for any graph. Note that any
linear time modular decomposition algorithm, such as [23, 14, 24, 12], immediately
yields a somewhat complicated, linear time cograph recognition algorithm.

As previously noted, our algorithm is based on two LexBFS orderings of the ver-
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tex set. The real beauty of LexBFS lies in its straightforward implementation and
linear running time. Not only can it be implemented in linear time for an input graph
G, but using only the edges of G one can also do a LexBFS of the complement of G in
time linear in the size of G. Furthermore, more sophisticated vertex selection methods
can be easily implemented with minor modifications to the original LexBFS imple-
mentation. We will define one of these variations (LexBFS−) in section 3. LexBFS
based recognition algorithms fall into a simple algorithmic paradigm of “order” the
vertex set and “check” for a graph characterizing property. The following algorithm
overview for our cograph recognition algorithm illustrates the paradigm.

Algorithm sketch Recognize Cograph(G)
Input: Graph G.
Output: Cotree T if G is a cograph, an induced P4 otherwise.

Compute σ a LexBFS of G
Given σ, use LexBFS− to compute σ−, a LexBFS of G
if σ, σ− satisfy the neighborhood subset property (NSP) on G, G, respectively,

return ( Cotree )
else

return ( Report P4 )
end Recognize Cograph

This technique of using LexBFS to construct a vertex ordering that has a graph
characterizing property was first introduced by Rose, Tarjan, and Lueker [25] in 1976
for chordal graph recognition. Their algorithm produces a vertex ordering that is
then tested for a property specific to chordal graphs, namely, a perfect elimination
ordering [25]. More recently, this paradigm has been used to recognize interval graphs
[11, 18], unit interval graphs [7, 21], and bipartite permutation graphs [5, 21]. See [6]
for a survey of these algorithms as well as other applications of LexBFS.

The remainder of this paper is organized as follows. We begin by defining cograph
and cotree specific notation and theory, followed by a discussion of LexBFS and
the newly defined variant LexBFS−. The remaining sections discuss the algorithm
and prove its correctness. The first of these sections proves the neighborhood subset
property (NSP), a relationship between the neighborhoods of two sets drawn from the
neighborhood and nonneighborhood with respect to a given vertex. This property
leads naturally to the recognition algorithm, which is followed by an overview of
the implementation details. We conclude by summarizing our results and indicating
possible directions for future work.

2. Background. We will assume standard graph theoretic notation and defini-
tions as in [28]; however, here we will highlight those of particular importance to this
paper.

All graphs in this paper are undirected. Let U be a subset of V . Then V − U or
V \U is the set of vertices belonging to V and not U . The cardinality of U is denoted
by |U | and G[U ] is the subgraph of G, induced by U . We will denote the complement
graph of G = (V,E) by G = (V,E), where E = {uv|u, v ∈ V, u �= v, and (u, v) �∈ E}.
The neighborhood N(v), of vertex v, is the set of vertices adjacent to v, and the
complement neighborhood N(v) is the set of vertices not adjacent to v in G.

We refer to a chordless path on k vertices by Pk. Suppose that x1x2 . . . xk−1xk

is a Pk. We say that x1 and xk are the endpoints of Pk and that x2, . . . , xk−1 are
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the midpoints. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the union of G1

and G2 is the graph G = (V1 ∪ V2, E1 ∪ E2). The join of G1 and G2 is the graph
G = (V1 ∪ V2, E1 ∪ E2 ∪ E), where E = {u1u2|u1 ∈ V1 and u2 ∈ V2}.

Given a rooted tree T and two vertices x and y in T , we say that x is an ancestor
of y, and y is a descendant of x, if x lies on the path from y to the root of T . For a
set of leaves S of T , we say that the lowest common ancestor (lca) of S is the internal
node v of T such that v is the root of the smallest rooted subtree of T containing
S. We say that the children of a node are siblings. A subset M ⊆ V is a module of
G = (V,E) if for all vertices x, y ∈ M and v ∈ V −M , xv ∈ E if and only if yv ∈ E.

2.1. Cographs and cotrees. Figure 1 illustrates a cograph G and an embed-
ding of the corresponding cotree TG. Leaves of TG represent the vertex set V , and
each internal node signifies the union (0) or join (1) operations on the children. The
significance of the 0(1) nodes is captured by the fact that xy ∈ E if and only if the
lca(x, y) is a 1 node, as depicted in Figure 1. For the remainder of this section, assume
that G refers to a cograph and TG to its cotree.
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Fig. 1. (Left) A cograph G. (Right) An embedding of the cotree TG of G.

The algorithm relies on the following properties of cographs:

1. Complement property. G is a cograph; i.e., cographs are closed under com-
plementation.

2. Complement cotree property. The cotree T of G is exactly T with 0 and 1
nodes interchanged.

3. Hereditary property. Cographs are hereditary in the sense that any induced
subgraph is also a cograph.

4. Induced subtree property. An induced rooted subtree t of T is the cotree of
an induced subgraph of G.

Generally, given an internal 0 or 1 node u, we let Tu refer to the induced subtree
rooted at u. However, we will need to be able to refer to more specific subtrees of a
cotree. Consider the root R of T . Let x be a leaf of T . Then PxR will denote the
directed path of T from x to R. Note that with the exception of x, the path alternates
between 0 and 1 nodes. Let (0x1 , . . . 0

x
k) (resp., (1x1 , . . . 1

x
k′)) refer to the 0 nodes (resp.,
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the 1 nodes) from x to R on PxR. Notice that each node 0xi or 1xi has one child on
PxR and at least one child not on PxR.

We now define the subtrees rooted on a path PyR for each y. Consider 0yi on PyR

and only the children of 0yi that do not lie on PyR. We can define the set of subtrees
T y

0i to be the induced subtrees rooted at these children of 0yi . The analogous definition
holds for T y

1j and 1yj . Figure 2 highlights four such sets, namely, T x
01, T

x
02, T

x
11, and

T x
12, for the cotree presented in Figure 1.
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Fig. 2. Each shaded subtree indicates a different subtree Tx
0i or Tx

1j rooted on the path PxR.

We conclude this section with an observation about the induced subtrees T y
0i and

T y
1i of a cotree.

Observation 1. For any vertex y of a cograph, the leaves of T y
0i (or T y

1i) define
a module. More generally, a set M of vertices is a module if and only if there exists
a set U of sibling nodes of the cotree such that M = ∪u∈U{x | x is a leaf of Tu}.

3. LexBFS and LexBFS−. We begin by describing a lexicographic breadth
first search (LexBFS) and then develop the new variant, LexBFS−.

3.1. LexBFS. For a graph G = (V,E), a LexBFS of G, denoted LexBFS(G), is a
breadth first search in which preference is given to vertices whose neighbors have been
visited earliest in the search [25]. We denote this ordering by the function σ : V → N,
where σ(y) = i indicates that y is the ith vertex of σ and inversely, σ−1(i) = y. We
use u <σ v to indicate that σ(u) < σ(v).

There are several different paradigms for implementing LexBFS. The term lexi-
cographic stems from the original labeling paradigm in which vertices pass a label to
each unnumbered neighbor. The next vertex is chosen such that it has the lexico-
graphically largest label. Another conceptualization of LexBFS involves pivots and
partitioning [18]. The partitioning paradigm will prove more useful for illustrating the
variant LexBFS−. Algorithm LexBFS below is a variation of the version appearing
in [18].

The partitioning paradigm considers a pivot (the current vertex) and all un-
numbered vertices. A vertex is considered to be visited if it has been a pivot, i.e.,
numbered. The algorithm begins with a list L of cells initialized to a single cell con-
taining the vertex set. Each step consists of choosing a pivot α in the leftmost (first)
cell of L. The pivot is removed from its cell and the unnumbered neighborhood of α
is defined to be N ′(α) = {v|v ∈ N(α) and v unnumbered}. For each cell P ∈ L, all
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Algorithm LexBFS(G, τ)
Input: A graph G = (V,E) and an initial ordering τ of the vertices.
Output: An ordering σ of the vertices of G.
1. L ← (V )
2. i ← 1
3. while ∃Pi �= ∅ in L = (P1, . . . , Pk) do
4. Let Pl be the leftmost nonempty cell
5. Remove the first vertex x (smallest with respect to τ) from Pl

6. σ(x) ← i
7. i ← i + 1
8. for each cell Pj , j ≥ l do
9. Let P ′ = {v|v ∈ N(x) ∩ Pj};
10. if P ′ is nonempty and P ′ �= Pj , then
11. Remove P ′ from Pj

12. Insert P ′ to the left of Pj in L
13. end for
14. end while
15. return (σ)
end LexBFS

members of N ′(α) belonging to P are removed from P and inserted into a new cell
P ′ positioned in L immediately to the left of P .

For example, if x is the first vertex selected by a LexBFS on G (see Figure 1 and

Table 3.1), then the vertex set is split into two cells y u v w z and d e c a b , where

y u v w z is moved ahead of d e c a b since each vertex in {y, u, v, w, z} is adjacent

to x, whereas each vertex in {d, e, c, a, b} is not adjacent to x.

The LexBFS terminates when all vertices have been visited. It outputs an order-
ing σ of the vertices. The numbering convention in this paper follows that of [11],
where the ordering σ is the order in which vertices are visited during the LexBFS.
Throughout the paper, when we refer to the “leftmost vertex” or “first” vertex in
a set, the ordering is with respect to σ. Table 3.1 walks through a LexBFS of the
cograph of Figure 1.

The following lemma is a very useful characterization of LexBFS orderings.

Lemma 3.1 (see [15, 1]). Four point condition. An ordering σ is a LexBFS of G
if and only if for any x <σ y <σ z such that xz ∈ E but xy /∈ E, there exists v such
that v <σ x, vy ∈ E, and vz �∈ E.

In addition, when restricted to cographs, LexBFS orderings can be shown to be
umbrella-free. An umbrella of an ordering σ is a triple of vertices x, y, z such that
x <σ y <σ z, where xz ∈ E, xy /∈ E, and yz /∈ E.

Lemma 3.2. Any LexBFS σ of a cograph G is umbrella-free (there does not exist
x <σ y <σ z such that xz ∈ E, xy /∈ E, and yz /∈ E).

Proof. Let x, y, z be an umbrella such that x is leftmost in σ. By the four-
point condition, there exist u <σ x such that uy ∈ E but uz /∈ E. Note that
ux /∈ E; otherwise, {u, x, y, z} would induce a P4. But then u, x, y is also an umbrella,
contradicting the choice of x.

We now introduce the notion of slices. Notice that when a pivot is selected from
the leftmost cell, any vertex in the cell could be the pivot as each vertex in the cell
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Table 3.1

Step by step LexBFS of G from Figure 1. The resulting ordering is σ : x y w z u v a d c b e.

σ(α) α N ′(α) Cells

x d y u e v w c a z b

1 x {y u v w z} y u v w z d e c a b

2 y {w z d e c a b} w z u v d e c a b

3 w {z d e c a b} z u v d e c a b

4 z {u v a} u v a d e c b

5 u {v a d e c b} v a d e c b

6 v {a d e c b} a d e c b

7 a { } d e c b

8 d {c b} c b e

9 c { } b e

10 b { } e

11 e { }

has the same set of numbered neighbors. We say that these vertices form a slice. The
following definitions formalize this notion.

Given an ordering σ of the vertices, for each vertex x, we can define subsets of
the neighborhood of x,

Ni(x) = {u | u ∈ N(x) and σ(u) < i},

which contain the neighbors of x appearing before the ith vertex in the ordering σ.
When the ith pivot of a LexBFS is selected, Ni(x) is the same for each vertex x in the
leftmost cell Pl (the following definition establishes that these vertices form a slice).

Definition 3.3. A slice (or set of tied vertices) of a LexBFS ordering σ is
a set of consecutive vertices S = {u | i � σ(u) � j} such that for any u ∈ S,
Ni(u) = Ni(σ

−1(i)), and for any v, j < σ(v), or σ(u) < i, Ni(v) �= Ni(σ
−1(i)).

Examples of slices of a LexBFS are the whole set V and the neighborhood of the
first vertex visited by the search. Notice that there are exactly |V | slices, one for each
vertex of the search, or one for each occurrence of a “leftmost” cell in the LexBFS
procedure. Consider the LexBFS obtained in Table 3.1. The different bracket styles
indicate the slices constructed during the sweep and highlight those at a common
nesting depth:

(3.1) σ : [x(y{w〈z〉}{u〈v〉})(a)(d{c〈b〉}{e})].

As shown by the following lemma, slices of a LexBFS ordering exhibit nice struc-
tural properties.

Lemma 3.4. Let S be a slice of a LexBFS σ of a graph G. Then σ restricted to
the vertices of S is a LexBFS of the subgraph induced by those vertices.

Since slices form the foundation of the recognition algorithm, we will need notation
to refer to any slice of a LexBFS. The slice starting at vertex x will be denoted by
S(x). A subslice is a slice nested within a slice. In the following, some of the identified
subslices may be empty. Notice that S(x)∩N(x) is a subslice of S(x) which we denote
by SA(x). Once the final vertex of SA(x) has been used as a pivot, the remaining
vertices of S(x) are grouped into cells S(x) ∩ N(x) = S1(x), S2(x), . . . , where all
vertices in Si(x) have the same neighborhood in SA(x). The Si(x) are called x-cells.
We let xi be the first vertex, as chosen by σ, in Si(x). Note that S1(x) is a slice in
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σ, whereas Sj(x), j ≥ 2, could be the union of slices since there may be some edges
from vertices in some Si(x), i < j, to vertices in Sj . Since xi is identified by σ, the
four-point condition immediately establishes the following observation.

Observation 2. Consider v-cell Sj(v) as identified by σ. If some vertex in
Sj(v) other than vj has a neighbor in Si(v) for i < j, then vj also has a neighbor in
Sh(v), h ≤ i. Thus to find the leftmost vertex in N(v) that is adjacent to some vertex
in Sj(v), we have only to look at vj’s neighbors.

For cographs, each Si(x) is a maximal slice of S(x), since, as shown in Lemma
3.6 below, any edge between two x-cells in S(x)∩N(x) implies the existence of a P4.
Equation (3.2) illustrates the subslices of S(x) as defined by the LexBFS ordering
of Table 3.1. (The Si(x) are slices since G is a cograph.) In particular, SA(x) =
{y, w, z, u, v} and SN (x) = 〈S1(x), S2(x)〉, where S1(x) = {a} and S2(x) = {d, c, b, e}:

(3.2) x [y w z u v] [a] [d c b e].

Again it is noted that in a LexBFS ordering, the slice S(x) is defined for each
vertex x and that the sets SA(x) and SN (x) may be empty sets. Consider a, u, and
c in (3.1); S(a) = {a}, so SA(a) = ∅ and SN (a) = ∅; SN (u) is empty in S(u), while
for vertex c the set SA(c) is empty.

Definition 3.5. If S is a consecutive set of vertices in a LexBFS ordering σ and
x is the first vertex of S, then the left neighborhood of S is

N<(S) = {y|y <σ x and y ∈ N(z) ∀z ∈ S}.

Lemma 3.6. Let G = (V,E) be a cograph and σ a LexBFS sweep of G. Then for
any vertex v and i < j

∀x ∈ Si(v),∀y ∈ Sj(v), xy �∈ Eand(3.3)

N<(Si(v)) ⊃ N<(Sj(v)).(3.4)

Proof. We begin by showing that for any x ∈ Si(v) and y ∈ Sj(v), xy /∈ E.
Assume that xy ∈ E and i is the smallest index such that there exist j > i, y ∈ Sj(v),
and xy ∈ E. As y �∈ Si(v) there exists u ∈ SA(v) such that ux ∈ E and uy /∈ E. As
both x and y are nonadjacent to v, {v, u, x, y} induces a P4, contradicting that G is
a cograph, and thus (3.3) holds. Finally, Lemma 3.2 and (3.3) show that there does
not exist u <σ x such that uy ∈ E but ux /∈ E, thereby proving (3.4).

A property similar to Lemma 3.6, stated differently, has been observed in [13].

3.2. LexBFS−. In the above implementation of LexBFS, Algorithm LexBFS

selects the pivot x from the leftmost cell, and for each cell Pj , the vertices in N(x)∩Pj

are removed from Pj and inserted into a new cell P ′ that is inserted to the left of Pj .
Notice that inserting P ′ to the right of Pj is equivalent to inserting the nonneighbors
in Pj , N(x)∩Pj , to the left of the neighbors of x in Pj , i.e., equivalent to performing
a LexBFS of the complement of G. Thus, a LexBFS of G can be accomplished in
linear time without computing G, i.e., using only the edge set of G and Algorithm
LexBFS with a small modification to line 12, namely,

12−Insert P ′ to be the right of Pj in L.

A LexBFS minus, or LexBFS−, of a graph G is a modified version of a LexBFS
of G. The modification arises in how the pivots are selected. The idea is to have an
initial LexBFS ordering τ of G. LexBFS−(G, τ) does a LexBFS of G and selects the
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next pivot to be the vertex in the leftmost cell that was numbered earliest in τ . To
implement this “tie-breaking mechanism,” simply pass τ as the initial ordering of the
vertex set. Notice that the leftmost vertex in the leftmost cell is the vertex that was
numbered earliest in τ . Therefore, a LexBFS−(G, τ) can easily be implemented in
linear time with minor modifications to Algorithm LexBFS. It follows that a minus
sweep on G can also be accomplished in linear time. Such an ordering resulting from
LexBFS−(G, σ) will be denoted σ−.

The slice-cell notation for a LexBFS ordering σ of G follows that of a LexBFS of
G. We will denote the slice starting at vertex x and its subslice of adjacent vertices
by S(x), SA(x), respectively. The remaining x-cells are SN (x) = 〈S1(x), . . . Sk(x)〉.
For example, given the graph G in Figure 1 and σ : xywzuvadcbe, LexBFS− yields

σ− : x [a d e c b ] [z ] [y u v w ],

where SA(x) = {a, d, e, c, b} and S1(x) = {z}, S2(x) = {y, u, v, w}.
The next lemma highlights an important observation about modules and LexBFS−

sweeps.
Lemma 3.7. Let M be a module of a graph G, let σ be a LexBFS of G, and let

σ− be the ordering resulting from LexBFS−(G, σ). The first vertex of M in σ is v
if and only if v is the first vertex of M in σ−. Furthermore, S(v) and S(v) are the
inclusion minimal slices of σ, respectively, σ−, containing M .

Proof. Let v be the first vertex of M visited by σ−. At the stage v is selected
in σ−, M is contained in the slice S(v). Since v breaks the tie, v must be the first
vertex of S(v) to appear in σ and therefore the first vertex of M to appear in σ.

Assume v is the first vertex of M in σ. Let S be the inclusion minimal slice of
σ− containing M , and let u be the first vertex of S. If u �= v, then u ∈ S \M . But

this implies that there exists a slice S
′ ⊆ S \ {u} containing M , contradicting the

minimality of S.
Motivated by Lemma 3.6, we wish to have a property appearing in σ or σ− that

indicates the presence of a P4 in G. To set the stage for this, we are interested in
whether the first vertex of a specific P4 in a given LexBFS is an endpoint or a midpoint
of the P4. In particular, note that a LexBFS of a P4 starting at a midpoint of the
P4 satisfies the conditions of Lemma 3.6, whereas a LexBFS starting at an endpoint
does not. First, we prove a result about the presence of P4s in an arbitrary LexBFS.

Lemma 3.8. Let S(v) be the minimal slice of LexBFS σ that contains P4 p. If v
does not belong to any P4s in G, then p ∩ SA(v) consists of the midpoints of p.

Proof. By the minimality of S(v), we know that v is not universal to p, since
SA(v) is a slice of S(v). If v is not adjacent to any vertices in p, then, again by the
minimality of S(v), there is some vertex x ∈ SA(v) that is adjacent to some, but not
all, vertices in p. Thus there is an edge yz ∈ p such that xy ∈ E, xz /∈ E; but now
we have a P4 on v, x, y, z, contradicting v not belonging to a P4. Thus v is adjacent
to some, but not all, vertices of p. Now it is easy to check that for v to avoid being
in a P4, v must be adjacent to the midpoints of p, as required.

We now use this lemma to study the relative starting points of a P4 p in σ and
of p in σ−.

Corollary 3.9. Let σ be an arbitrary LexBFS of graph G, and let vertex w be
the first vertex of σ that is in a P4. Let p be an arbitrary P4 that contains w. If w is
an endpoint of p, then in σ−, the first vertex of p is a midpoint of p.

Proof. Let S(v) be the minimal slice of σ− containing p. If v ∈ p, then v = w
and the corollary clearly holds. Otherwise, since w is the leftmost vertex in σ that
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belongs to a P4, and w ∈ S(v), we know that v <σ w and thus v does not belong to a
P4. The result now follows by applying Lemma 3.8 to σ−. In particular, all such P4s
p in S(v), regardless of whether w is an endpoint of p, have a midpoint as their first
vertex is σ−.

The previous results deal only with the “first” P4s. We now show that these
results cannot be generalized to all P4s. For example, not all P4s with an endpoint
as the first vertex in σ have a midpoint as the first vertex of the complement P4 in
σ−, as demonstrated by C5 123451, σ : 1 2 5 3 4, and σ− : 1 3 4 5 2. The P4 : 2345
in G and the P4 : 3524 in G have endpoints 2 and 3, respectively, as the first vertex
in σ and σ−, respectively. Futhermore, it is possible for a P4 to have both endpoints
as midpoints of p and p, respectively. To see this, consider a “bull” (a vertex v
adjacent to the midpoints of a P4) and a LexBFS starting at v. Note that the “bull”
is self-complimentary.

4. Correctness of the algorithm. Recall that in the cograph recognition algo-
rithm overview given previously, the algorithm consists of a LexBFS sweep σ, followed
by a LexBFS− of G using σ as the input vertex ordering. A certificate in the form of
a cotree or an induced P4 is returned. This section first presents a characterization
of cographs in terms of a property of σ and σ−. We then consider the case when the
input graph G does not satisfy this property and a P4 is returned, followed by the
case where G does satisfy the property and a cotree is constructed. We show how
LexBFS orderings can be used to characterize the family of cographs.

4.1. The neighborhood subset property. Motivated by Lemma 3.6, this
section introduces the neighborhood subset property (NSP) and a related theorem
characterizing cographs.

Definition 4.1. The local neighborhood of a v-cell Si(v), denoted by N l(Si(v)),
of a slice S(v) for a LexBFS σ is the set of vertices in S(v) before vi adjacent to at
least one vertex in Si(v).

Notice that in the case of cographs, it directly follows from Lemma 3.6, (3.3),
that the above definition can be restricted.

Observation 3. If σ is a LexBFS of a cograph, then N l(Si(v)) = N<(Si(v)) ∩
SA(v).

Definition 4.2. A LexBFS sweep satisfies the NSP if and only if

∀v ∈ V,∀i < j, such that Sj(v) �= ∅, N l(Si(v)) ⊃ N l(Sj(v)).

As pointed out in the previous section, a LexBFS of a P4 starting at a midpoint
of the P4 does not violate the NSP. However, as shown in the following theorem,
by looking at both σ and σ− we are guaranteed to find a P4 that does violate the
property.

Theorem 4.3 (neighborhood subset theorem). Let σ be a LexBFS ordering of
a graph G = (V,E), and let σ− be the sweep LexBFS−(G, σ). Then G is a cograph if
and only if σ and σ− satisfy the NSP.

Proof. (⇒) Assume that G is a cograph. Lemma 3.6 and Observation 3 prove
that σ satisfies the NSP. As G is a cograph, applying Lemma 3.6 and Observation 3
on G and σ− proves that the NSP holds for σ−.

(⇐) Assume that G is not a cograph; i.e., there exists an induced P4. First notice
that the complement p of a P4 p is a P4 and that the midpoints of p are precisely the
endpoints of p. The following properties are the core arguments of the proof.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LexBFS COGRAPH RECOGNITION ALGORITHM 1287

Claim 1. Let p = abcd be an induced P4 of G. Notice that the endpoints are a
and d. If S(a) contains p, then there exists a pair of integers i, j such that Si(a) and
Sj(a) fail the NSP.

Proof. Since a is adjacent to b but not adjacent to c or d, b ∈ SA(a) and there
exists a pair of integers i, j such that c ∈ Si(a) and d ∈ Sj(a). Since b is adjacent to c
but not to d, i and j are distinct integers. If c <σ d (i.e., i < j) as cd ∈ E, bc ∈ E, and
bd /∈ E, N l(Si(a)) �⊃ N l(Sj(a)). Otherwise, d <σ c (i.e., j < i), and the four-point
condition applied on b <σ d <σ c implies the existence of a vertex x ∈ SA(a), x <σ b,
such that xd ∈ E and xc /∈ E. Thereby N l(Sj(a)) �⊃ N l(Si(a)), failing the NSP.

Claim 2. Let p = abcd be an induced P4 of G. If S(v) with v not in any P4

is the inclusion-minimal slice of LexBFS σ containing p, then there exists a pair of
integers i, j such that Si(v) and Sj(v) fail the NSP.

Proof. By Lemma 3.8, p ∩ SA(v) = {b, c}; thus a ∈ Si(v) and d ∈ Sj(v). Finally,
since b ∈ N(a) \ N(d) and c ∈ N(d) \ N(a), the local neighborhoods N l(Si(v)) and
N l(Sj(v)) fail the NSP.

We now return to the proof that if G is not a cograph, then the NSP fails. Since
G is not a cograph, there exists a P4 p in G or, equivalently, p in G. We let w be
the leftmost vertex in σ that is in some P4 and let p = abcd be any P4 containing
w. Examine p in G and let S(v) be the inclusion-minimal slice containing p. Three
distinct cases have to be considered:

1. Vertex v is an endpoint of p. Then Claim 1 applies.
2. Vertex v is a midpoint, say, a, of p. Thus a is the leftmost vertex of p in σ and

is an endpoint of p. Let S(u) be the inclusion minimal slice of σ containing
p. If u = w = a, Claim 1 applies; otherwise, by the choice of w, u is not in
any P4, and Claim 2 applies.

3. Vertex v does not belong to p. By the LexBFS− rule, v is to the left of
{a, b, c, d} in σ and thus is not in any P4, by our choice of p. Thus Claim 2
applies.

We now show that the NSP for σ can be tested in linear time.
Lemma 4.4. Given the list of local neighborhoods, N l(Si(v)), i > 0, for each

vertex v, sorted with respect to the same ordering (say, σ), the NSP of σ can be tested
in O(n + m).

Proof. For each vertex v and for each i, first check that |N l(Si+1(v))| < |N l(Si(v))|;
if not, report failure. Otherwise, simultaneously walk the lists N l(Si(v)) and
N l(Si+1(v)). If the current vertex x of N l(Si+1(v)) is not the current vertex of
N l(Si(v)), then walk N l(Si(v)) until x is reached. If x is not reached, then the inclu-
sion N l(Si+1(v)) ⊂ N l(Si(v)) is not satisfied and failure is reported. If N l(Si+1(v))
is walked without reporting failure, then report success.

Since each local neighborhood is searched at most twice, the above algorithm
runs in time linear in the total size of the local neighborhoods. Since there are
at most n slices, there are at most n local neighborhoods. The size of each local
neighborhood of a v-cell Si(v) is bounded by the number of “left” edges from vertices
in Si(v). Therefore, summing the sizes of all the neighborhood sets results in O(n+m)
complexity.

4.2. Reporting a P4 from σ or σ− (when G fails the NSP). We now
consider the certificate returned by the algorithm, an induced P4, when the input
graph is not a cograph.

Lemma 4.5. Let σ be a LexBFS ordering failing the NSP for v-cells of SN (v).
If j is the smallest integer such that Sj(v) and Sj+1(v) fail the NSP, then one of the
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following induced P4s is in G:

vwyvj+1 or vjwyvj+1 or yvwvj ,

where vi is the first vertex chosen by σ in Si(v), w <σ vj , w ∈ (N(vj) \ N(vj+1)) ∩
SA(v), and y <σ vj+1, y ∈ (N l(vj+1) \N l(vj)).

Proof. By the definition of v-cells, there exists w ∈ SA(v) such that w ∈ N(vj) \
N(vj+1). We now show that there exists y <σ vj+1 such that y ∈ N l(vj+1) \N l(vj).
Since Sj(v), Sj+1(v) fail the NSP, there exists x ∈ Sj+1(v) adjacent to z ∈ N l(vj+1) \
N l(vj). If vj+1z ∈ E, then set y = z. Otherwise, by the four-point condition on
z, vj+1, x, there exists z′ <σ z such that z′vj+1 ∈ E, z′x /∈ E. Thus by the definition
of Sj+1(v), z

′ ∈ N(v). If z′ ∈ Sj(v), then set y = z′. If z′ ∈ N l(vj) and thus z′ <σ vj ,
we have contradicted the choice of j, j + 1. Without loss of generality, we assume y
is the rightmost such vertex. There are two cases; y is either a neighbor of v or a
nonneighbor.

S (v) S   (v) S (v)

v w y v  

S (v) S (v) S (v) k

4P

j+11 i j

j+1

 A

Fig. 3.

1. y is a nonneighbor of v. There exists i < j + 1 such that y ∈ Si(v) (see
Figure 3). Since j is minimum, w adjacent to vj implies that w is also
adjacent to y. Note that v is a neighbor of w; v is not a neighbor of y or
vj+1; w is a neighbor of y but not vj+1; and y is a neighbor of vj+1. Hence,
{v, w, y, vj+1} is an induced P4.

2. y is a neighbor of v. Then y ∈ SA(v), and since y is rightmost, vj and vj+1 are
not adjacent (see Figure 4). It follows that the subgraph induced by the set of
vertices {v, w, y, vj , vj+1} contains an induced P4. More precisely, if w and y
are adjacent, vjwyvj+1 is an induced P4; otherwise vjwvyvj+1 is an induced
P5, containing the induced P4 yvwvj , thereby completing the proof.

S (v) S (v) S (v)

v w y vv

S (v) S   (v)S (v)

4P

 A
1 2 j

j

?

j+1

kj+1

P4

Fig. 4.

We now have the following simple algorithm Report P4 to output an induced P4

once the neighborhood subset test returns a vertex v and an index j ≥ 1 such that the
first pair of v-cells failing the NSP are Sj(v) and Sj+1(v). Note that our description
is for σ only; see the comments at the end of section 5 for the minor modifications
needed to produce a P4, if the NSP failure is in σ−.
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Algorithm Report P4(σ, σ
−)

Input: Vertex v and smallest index j such that Sj(v), Sj+1(v) fail the NSP in σ
Output: An induced P4.

Choose w ∈ (N l(vj) \N l(vj+1)) ∩ SA(v)
Choose y to be the rightmost vertex such that y ∈ N l(vj+1) \N l(vj)
if yv /∈ E

return ( vwyvj+1 )
else if wy ∈ E

return ( vjwyvj+1 )
else

return ( yvwvj )
end Report P4

Lemma 4.6. Reporting a P4, given a pair of v-cells Sj(v) and Sj+1(v) of σ failing
the NSP, takes at most O(Δ) time, where Δ is the maximum degree of the graph.

Proof. Assume that the local neighborhoods are sorted according to the LexBFS
ordering σ. To locate vertices w ∈ (N l(vj) \ N l(vj+1)) ∩ SA(v) and y ∈ N l(vj+1) \
N l(vj), simply walk the local neighborhoods N l(vj) and N l(vj+1), each of which are
no larger than Δ. The adjacency test between y and w takes Δ time simply by walking
the adjacency list of w or of y.

4.3. Constructing the cotree from σ, σ− (when G satisfies the NSP).
We now assume that the graphs we are operating on are cographs. We will refer to an
arbitrary cograph as G and its cotree as T with root R. We begin by relating slices
Si(x) to modules of G and subtrees T x

0i of G. This relationship results in a simple
cotree construction algorithm.

Let x be an arbitrary vertex of G and consider the LexBFS(G) starting at x,
resulting in σ, and the ordering σ− produced by LexBFS−(G, σ). The following
observation follows directly from the neighborhood subset theorem.

Observation 4. Each Si(x) and Sj(x) induces a module in G.
Furthermore, there is a well-defined relationship between the leaves of an induced

subtree in T and the vertices in each Si(x) or Sj(x).
Lemma 4.7. Let x be the first vertex of a LexBFS σ of G. For any i, the slice

Si(x) contains exactly the leaves of T x
0i.

Proof. Consider σ and the stage of the sweep where x and each vertex of SA(x)
have been numbered. Since x is the first vertex of σ, only nodes adjacent to x
have been numbered. If a vertex in SA(x) is adjacent to the leaves of T x

0i, then by
the neighborhood subset theorem, the vertex is adjacent to all leaves in T x

0j , where
j < i; see Figure 2. Therefore, the leaves of T x

01 must belong to the slice S1(x). By
the neighborhood subset theorem, no leaf in T x

0i is adjacent to any leaf in T x
0j , j �= i.

Consequently, we can use the same argument to show that the next slice S2(x) contains
exactly the leaves of T x

02 and, inductively, that the ith slice Si(x) contains the leaves
of the subtree T x

0i.
Corollary 4.8. Let x be the first vertex of a LexBFS σ of a cograph G, and

let τ be any LexBFS of G that starts at x (for example, σ−). Then, in τ , for any j,
Sj(x) contains exactly the leaves of T x

1j.

Proof. Since the cotree of G is exactly the cotree of G with 1 and 0 nodes
interchanged, Lemma 4.7 applied to τ implies that v ∈ Si(x) if and only if v ∈



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1290 A. BRETSCHER, D. CORNEIL, M. HABIB, AND C. PAUL

T x
1i.

Lemma 4.7 and Figure 2 motivate the following corollary.

Corollary 4.9. Given σ and σ− of a cograph G, if x is the first vertex of σ,
then the path PxR can be reconstructed from the sequences SN (x) and SN (x).

Proof. Lemma 4.7 applied to σ and to σ− shows that each Si(x) and Si(x) slice
defines the set of leaves of each T x

0i and T x
1i subtree. To embed PxR, it remains only

to determine which of 0x1 and 1x1 is the parent of the leaf x in the cotree. Let u (resp.,
v) be the first vertex of S1(x) (resp., S1(x)). It is straightforward to see that 0x1 is
the parent of leaf x if and only if u is adjacent to v.

These results, along with the hereditary property of cographs, motivate the fol-
lowing preliminary recursive cotree construction algorithm.

Algorithm Tree (module M , G)
Input: A module M of cograph G.
Output: A Cotree T of M .

if M = {v}
return ( {v} )

for any v ∈ M , compute:
[v, SA(v), S1(v), . . . , Sk(v)] with respect to σ, an arbitrary LexBFS of G[M ]

[v, SA(v), S1(v), . . . , Sh(v)] with respect to σ−, the LexBFS− of G[M ]
with respect to σ

if SA(v) = ∅ (SA(v), resp.),
return ( v 0©Tree(S1(v), G) ) (resp., ( v 1©Tree(S1(v), G) ))

else for any a ∈ S1(v) and b ∈ S1(v)
if ab ∈ E, then

(�) return ( v 0©Tree(S1(v), G) 1©Tree(S1(v), G) 0©Tree(S2(v), G). . . )
else

(��) return ( v 1©Tree(S1(v), G) 0©Tree(S1(v), G) 1©Tree(S2(v), G). . . )

Note that the notation “x 1© T1 0© T2 . . .” is parsed as “((x 1©T1) 0© T2). . . ” and
means that x and T1 are children of a 1 node, this 1 node and T2 are the children of a
0 node, etc. In addition, we point out that if T1 is rooted at a 1 node, the 1© operation
will merge the two 1 nodes together and likewise for the 0 node case. The correctness
of the algorithm follows directly from Lemma 4.7, Observation 4, Corollary 4.9, and
the properties of cographs.

Lemma 4.10. If G is a cograph, Algorithm Tree(V (G), G) returns T , the cotree
of G.

Proof. The proof is a simple induction argument. Certainly, a single leaf is the
cotree of the graph on one vertex. So now consider when M is the entire vertex set
V (G). Corollary 4.9 proves that v and the 1© and 0© nodes in line (�) or (��) construct
the path PvR for the cotree of the cograph G. The remainder of the cotree consists of
the subtrees whose parent nodes lie on PvR. Since each slice Si(v) or Si(v) is a module
and furthermore, by the hereditary property of cographs, induces a cograph, by the
inductive assumption, Tree(Si(v), G) will return the cotree representing G[Si(v)]. In
addition, by Lemma 4.7, the cotree returned by Tree(Si(v), G) is exactly the subtree
T v

0i of T . An analogous argument using Corollary 4.8 holds for Sj(v), completing the
proof.
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For complexity reasons, it is impractical to compute LexBFS and LexBFS− or-
derings of each module in G. To meet the linear time bound, Tree(V(G), G) needs
to be altered to use only the two orderings σ and σ−, a LexBFS of G and a LexBFS−

of G using σ. Lemma 4.11 and Corollary 4.12 show that in certain situations, the two
sweeps are sufficient.

Lemma 4.11. Given σ and σ− of G and Si(v), for arbitrary v and i, if Si(v) =
S(y) contains exactly the leaves of T v

0i, then Sj(y) contains exactly the leaves of T y
0j

for all j.

Proof. Since S(y) = Si(v) = T v
0i, Si(v) induces a module and a cograph. There-

fore, applying Lemma 4.7 to S(y) implies that Sj(y) contains exactly the leaves of
T y

0j for all j.

Complementing Lemma 4.11 results in Corollary 4.12.

Corollary 4.12. Given σ and σ− of G and Si(v) for arbitrary v and i, if
Si(v) = S(y) contains exactly the leaves of T v

1i, then Sj(y) contains exactly the leaves
of T y

1j for all j.

This raises the following questions: If S(y) = Si(v) = T v
0i, does Sj(y) contain

exactly the leaves of T y
1j for each j? Or, if S(y) = Si(v) = T v

1i, does Sj(y) contain
exactly the leaves of T y

0j for each j? We now answer these questions with the following
observation and lemmas.

Since the leaves of an induced subtree of a cotree induce a module, the next
observation follows immediately from Lemma 3.7.

Observation 5. Given σ and σ− of G, if z is the leftmost vertex with respect to
σ in T y

0i then T y
0i ⊆ S(z) and T y

0i ⊆ S(z). The same is true for z, the leftmost vertex
with respect to σ in T y

1j.

Lemma 4.13 claims that if Si(v) contains the leaves of a subtree T v
0i, then in σ−,

the only vertices in the inclusion minimal slice containing Si(v) either belong to Si(v)
or are independent of Si(v).

Lemma 4.13. Consider σ and σ− of G and any vertex v such that S(v) is a
module and any index i such that Si(v) contains exactly the leaves of T v

0i. Let S(u) be

the inclusion-minimal slice containing Si(v); then S(u) − Si(v) is a subset of SA(u)
and for all z ∈ S(u) − Si(v), z is independent of the vertices in Si(v).

Proof. By Lemma 3.7 and the fact that S(v) induces a module, S(v) ⊆ S(v). Since
each vertex in Si(v) is not adjacent to v and Si(v) ⊆ S(u) ⊂ S(v), every vertex in
S(u) must be uniform with respect to v. Therefore, for all y ∈ S(u), y and v cannot be
adjacent, implying that lca(y, v) = 0. Now consider any vertex z ∈ S(u)−Si(v). Since
lca(z, v) = 0, then z ∈ T , where T is rooted at the child of a 0 node (not 0vi ) on PvR.
Hence, the lca of z with any leaf in T v

0i is a 0 node. Since u ∈ Si(v) and every vertex

in S(u) − Si(v) is not adjacent to u, it must be the case that S(u) − Si(v) ∈ SA(u)
and for all z ∈ S(u) − Si(v), z is independent of the vertices in Si(v) = T v

0i.

Lemma 4.13 indicates that we can recurse on S(u) to construct the 1-rooted
subtrees of T v

0i. Similarly, Corollary 4.14 shows that the complement case holds as
well, i.e., that if Sj(v) contains exactly the leaves of T v

1j , then we can recurse on the

inclusion-minimum slice containing Si(v) in σ to construct the 0 rooted subtrees of
T v

1j . The proof of the corollary is very similar to that of the lemma.

Corollary 4.14. Consider σ and σ− of G and any vertex v such that S(v) is a
module and any index j such that Sj(v) contains exactly the leaves of T v

1j. Let S(u) be

the inclusion-minimal slice containing Sj(v); then S(u) − Sj(v) is a subset of SA(u)
and for all y ∈ S(u) − Sj(v), y is universal to the vertices in Sj(v).
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Lemma 4.15. Consider σ and σ− of G. For any vertex v in V, Si(v) contains
exactly the leaves of T v

0i and Sj(v) contains exactly the leaves of T v
1j.

Proof. Throughout this proof we will apply Observation 4 to conclude that the
various Sj(v), Sj(v) are modules. By Lemma 4.7 and Corollary 4.8, if v is the first
vertex of σ, the claim holds. The proof will be by induction on the nested depth
of the subslices. Assume that S(y) is a module and that Si(y) contains exactly the
leaves of T y

0i and Sj(y) contains exactly the leaves of T y
1j . We will consider each case

separately.

Let v be the first vertex of Si(y), so S(v) = Si(y). By Lemma 4.11, each Sk(v)
contains exactly the vertices of the subtrees T v

0k of T y
0i. We now consider the 1-

rooted subtrees of T y
0i. Since v is the first vertex in Si(y), Observation 5 implies that

Si(y) ⊆ S(v). Let the set of vertices in S(v) but not in Si(y) be denoted by X.

Lemma 4.13 applied to S(y) and Si(y) implies that X ∈ SA(v) and, furthermore,
that every vertex in X is independent of the vertices in S(v) ∩ Si(y). Therefore, we
can use an argument similar to that in the proof of Corollary 4.8 to show that each
Sj(v) contains exactly the leaves of the 1-rooted subtrees T v

1j of T y
0i.

Similarly, if v is the first vertex of Sj(y), then by Corollary 4.12, each Sk(v)
contains exactly the leaves of the subtrees T v

1k of T y
1j . Observation 5 implies that

given Sj(y) = T y
1j and that v is the first vertex of Sj(y), Sj(y) ⊆ S(v). Corollary 4.14

requires that every vertex in S(v) − Sj(y) belongs to SA(v) and is universal to the
vertices in Sj(y). Therefore, we can use an argument analogous to that in the proof
of Lemma 4.7 to show that each Sm(v) contains exactly the leaves of the 0-rooted
subtrees T v

0m of T y
1j .

We now have the tools to prove that a recursive cotree construction algorithm
can be achieved using only σ and σ−.

Lemma 4.16. Given σ and σ− of a cograph G, the cotree T of G can be con-
structed.

Proof. Certainly the claim holds for the trivial case of a single vertex. We will ar-
gue inductively by considering the largest slice possible and showing that the recursion
holds.

Let x be the first vertex of σ and therefore of σ− as well, and consider each Si(x).
By Lemma 4.7, Si(x) contains exactly the leaves of T x

0i. In addition, since S(x) = V ,
S(x) induces a module. Let u be the first vertex of Si(x). By Lemmas 4.11 and 4.15,
each Sj(u) contains the leaves of the subtree Tu

0j , and each Sh(u) contains exactly the
leaves of Tu

1h. Therefore, we can build the path Pu, from u to the root of T x
0i as in the

proof of Corollary 4.9 and by induction, build each subtree Tu
0j and Tu

1h rooted on Pu.

The argument for the complement is nearly identical. By Corollary 4.8, Sm(x)
contains exactly the leaves of T x

1m. If u is the first vertex of Sm(x), then by Corollary
4.12 and Lemma 4.15, each Sj(u) contains the leaves of the subtree Tu

1j and each
Sh(u) contains exactly the leaves of Tu

0h. Therefore, again, we can build the path
from u to the root of T x

1m as in the proof of Corollary 4.9 and by induction, build
each subtree Tu

1j and Tu
0h.

Notice that at each stage of building a path in the cotree and recursing on the
subtrees, for each vertex v, we need only to know the first vertex of each of the
Si(v) and Sj(v) subslices. We will denote the first vertex of the ith subslice by v[i]
and the first vertex of the jth subslice in the complement by v[j]. Each list of first
vertices is generated during the appropriate LexBFS sweep at no extra cost to LexBFS
complexity. Cotree illustrates the algorithm.
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Algorithm Cotree (vertex v)
Input: Vertex v of a slice S(v) of cograph G with respect to σ.
Output: A Cotree T of v

⋃
∀i Si(v)

⋃
∀j Sj(v).

if (v[1] = nil and v[1] = nil),
return ( {v} )

if (v[1] = nil),
return ( v 1© Cotree(v[1]) )

if (v[1] = nil),
return ( v 0© Cotree(v[1]) )

if v[1]v[1] ∈ E, then
(�) return ( v 0©Cotree(v[1]) 1©Cotree(v[1]) 0©Cotree(v[2]). . . )

else
(��) return ( v 1©Cotree(v[1]) 0©Cotree(v[1]) 1©Cotree(v[2]). . . )

Lemma 4.17. Given v[i] and v[j] for each vertex v and for all i, j, Algorithm
Cotree(v) belongs to O(n + m).

Proof. Notice that each vertex v is passed to Cotree at most once and that for
each v, the size of the lists v[i] and v[i] is bounded by the degree of v. Further, one
iteration of the algorithm requires O(deg(v)) time to execute line (�) or (��). The test
that v[1]v[1] ∈ E can be completed in constant time. To see this, note that v[1] must

belong to SA(v) and, further, by the LexBFS− tie breaking mechanism, must be the

first vertex in SA(v). This implies that v[1] will be the first vertex of N l(S1(v)) (with
respect to the adjacencies of G) if and only if v[1]v[1] ∈ E. The local neighborhood for
each Si(v) with respect to the adjacencies of G can be generated during the LexBFS−

at no extra cost.

Therefore, summing for all v, the complexity is O(n + m).

Corollary 4.18. Let x be the first vertex of a pair of LexBFS σ, σ− of a cograph
G. Then Algorithm Cotree(x) produces a cotree of G in O(n + m) time.

5. Putting things together. Theorem 4.3 ensures the correctness of Algo-
rithm Recognize Cograph. The subroutines Algorithm Cotree and Algorithm
Report P4 have already been described.

Algorithm Recognize Cograph(G)
Input: Graph G.
Output: Cotree T if G is a cograph, an induced P4 otherwise.

Let τ be an arbitrary ordering of V
Compute LexBFS(G, τ) resulting in σ of G, with first vertex x
Given σ, compute LexBFS−(G, σ), a LexBFS of G, resulting in σ−

if σ, σ− satisfy the NSP on G, G, respectively,
return ( Cotree(x) )

else
return ( Report P4(σ, σ

−) )
end Recognize Cograph

To show the linearity of the above algorithm, it remains to explain how the NSP
can be checked in linear time. Although it can be done during the LexBFS search
itself as explained in [3], it is simpler to do the test as a postprocessing. This test is
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divided into two steps.

Step 1
Sort the adjacency list of every vertex in G with respect to σ
Step 2
for each v ∈ V (following σ increasing) where v2 �= NIL do

A ← N<(v1) ∩ SA(v)
i ← 1
while vi+1 �= NIL do

B ← N<(vi+1) ∩ S(v)
if B not included in A, then

return ( NSP fails on σ, v, i )
else A ← B; i ← i + 1

end while
end for
return ( NSP succeeds on σ )

5.1. Complexity analysis. First we note, by Observation 2, that it suffices to
consider N<(vi+1) instead of N l(Si+1(v)). Sorting the adjacency lists according to σ
as specified in step 1 takes O(|E|) time; simply create a new set of adjacency lists,
walk through the ordering, and for each vertex v, append v to the end of the adjacency
list of each vertex y ∈ N(v), i.e., for each y in the original adjacency list of v.

Each time the neighborhood of a vertex is used in the previous procedure, the
edges to visit are at the beginning of its adjacency list and can be deleted from this
list after having been processed. The computations of the sets A and B can be done
easily using standard partition refinement techniques as developed in [20, 18]. Hence
the overall complexity of this procedure is O(m).

Therefore, testing the NSP on σ can be done in O(n + m) time complexity.
Observing that the NSP of a LexBFS ordering σ− on G can be checked on G by
reversing the order inclusion to be tested, it is straightforward to check the NSP of
σ− on G in linear time O(n + m). Similar arguments hold for finding a P4 in G
when σ− on G does not fulfill the NSP. It can be done in O(Δ) time, where Δ is the
maximum degree of the graph G.

6. Concluding remarks. We conclude by first stating the major result of this
paper followed by a discussion of future research directions directly related to these
results.

Main Result. There exists a simple, linear time, LexBFS based recognition
algorithm for the family of cographs that returns a certificate in the form of a cotree
or an induced P4.

While optimal cograph recognition algorithms already exist, we feel our new
LexBFS based recognition algorithm improves upon previous algorithms for several
reasons. It follows a simple paradigm: order the vertices, check for a characterizing
property, and return an appropriate certificate. In addition, the algorithm is easily
implemented and returns a certificate in both the positive and negative cases. Finally
we feel that the algorithm has potential to be generalized and extended to other fam-
ilies and, possibly, modular decomposition. We realize that our new algorithm does
not have one very nice feature of the original linear time cograph recognition algo-
rithm [10], in that it is not incremental. Unfortunately, LexBFS does not lend itself
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to incremental algorithms, and, as such, our algorithm cannot be used in dynamic
situations.

Concerning the algorithm itself, it is natural to wonder if LexBFS is the only
sweep that can be used in this way to recognize cographs. First we note that BFS
is too weak since it does not guarantee the nesting of the local neighborhoods of the
{Si(v)}, and thus with such an algorithm, a cograph might not satisfy the NSP. If
we try to generalize LexBFS to other maximal neighborhood searches (MNS) such as
LexDFS (see [8]) and maximum cardinality search (MCS), we risk having some vertex
of SN (v) before a vertex of SA(v). Note that using the 4-vertex condition of MNS [8]
(namely, an ordering σ is an MNS of G if and only if, for any x <σ y <σ z such that
xz ∈ E but xy /∈ E, there exists v such that v <σ y, vy ∈ E, and vz �∈ E), it is easy
to show that Lemma 3.1 holds, namely, every MNS of a cograph is umbrella-free.

Similar to P4-reducible and P4-sparse graphs, other families in the P4-hierarchy
such as P4-lite, P4-extendible, and P4-tidy (see [2] for definitions) may be well suited
to a recognition algorithm that is an extension of our cograph recognition algorithm.
In addition, distance hereditary graphs have a simple recognition algorithm that is
again based on this cograph algorithm, motivating the question of whether families
of graphs related to distance hereditary graphs, such as parity graphs, (k,+)-distance
hereditary graphs, or HHD-free graphs, have similar recognition algorithms.

Finally, the most interesting and most challenging question is whether there ex-
ists a modular decomposition algorithm that generalizes our cograph recognition al-
gorithm. This is a natural question to ask since cographs are the family of completely
decomposable graphs with respect to modular decomposition.

Note added in proof. The cograph recognition algorithm presented in this
paper does extend to a simple, linear time algorithm for modular decomposition;
however, an even easier linear time modular decomposition algorithm has recently
appeared (see [27]).
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