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ABSTRACT
We present an algorithm with runtime O(k2kn3m) for the
following NP-complete problem [8, problem GT35]: Given
an arbitrary graph G on n vertices and m edges, can we
obtain an interval graph by adding at most k new edges to
G? This resolves the long-standing open question [17, 6, 24,
13], first posed by Kaplan, Shamir and Tarjan, of whether
this problem could be solved in time f(k) ·nO(1). The prob-
lem has applications in Physical Mapping of DNA [11] and
in Profile Minimization for Sparse Matrix Computations [9,
25]. For the first application, our results show tractability
for the case of a small number k of false negative errors, and
for the second, a small number k of zero elements in the
envelope.

Our algorithm performs bounded search among possible
ways of adding edges to a graph to obtain an interval graph,
and combines this with a greedy algorithm when graphs of a
certain structure are reached by the search. The presented
result is surprising, as it was not believed that a bounded
search tree algorithm would suffice to answer the open ques-
tion affirmatively.

Categories and Subject Descriptors
G.2 [Mathematics of Computing]: Discrete Mathemat-
ics; G.2.2 [Discrete Mathematics]: Graph algorithms
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1. INTRODUCTION AND MOTIVATION
Interval graphs are the intersection graphs of intervals of

the real line and have a wide range of applications [12].
Connected with interval graphs is the following problem:
Given an arbitrary graph G, what is the minimum number
of edges that must be added to G in order to obtain an in-
terval graph? This problem is NP-hard [18, 8] and it arises
in both Physical Mapping of DNA and Sparse Matrix Com-
putations. In Physical Mapping of DNA a set of contiguous
intervals of the DNA chain, called clones, are given together
with experimental information on their pairwise overlaps.
The goal is to build a map describing the relative position
of the clones. In the presence of false negative errors, the
problem of building a map with fewest errors is equivalent
to finding the smallest edge set whose addition to the input
graph will form an interval graph [11]. In Sparse Matrix
Computations, one of the standard methods for reordering
a matrix to get as few non-zero elements as possible during
Gaussian elimination, is to permute the rows and columns
of the matrix so that non-zero elements are gathered close to
the main diagonal [9]. The profile of a matrix is the smallest
number of entries that can be enveloped within off-diagonal
non-zero elements of the matrix. Translated to graphs, the
profile of a graph G is exactly the minimum number of edges
in an interval supergraph of G [25].

In this paper, we present an algorithm with runtime
O(k2kn3m) for the k-Interval Completion problem of de-
ciding whether a graph on n vertices and m edges can be
made into an interval graph by adding at most k edges.
The k-Interval Completion problem is thus FPT 1, which
settles a long-standing open problem [17, 6, 24, 13]. An
early paper (first appearance FOCS ’94 [16]) in this line
of research by Kaplan, Shamir and Tarjan [17] gives FPT
algorithms for k-Chordal Completion, k-Strongly Chordal
Completion, and k-Proper Interval Completion. In all these

1A parameterized problem with parameter value k and input
size n that can be solved by an algorithm having runtime
f(k) · nO(1) is called fixed parameter tractable (FPT).
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cases a bounded search tree algorithm suffices, that iden-
tifies a subgraph which is a witness of non-membership in
the desired class of graphs, and branches recursively on all
possible ways of adding an inclusion-minimal set of edges
that gets rid of the witness. The existence of an FPT algo-
rithm for solving k-Interval Completion was left as an open
problem by [17], with the following explanation for why a
bounded search tree algorithm seemed unlikely: “An arbi-
trarily large obstruction X could exist in a graph that is not
interval but could be made interval with the addition of any
one out of O(|X|) edges”. It is therefore surprising that our
FPT algorithm for this problem is indeed a bounded search
tree algorithm.

Let us mention some related work. Ravi, Agrawal and
Klein gave an O(log2 n)-approximation algorithm for Min-
imum Interval Completion, subsequently improved to an
O(log n log log n)-approximation by Even, Naor, Rao and
Schieber [7] and finally to an O(log n)-approximation by Rao
and Richa [22]. Heggernes, Suchan, Todinca and Villanger
showed that an inclusion-minimal interval completion can
be found in polynomial time [15]. Kuo and Wang [20] gave
an O(n1.722) algorithm for Minimum Interval Completion
of a tree, subsequently improved to an O(n) algorithm by
Dı́az, Gibbons, Paterson and Torán [4]. Cai [2] proved that
k-completion into any hereditary graph class having a fi-
nite set of forbidden subgraphs is FPT. Some researchers
have been misled to think that this settled the complexity
of k-Interval Completion, however, interval graphs do not
have a finite set of forbidden subgraphs [21]. Gutin, Szei-
der and Yeo [13] gave an FPT algorithm for deciding if a
graph G has profile at most k + |V (G)|, but the more nat-
ural parametrization of the profile problem is to ask if G
has profile at most k + |E(G)|, which is equivalent to the
k-Interval Completion problem on G.

Our search tree algorithm for k-Interval Completion cir-
cumvents the problem of large obstructions (witnesses) by
first getting rid of all small witnesses, in particular witnesses
for the existence of an asteroidal triple (AT) of vertices.
Since a graph is an interval graph if and only if it is both
chordal and AT- free [21], to complete into an interval graph
we must destroy witnesses for non-chordality and witnesses
for existence of an AT. Witnesses for non-chordality (chord-
less cycles of length > 3) must have size O(k) and do not
present a problem. Likewise, if an AT is witnessed by an
induced subgraph S of size O(k) it does not present a prob-
lem, as shown in Section 3 of the paper. The difficult case
is when we have a chordal non-interval graph G with no AT
having a small witness. For this case we introduce thick AT-
witnesses in Section 4, consisting of an AT and all vertices
on any chordless path between any two vertices of the AT
avoiding the neighborhood of the third vertex of the AT. We
define minimality for thick AT-witnesses, and show that in
every minimal thick AT-witness one of the vertices of the AT
is shallow, meaning that there is a short path from it to each
of the other two vertices of the AT. For the difficult case of
G being a chordal graph having no small AT-witnesses, we
are able to compute a set of vertices C consisting of shallow
vertices such that removing C from the graph gives an in-
terval graph. Based on the cardinality of C we handle this
case by branching in one of several different ways of getting
rid of the minimal thick AT-witness corresponding to a ver-
tex in C. In particular, in Section 5 we show that when
no bounded branching is possible the instance has enough

structure that the best solution is a completion computed
in a greedy manner. The presented algorithm consists of 4
branching rules.

2. PRELIMINARIES
We work with simple and undirected graphs G = (V, E),

with vertex set V (G) = V and edge set E(G) = E, and
n = |V |, m = |E|. For X ⊂ V , G[X] denotes the subgraph
of G induced by the vertices in X. We will use G − x to
denote G[V \ {x}] for x ∈ V , and G − S to denote G[V \ S]
for S ⊆ V .

For neighborhoods, we use NG(x) = {y | xy ∈ E}, and
NG[x] = NG(x) ∪ {x}. For X ⊆ V , NG[X] =

S
x∈X NG[x]

and NG(X) = NG[X] \X. We will omit the subscript when
the graph is clear from the context. A vertex set X is a clique
if G[X] is complete, and a maximal clique if no superset of
X is a clique. A vertex x is simplicial if N(x) is a clique.

We will say that a path P = v1, v2, ..., vp is between v1 and
vp, and we call it a v1, vp-path. The length of P is p. We will
use P − vp and P + vp+1 to denote the paths v1, v2, ..., vp−1

and v1, v2, ..., vp, vp+1, respectively. We say that a path P
avoids a vertex set S if P contains no vertex of S. A chord
of a cycle (path) is an edge connecting two non-consecutive
vertices of the cycle (path). A chordless cycle (path) is an
induced subgraph that is isomorphic to a cycle (path). A
graph is chordal if it contains no chordless cycle of length at
least 4.

A graph is an interval graph if intervals can be associated
to its vertices such that two vertices are adjacent if and only
if their corresponding intervals overlap. Three non-adjacent
vertices form an asteroidal triple (AT) if there is a path
between every two of them that does not contain a neighbor
of the third. A graph is AT-free if it contains no AT. A
graph is an interval graph if and only if it is chordal and
AT-free [21]. A vertex set S ⊆ V is called dominating if
every vertex not contained in S is adjacent to some vertex
in S. A pair of vertices {u, v} is called a dominating pair
if every u, v-path is dominating. Every interval graph has
a dominating pair [3], and thus also a dominating chordless
path.

A clique tree of a graph G is a tree T whose nodes (also
called bags) are maximal cliques of G such that for every
vertex v in G, the subtree Tv of T that is induced by the
bags that contain v is connected. A graph is chordal if and
only if it has a clique tree [1]. A clique path Q of a graph
G is a clique tree that is a path. A graph G is an interval
graph if and only if has a clique-path [10]. An interval graph
has at most n maximal cliques.

Given two vertices u and v in G, a vertex set S is a u, v-
separator if u and v belong to different connected compo-
nents of G − S. A u, v-separator S is minimal if no proper
subset of S is a u, v-separator. S is a minimal separator of
G if there exist two vertices u and v in G with S a minimal
u, v-separator. For a chordal graph G, a set of vertices S is
a minimal separator of G if and only if S is the intersection
of two neighboring bags in any clique tree of G [1].

An interval supergraph H = (V, E ∪ F ) of a given graph
G = (V, E), with E ∩F = ∅, is called an interval completion
of G. H is called a k-interval completion of G if |F | ≤ k.
The set F is called the set of fill edges of H . On input G and
k, the k-Interval Completion problem asks whether there is
an interval completion of G with at most k fill edges.
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3. NON-CHORDALITY AND SMALL
SIMPLE AT-WITNESSES: RULES 1, 2

We start with the first simple branching rule.
Branching Rule 1:
If G is not chordal, find a chordless cycle C of length at least
4. If |C| > k + 3 answer no, otherwise:

• Branch on the at most 4|C| different ways to add an
inclusion minimal set of edges (of cardinality |C|− 3)
between the vertices of C to make C chordless.

If Rule 1 applies we branch by creating at most 4|C| re-
cursive calls, each with new parameter value k − (|C| − 3).
The correctness of Rule 1 is well understood [17, 2]. Let us
remark that each invocation of the recursive search tree sub-
routine will apply only one of four branching rules. Thus, if
Rule 1 applies we apply it and branch, else if Rule 2 applies
we apply it and branch, else if Rule 3 applies we apply it and
branch, else apply Rule 4. Rules 2, 3 and 4 will branch on
single fill edges, dropping the parameter by one. Also Rule
1 could have branched on single fill edges, simply by taking
the set of non-edges of the induced cycle and branching on
each non-edge separately. We continue with Rule 2.

Observation 3.1. Given a graph G, let {a, b, c} be an
AT in G. Let P ′

ab be the set of vertices on a path between a
and b in G − N [c], let P ′

ac be the set of vertices on a path
between a and c in G−N [b], and let P ′

bc be the set of vertices
on a path between b and c in G − N [a]. Then any interval
completion of G contains at least one fill edge from the set
{cx | x ∈ P ′

ab} ∪ {ax | x ∈ P ′
bc} ∪ {bx | x ∈ P ′

ac}.
Proof. Otherwise {a, b, c} would still be an independent

set of vertices with a path between any two avoiding the
neighborhood of the third, in other words it would be an
AT.

We introduce simple AT-witnesses and give a branching
rule for small such witnesses.

Definition 3.2. Let a, b, c be three vertices of a graph G.
We define Pab to be the set of vertices on a shortest path
between a and b in G − N [c], Pac the set of vertices on a
shortest path between a and c in G − N [b], and Pbc the set
of vertices on a shortest path between b and c in G − N [a].
Note that the three paths exist if and only if {a, b, c} is an
AT. We define Gabc to be the subgraph of G induced by the
vertices of Pab ∪ Pbc ∪ Pac, and call it a simple AT-witness
for this AT.

Branching Rule 2:
If G is chordal: For each triple {a, b, c} check if {a, b, c} is
an AT. For each AT {a, b, c}, find a simple AT-witness Gabc

for it. If there exists an AT {a, b, c}, such that |{cx | x ∈
Pab} ∪ {ax | x ∈ Pbc} ∪ {bx | x ∈ Pac}| ≤ k + 15 for the
simple AT-witness Gabc, then:

• Branch on each of the fill edges in the set {cx | x ∈
Pab} ∪ {ax | x ∈ Pbc} ∪ {bx | x ∈ Pac}.

By Observation 3.1, any interval completion contains at
least one edge from the set branched on by Rule 2.

Lemma 3.3. Let G be a graph to which Rule 1 cannot
be applied (i.e. G is chordal). There exists a polynomial
time algorithm that finds a simple AT-witness Gabc, where
|{cx | x ∈ Pab} ∪ {ax | x ∈ Pbc} ∪ {bx | x ∈ Pac}| ≤ k + 15,
if such an AT-witness exists.

Proof. A simple AT-witness can be found in polynomial
time: for a triple of vertices, check if there exists a shortest
path between any two of them that avoids the neighborhood
of the third vertex. Since shortest paths are used to define
simple AT-witnesses, then |{cx | x ∈ Pab}∪ {ax | x ∈ Pbc}∪
{bx | x ∈ Pac}| will be the same for all simple AT-witnesses
for an AT {a, b, c}.

4. THICK AT-WITNESSES AND
SHALLOW VERTICES: RULE 3

In this section we introduce minimal simple AT-witnesses
and show that they each have a shallow vertex. We then in-
troduce thick AT-witnesses showing that also minimal thick
AT-witnesses have a shallow vertex, and at the end of this
section we give a branching rule based on this. In Subsection
4.1 we consider graphs to which Rule 1 cannot be applied
(chordal graphs) and in Subsection 4.2 graphs to which nei-
ther Rule 1 nor Rule 2 can be applied.

4.1 G is a chordal graph

Observation 4.1. Let Gabc be a simple AT-witness in a
chordal graph G. Then a, b, c are simplicial vertices in Gabc.

Proof. By the definition of Gabc, |N(a)| ≤ 2. As Pbc

avoids N(a) and as any vertex of N(a) has a neighbor in
the connected component of Gabc − N(a), N(a) is a min-
imal a, c-separator. Gabc is a chordal graph(since it is an
induced subgraph of a chordal graph), and by [5] every min-
imal separator of a chordal graph is a clique, thus N(a) is a
clique.

Definition 4.2. A simple AT-witness Gabc is minimal if
Gabc − x is AT-free for any x ∈ {a, b, c}.

Observation 4.3. Let Gabc be a minimal simple AT-
witness in a chordal graph. Then for any x ∈ {a, b, c},
Gabc −x is an interval graph, where {a, b, c} \ {x} is a dom-
inating pair.

Proof. We prove the observation for x = c, and the other
two possibilities are symmetric. Clearly, G′ = Gabc − c is
an interval graph, since G is chordal and Gabc is a minimal
simple AT-witness. For a contradiction assume that {a, b}
is not a dominating pair in G′; thus there exists a path P ′

ab

from a to b in G′ −N [y] for some vertex y ∈ V (G′) \ {a, b}.
Let Q be a clique path of G′. Vertex y does not appear in
any bag of Q that contains a or b, and it does not appear in
any bag between subpaths Qa and Qb of Q. Let us without
loss of generality assume that Qa appears between Qy and
Qb in Q. Because of this y is not contained in the component
Cb of G′ − N [a] that contains b. Furthermore, a is a sim-
plicial vertex by Observation 4.1, and P ′

ab contains vertices
from N(a), thus y *∈ N(a) since P ′

ab would not avoid the
neighborhood of y otherwise. The path Pbc − c is contained
in Cb, and thus y is not adjacent to any vertex in Pbc − c.
We know that cy *∈ E, since by Observation 4.1 N(c) is a
clique, and thus y would be adjacent to the neighbor of c
in Pab if cy were an edge. None of the paths Pab, Pac, Pbc

contains y, since Pbc is strictly contained in Cbc, and since
any shortest path from a to either b or c only contains one
neighbor of a. Thus, Gabc is not a simple AT-witness for
{a, b, c}, since it contains y.
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Definition 4.4. Let {a, b, c} be an AT in a chordal graph
G. Vertex c is called shallow if |Pac| ≤ 4 and |Pbc| ≤ 4.

Lemma 4.5. Let Gabc be a minimal simple AT-witness in
a chordal graph, where |Pab| ≥ |Pbc| ≥ |Pac|. If |Pab| ≥ 6
then c is shallow.

Proof. Let us on the contrary assume that |Pbc| ≥ 5.
Let a = v1, v2, ...vr = b be the path Pab, and let c′ be the
neighbor of c in the path Pbc. Notice that, by Observation
4.3 Gabc − a is an interval graph, where {b, c} is a dominat-
ing pair, and thus v2 is adjacent to at least one vertex in
any b, c-path in Gabc − a, and c′ is adjacent to at least one
vertex in any a, b-path in Gabc − c. Let i be the smallest in-
teger such that vi is a neighbor of c′. We can now conclude
that i ≤ 3, since v2 is adjacent to some vertex on the path
c, c′, vi, vi+1, ..., vr, b. Vertex set {a, vr−1, c} is an indepen-
dent set; avr−1 *∈ E since r ≥ 6; cvr−1 *∈ E by definition
of Pab; and ac *∈ E since a, b, c is an independent set. The
path a, v2, ...vr−1 avoids N(c) by definition of Pab; either
path a, v2, c

′, c or path a, v2, v3, c
′, c avoids N(vr−1), since

r ≥ 6 and since the shortest b, c-path in Gabc − a contains
at least five vertices (|Pbc| ≥ 5); and Pbc − b+ vr−1 is a path
that avoids N(a), since r ≥ 6 and b is by Observation 4.1
a simplicial vertex in Gabc. The simple witness for the AT
{a, vr−1, c} induced by the paths (a, v2, ...vr−1), (a, v2, c

′, c)
or (a, v2, v3, c

′, c), and Pbc − b + vr−1 is now a contradiction
to Gabc being a minimal simple AT-witness.

Observation 4.6. A vertex v is simplicial only if v is an
end vertex of every chordless path that contains v.

Proof. Any vertex that appears as a non end vertex in a
chordless path, has two neighbors that are not adjacent.

Definition 4.7. Let {a, b, c} be an AT in a chordal graph
G, and let W = {w | w is a vertex of a chordless a, b-path,
a, c-path, or b, c-path in G}. The graph GTabc = G[W ] is a
thick AT-witness for the AT {a, b, c}.

We denote the neighborhoods of a, b, and c in GTabc by re-
spectively Sa, Sb, and Sc, since these are minimal separators
in GTabc and also in G by the following two observations.

Observation 4.8. Let GTabc be a thick AT-witness in a
chordal graph G. For any x ∈ {a, b, c}, x is a simplicial
vertex and Sx = NGT abc (x) is a minimal separator in GTabc.

Proof. We prove the observation for x = a; the other
possibilities are symmetric. Every neighbor of a in GTabc

appears in a chordless path from a to either b or c or both.
Because of the existence of the path Pbc avoiding Sa, it
follows that Sa is a minimal separator. In a chordal graph,
every minimal separator is a clique [5]. Hence a is simplicial
in GTabc.

Observation 4.9. Let GTabc be a thick AT-witness in a
chordal graph G. Then the set of minimal separators of
GTabc are exactly the set of minimal a, b-separators, a, c-
separators, and b, c-separators of G.

Proof. Every minimal separator of GTabc separates two
simplicial vertices appearing in two different leaf bags of
any clique tree of GTabc. Since a, b, c are the only simplicial
vertices in GTabc, every minimal separator of GTabc is a
minimal a, b-separator, b, c-separator, or a, c-separator.

Let S be a minimal a, b-separator in G. Then there exist
two connected components Ca and Cb of G − S, containing
respectively a and b, such that NG(Ca) = NG(Cb) = S. For
any vertex z ∈ S we can now find a chordless shortest path
in G from z to each of a and b, where every intermediate
vertex is contained in respectively Ca and Cb. By joining
these two paths, we get a chordless path from a to b that
contains z. Since this holds for any vertex in S, it follows by
the way we defined GTabc that any minimal a, b-separator of
G is a minimal a, b-separator of GTabc. The argument can be
repeated with a, c and b, c to show that every minimal a, c-
separator or b, c-separator of G is also a minimal separator
of GTabc.

Let S be a minimal a, b-separator in GTabc Vertex set S
is a subset of a minimal a, b-separator of G, since the same
chordless paths exist in G. But S cannot be a proper subset
of a minimal a, b-separator of G, since every minimal a, b-
separator of G is a minimal a, b-separator in GTabc, and thus
S would not be a minimal separator in GTabc otherwise. The
argument can be repeated with a, c and b, c.

Definition 4.10. A thick AT-witness GTabc is minimal
if GTabc − x is AT-free for every x ∈ {a, b, c}.

Observation 4.11. Let GTabc be a minimal thick AT-
witness in the chordal graph G. Then GTabc−c is an interval
graph, where {a, b} is a dominating pair.

Proof. The graph G′ = GTabc − c is by definition an
interval graph, since GTabc is a minimal thick AT-witness.
For a contradiction assume that {a, b} is not a dominating
pair, and thus there exists a path P ′

ab from a to b in G′−N [y]
for some vertex y ∈ V (G′)\{a, b}. Let Q be a clique path of
G′. Vertex y does not appear in any bag of Q that contains
a or b, and it does not appear in any bags between the
subpaths Qa and Qb of Q. Let us without loss of generality
assume that Qa appears between Qy and Qb in Q. We
show that y is then not in any chordless path between any
pair of a, b, c, giving the contradiction. Due to the above
assumptions, y is not contained in the component Cb of G′−
N [a] that contains b. Furthermore, a is a simplicial vertex
by Observation 4.8, and P ′

ab contains vertices from NG′ (a),
thus y *∈ NG′(a) since P ′

ab would not avoid the neighborhood
of y otherwise. The path Pbc − c is contained in Cb since
it contains no vertex of N [a], and thus y is not adjacent to
any vertex in Pbc − c. We know that cy *∈ E(GTabc), since
by Observation 4.8, NGT abc (c) is a clique, and thus y would
be adjacent to the neighbor of c in Pab if cy were an edge
in E(GTabc). Now we have a contradiction since y is not in
any chordless path between any pair of a, b, c.

4.2 G is chordal and Rule 2 does not apply

Lemma 4.12. Let GTabc be a minimal thick AT-witness
in a graph G to which neither Rule 1 (i.e. G chordal) nor
Rule 2 can be applied. Then at least one of the vertices in
the AT {a, b, c} is shallow, and there exists a minimal simple
AT-witness Gabc, where V (Gabc) ⊆ V (GTabc).

Proof. Let Pab, Pac, Pbc be shortest chordless paths con-
tained in GTabc, and let Gabc be defined by Pab, Pac, Pbc. It
is clear that GTabc is minimal only if Gabc is minimal. By
Lemma 4.5, Rule 2, and the fact that Gabc is a minimal AT-
witness, we know that at least one of the vertices in {a, b, c}
are shallow.
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Lemma 4.13. Let G be a graph to which neither Rule 1
nor Rule 2 can be applied, and let GTabc be a minimal thick
AT-witness in G where c is shallow. Then every vertex in
Sc is adjacent to every vertex in Sa ∪ Sb.

Proof. Let E′ = E(GTabc), and let us on the contrary
and without loss of generality assume that c′a′ *∈ E′ for
c′ ∈ Sc and a′ ∈ Sa. Let Pab = (a = v1, v2, ..., vr = b), Pbc,
and Pac be the shortest paths used to define a simple AT-
witness for {a, b, c}. We will show that either {a′, b, c} or
{a, vr−1, c} is an AT in a subgraph of GTabc, contradicting
its minimality.

Vertex set {a′, b, c} is an independent set since cb *∈ E′,
a′b *∈ E′ due to |Pab| > 15 − 8 (Rule 2), and a′c *∈ E′ be-
cause c is simplicial in GTabc, and thus c′a′ ∈ E′ if a′c ∈ E′.
Either v2 = a′, or a′v2 ∈ E′ since a is simplicial in GTabc.
Pab − a + a′ is a path from a′ to b that avoids the neigh-
borhood of c. In the same way Pac − a + a′ is a path from
a′ to c, and since |Pab| > 7 this path avoids the neigh-
borhood of b. By Observation 4.11, c′ is adjacent to some
vertex on the path Pab = (a = v1, v2, ..., vr = b). If c′

is adjacent to some vertex vi where i > 3, then there is
a path c, c′, vi, ..., vr = b that avoids the neighborhood of
a′, and we have a contradiction since a′, b, c would be an
AT in GTabc − a. We can therefore assume that vjc

′ ∈ E′,
where j ∈ {2, 3}, and that there exists no vic

′ ∈ E′ for
any i > 3. The set {a, vr−1, c} is an independent set, since
cvr−1, avr−1 *∈ E′. The path a, v2, ..., vr−1 avoids the neigh-
borhood of c, the path c, c′, vj , ..., a avoids the neighbor-
hood of vr−1, and Pbc − b + vr−1 is a path from c to vr−1

that avoids the neighborhood of a, since b is simplicial in
GTabc. This is a contradiction since GTabc − b contains the
AT {a, vr−1, c}.

Lemma 4.14. Let G = (V, E) be graph to which neither
Rule 1 nor Rule 2 can be applied. Let GTabc be a minimal
thick AT-witness in G where c is shallow. Let Cc be the
connected component of G− Sc that contains c. Then every
vertex of Cc has in G the same set of neighbors Sc outside
Cc, in other words ∀u ∈ Cc : NG(u) \ Cc = Sc.

Proof. By definition NG(u) \ Cc ⊆ Sc. Let us assume
for a contradiction that ux *∈ E for some x ∈ Sc and u ∈ Cc.
Since Cc is a connected component there exists a path from
u to c inside Cc. Let u′, c′ be two consecutive vertices on this
path, such that Sc ⊆ NG(c′) and u′x′ *∈ E for some x′ ∈ Sc.
This is a contradiction, since by Lemma 4.13 x′ creates a
short path from a to b that avoids the neighborhood of u′,
and by using Pac − c and Pbc − c and the vertices c′ and
u′ we can create short paths from a to u′ and from b to
u′ that avoid the neighborhoods of b and a. This is now
a contradiction, since {a, b, u′} is an AT with a simple AT-
witness where the number of branching fill edges are 5 for
the path a, a′, x′, b′, b, 5 for Pac−c and c′, u′, and 5 for Pbc−c
and c′, u′, giving a total of 15 branching edges.

Lemma 4.15. Let G be graph to which neither Rule 1 nor
Rule 2 can be applied, and let GTabc be a thick AT-witness
in G. Then there exists a minimal thick AT-witness GTxyz

in G, where V (GTxyz) ⊆ V (GTabc) and z is shallow, such
that z ∈ {a, b, c}.

Proof. GTxyz will be obtained from GTabc by deleting
one of the simplicial vertices in the AT that defines GTabc,
and repeat this until a minimal thick AT-witness GTxyz is

obtained. Note that only neighbors of the deleted vertex
can become simplicial after each deletion, by Observation
4.6. As a result, the deleted vertices induce at most three
connected components, where each of the components is ad-
jacent to one of the vertices x, y, z. By Lemma 4.12 one of
the vertices x, y, z is shallow. Let us without loss of general-
ity assume that z is the shallow vertex in GTxyz. By Lemma
4.9, minimal separators of GTxyz are also minimal separa-
tors of GTabc, so let us assume without loss of generality that
z and c are contained in the same connected component of
GTabc −NGT xyz (z). Notice that z and c might be the same
vertex. By Lemma 4.14, c is shallow in the minimal thick
AT-witness GTxyc.

Definition 4.16. Given a graph G to which Rules 1 and
2 do not apply we compute a set C(G) = C1∪C2∪ ...∪Cr of
vertices that are shallow in some minimal thick AT-witness,
with G \ C(G) = Rr an interval graph, as follows:

R0 := G; i := 0; C(G) := ∅;
while Ri is not an interval graph do

i := i + 1;
Find GTaibici a minimal thick AT-witness in Ri−1 with

ci shallow;
Let Ci be the connected component of Ri−1−

NGT aibici
(ci) that contains ci;

for each c ∈ Ci do GTaibic := GTaibici − ci + c;
Ri := Ri−1 − Ci;
C(G) := C(G) ∪ Ci;

end-while
r := i

The minimal thick AT-witness GTaibici is found by first
finding an AT {a, b, c}, then removing simplicial vertices dif-
ferent from a, b, c according to Observation 4.6 to get a thick
AT-witness, and then applying the procedure in the proof
of Lemma 4.15.

Note that we also computed graphs G = R0 ⊃ R1 ⊃
... ⊃ Rr, with Rr interval, and a minimal thick AT-witness
for each c ∈ C(G) (from the thick minimal AT-witness
GTaibici with ci ∈ Ci, we defined, for any c ∈ Ci, the
graph GTaibic := GTaibici − ci + c, which will be a thick
minimal AT-witness for {ai, bi, c} with c shallow by Lemma
4.14) that will be used in the next section. First we give
Branching Rule 3.

Branching Rule 3:
This rule applies if Rules 1 and 2 do not apply and |C(G)| >
k, in which case we let B be a subset of C(G) with |B| =
k + 1. For each c ∈ B find a simple AT-witness Gabc where
c is shallow, with shortest paths Pbc and Pac avoiding N(a)
and N(b), respectively.

• For each c ∈ B, branch on the at most 8 fill edges
{ax | x ∈ Pbc} ∪ {bx | x ∈ Pac}.

• Branch on the at most |B|(|B|−1)/2 possible fill edges
{uv | u, v ∈ B and uv *∈ E}.

Observe that Rule 3 only needs a subset of C(G) of size
k + 1, and thus an algorithm can stop the computation of
C(G) when this size is reached.

Lemma 4.17. If Rule 3 applies to G then any k-interval
completion of G contains a fill edge which is branched on by
Rule 3.
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Proof. In a k-interval completion we cannot add more
than k fill edges. Thus, since |B| = k + 1 any k-interval
completion H of G either contains a fill edge between two
vertices in B (and all these are branched on by Rule 3), or
there exists a vertex c ∈ B with no fill edge incident to it
(since the opposite would require k + 1 fill edges). If c ∈ B
does not have a fill edge incident to it, then by Observation
3.1 one of the edges in {ax | x ∈ Pbc} ∪ {bx | x ∈ Pac} must
be a fill edge (and all these are branched on for each c ∈ B
by Rule 3).

5. MORE BRANCHING AND
A GREEDY COMPLETION: RULE 4

In this section we present the fourth and final rule and
prove correctness of the resulting search tree algorithm. We
now consider graphs G to which none of the Rules 1, 2,
or 3 can be applied. This means that G is chordal (Rule
1), that |C(G)| ≤ k (Rule 3), implying that (the connected
components of) G[C(G)] is an interval graph (Rule 2). Like
Rules 2 and 3, Rule 4 will branch on single fill edges, but it
will also consider minimal separators, based on the following
two basic observations.

Observation 5.1. If G has a minimal thick AT-witness
GTabc in which Pac, Pbc are shortest paths avoiding N(b) and
N(a) respectively, then any interval completion of G either
contains a fill edge from the set {bx | x ∈ Pac} ∪ {ax |
x ∈ Pbc} or contains one of the edge sets {{cx | x ∈ S} |
S is a minimal a, b-separator in GTabc}.

Proof. By Observation 3.1, we know that at least one of
the edges in {ax | x ∈ Pbc}∪ {bx | x ∈ Pac}∪ {cx | x ∈ Pab}
for the paths Pab, Pac, Pbc defined in the proof of Lemma
4.12, is a fill edge of any interval completion of G. If an
interval completion H does not contain any fill edge from
the set {bx | x ∈ Pac} ∪ {ax | x ∈ Pbc}, then H contains at
least one fill edge from the set {cx | x ∈ P ′

ab}, where P ′
ab is

any chordless a, b-path in G that avoids the neighborhood
of c. Thus, NH(c) contains a minimal a, b-separator in G
(which by Observation 4.9 is also a minimal a, b-separator
in GTabc) since every chordless and thus every a, b-path in
G − N [c] contains a vertex of NH(c).

Observation 5.2. Let G be a graph to which neither Rule
1 nor 2 can be applied, and let GTabc be a minimal thick
AT-witness in G where c is shallow. Then Sc ⊂ S for every
minimal a, b-separator S different from Sa and Sb.

Proof. Let S be a minimal a, b-separator different from
Sa and Sb. S is then also a minimal a′, b′-separator for some
a′ ∈ Sa and some b′ ∈ Sb, since no minimal a, b-separator
contains another minimal a, b-separator as a subset. It then
follows from Lemma 4.13 that Sc ⊂ N(a′)∩N(b′), and thus
Sc ⊂ S.

Recall that C(G) = C1 ∪ C2 ∪ ... ∪ Cr was computed in
Definition 4.16 by removing from G the vertex sets Ci in the
order from i = 1 to r. A priori we have no guarantee that
there are no edges between a vertex in Ci and a vertex in
Cj , for some i *= j, but when |C(G)| ≤ k this indeed holds,
as shown in the following lemma.

Lemma 5.3. Let G = (V, E) be a graph to which none of
Rules 1, 2, 3 can be applied, and let C(G) = C1∪C2∪...∪Cr

from Definition 4.16. Then Ci induces an interval graph that
is a connected component of G[C(G)], for each 1 ≤ i ≤ r.

Proof. Firstly, since |Ci| ≤ k and Rules 1, 2 do not ap-
ply, it must induce an interval graph. To argue that it is a
connected component, note first that by definition G[Ci] is
connected and Ci∩Cj = ∅ for any i *= j. For a contradiction
we assume that cz ∈ E for some c ∈ Ci and z ∈ Cj with
i < j. Let GTabc be the minimal thick AT-witness in Ri−1

with c the shallow vertex and Sc = NGT abc (c), and let like-
wise GTxyz be the minimal thick AT-witness in Rj−1 with
z shallow and Sz = NGT xyz (z). Let Pab be a path from a to
b in GTabc \ N(c). There are now two cases:

Case I: There is a vertex w ∈ Pab ∩ Sz. By Observation
4.9 both Sc and Sz are minimal separators in the chordal
graph G, and thus Sc, Sz are cliques [5]. Thus, since cw *∈ E
we must have c *∈ Sz. But then we have c and z in the
same component Cz of G \ Sz. By Lemma 4.14 c and z
must therefore have the same neighbors outside Cz. But
this contradicts the fact that zw ∈ E while cw *∈ E.

Case II: Pab∩Sz = ∅. Let Cz be the connected component
of G \ Sz that contains z. By Lemma 4.13 we have zw ∈ E
for some w ∈ Pab and therefore V (Pab) ⊆ Cz. By Lemma 4.5
and the fact that Rule 2 cannot be applied we have at least
k +16−8 vertices in Pab and thus |Cz| ≥ |Pab| > k. Assum-
ing we can show the subset-property Cz ⊆ C1 ∪C2 ∪ ...∪Cj

we are done with the proof since this will lead to the con-
tradiction k < |Cz| ≤ |C1 ∪ C2 ∪ ... ∪ Cj | ≤ |C(G)| ≤ k.
Let us prove the subset-property. G has a perfect elimi-
nation ordering starting with the vertices of C1, as these
vertices are a component resulting from removing a mini-
mal separator from G. By induction, we have that G has a
perfect elimination ordering α starting with the vertices in
C1 ∪C2 ∪ ...∪Cj−1. For a contradiction assume there exists
a vertex w ∈ Cz \ (C1 ∪ C2 ∪ ... ∪ Cj). As w ∈ Cz there is a
shortest w, z-path Pwz in Cz. Since zw *∈ E, Pwz contains
at least 3 vertices and one of these vertices belongs to some
Ci, if not w would belong to Cj . Let s be the first vertex
in the ordering α that belongs to the path Pwz . This is now
a contradiction since a none end vertex of a chordless path
cannot be simplicial.

Rule 4 will branch on a bounded number of single fill edges
and it will also compute a greedy completion by choosing
for each shallow vertex a minimal separator minimizing fill
and making the shallow vertex adjacent to all vertices of
that separator. We will prove that if none of the single fill
edges branched on in Rule 4 are present in any k-interval
completion, then the greedy completion gives an interval
completion with the minimum number of edges. The greedy
choices of separators are made as follows:

Definition 5.4. Let G be a graph to which none of Rules
1, 2, 3 can be applied. Let Definition 4.16 give C(G) =
C1 ∪ C2 ∪ ... ∪ Cr, representative vertices c1, c2, ..., cr and
minimal thick AT-witnesses GTaibici and graphs G = R0 ⊃
R1 ⊃ ... ⊃ Rr, with Rr interval. We compute fill-minimizing
minimal separators M1 to Mr as follows:

for i := 1 to r do
Mi := null;
for each minimal ai, bi-separator S in GTaibici do

if S ∩ C(G) = ∅ and S *= Sai and
S *= Sbi and S *= N(Cj) for all 1 ≤ j ≤ r then

if Mi = null or
|S \ N(Ci)| < |Mi \ N(Ci)| then Mi := S;

end-for
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Lemma 5.5. If Mi *= null then Mi is a minimal separator
in Rr for any 1 ≤ i ≤ r.

Proof. The vertex set Mi is a minimal separator in
GTaibici by construction and since GTaibici is a subgraph
of the chordal graph Ri it is by Observation 4.9 also a min-
imal separator of Ri. We prove that Mi is also a minimal
separator in Rj for any i+1 ≤ j ≤ r by induction on j. Re-
call that Rj is obtained by removing Cj from Rj−1, where
Cj is a component of Rj−1 \ Sci for a minimal separator
Sci of Rj−1, and Sci = N(Cj) by Lemma 4.14. Consider a
clique tree of Rj−1 and observe that any minimal separator
of Rj−1 that is not a minimal separator of Rj is either equal
to N(Cj) or it contains a vertex of Cj . Finally, note that
the minimal separator Mi has been chosen so that it is not
of this type.

Branching Rule 4:
Rule 4 applies if none of Rules 1, 2, 3 apply, in which case we
compute, as in Definitions 4.16 and 5.4, C1, C2, ..., Cr (which
are connected components of G[C(G)] by Lemma 5.3), the
minimal thick AT-witnesses GTaibic with c shallow for each
c ∈ Ci, and M1, ..., Mr (which are minimal separators of
Rr by Lemma 5.5). For each 1 ≤ i ≤ r and each c ∈ Ci

choose a′
i ∈ Sai \ Sc and b′i ∈ Sbi \ Sc and find Paic and

Pbic (shortest paths in GTaibic avoiding N(bi) and N(ai),
respectively, of length at most 4 by Lemma 4.12). For each
pair 1 ≤ i *= j ≤ r, choose a vertex vi,j ∈ N(Cj) \ N(Ci) (if
it exists).

• For 1 ≤ i ≤ r and c ∈ Ci, branch on the at most 8 fill
edges {aix | x ∈ Pbic} ∪ {bix | x ∈ Paic} and also on
the 2 fill edges {ca′

i, cb
′
i}.

• Branch on the at most |C(G)|(|C(G)|− 1)/2 fill edges
{uv | u, v ∈ C(G) and uv *∈ E}.

• Branch on the at most |C(G)|r fill edgesS
1≤i%=j≤r{cvi,j | c ∈ Ci}.

• Finally, compute H = (V, E
S

1≤i≤r{cx | c ∈ Ci and
x ∈ Mi}) and check if it is a k-interval completion of
G (note that we do not branch on H .)

Lemma 5.6. If G has a k-interval completion, and Rules
1, 2, and 3 do not apply to G, and no k-interval completion
of G contains any single fill edge branched on by Rule 4, then
the graph H, which Rule 4 obtains by adding fill edges from
every vertex in Ci to every vertex in Mi for every 1 ≤ i ≤ r,
is a k-interval completion of G.

Proof. By Observation 5.1, for each c ∈ Ci either one
of the edges in {aix | x ∈ Pbic} ∪ {bix | x ∈ Paic} is a fill
edge (and all these are branched on by Rule 4) or else the
k-interval completion contains the edge set {cx | x ∈ S} for
some minimal ai, bi-separator S in GTaibic. Such an edge
set in a k-interval completion is one of four types depending
on the separator S used to define it. For each type and
any c ∈ Ci we argue that Rule 4 considers it. Observe that
N(Ci)\Ci = N(c)\Ci by Lemma 4.14, and thus the fill edges
from c will go to vertices in S \ N(Ci), which is nonempty
since there is an ai, bi-path avoiding N(c). We now give the
four types of minimal separators S, and show that the first
three are branched on by a single fill edge:

1. S∩C(G) *= ∅. Since N(Ci)∩C(G) = ∅ by Lemma 5.3,
we have in this case a fill edge between two vertices in
C(G) (between c ∈ Ci and a vertex in C(G)∩S\N(Ci))
and all these are branched on by Rule 4.

2. S = Sai or S = Sbi , where Sai , Sbi , Sc defined by
GTaibic. We found in Rule 4 a pair of vertices a′

i ∈
Sai \ Sc and b′i ∈ Sbi \ Sc and branched on the fill
edges ca′

i and cb′i.

3. S = N(Cj) for some 1 ≤ j ≤ r. If S = N(Cj) then
N(Cj) \ N(Ci) *= ∅ and we found in Rule 4 a vertex
vi,j ∈ N(Cj) \ N(Ci) and branched on the fill edge
cvi,j .

4. S is neither of the three types above. Note that Mi was
chosen in Definition 5.4 by looping over all minimal
ai, bi-separators S in GTaibici (which by Lemma 4.14
are exactly the minimal ai, bi-separators of GTaibic)
satisfying S ∩ C(G) = ∅, S *= Sa, S *= Sb, and S *=
N(Cj) for any j. Thus, of all separators of this fourth
type, Mi is the one minimizing the fill.

The assumption is that G has a k-interval completion but
no single edge branched on by Rule 4 is present in any k-
interval completion. This means that only separators of the
fourth type are used in any k-interval completion. Since
H added the minimum possible number of fill edges while
using only separators of the fourth type any interval com-
pletion of G must add at least |E(H) \ E(G)| edges. It
remains to show that H is an interval graph. H is con-
structed from an interval graph Rr and the components
G[C1], ..., G[Cr] of G[C(G)], which are interval graphs by
Lemma 5.3, and M1, ..., Mr which are minimal separators
of Rr by Lemma 5.5. Since Mi *= Sai and Mi *= Sbi we
have by Observation 5.2 that Sc = N(Ci) ⊂ Mi so that
adding all edges between Ci and Mi for 1 ≤ i ≤ r gives
the graph H . We show that H is an interval graph by
induction on 0 ≤ i ≤ r. Let H0 = Rr and let Hi for
i ≥ 1 be the graph we get from Hi−1 and Ci by making
all vertices of Ci adjacent to all vertices of the minimal sep-
arator Mi of Rr. H0 is an interval graph by induction,
and its minimal separators include all minimal separators of
Rr. If (K1, K2, ...Kq) is a clique path of Hi−1 with Mi =
Kj∩Kj+1, and (K′

1, K
′
2, ..., K

′
p) is a clique path of G[Ci] then

(K1, K2, ..., Kj , K′
1 ∪Mi, K′

2 ∪Mi, ..., K′
p ∪Mi, Kj+1, ..., Kq)

is a clique path of Hi, and hence Hi is an interval graph.
Finally, observe that the minimal separators of Hi−1 and
hence of Rr are also minimal separators of Hi.

Theorem 5.7. The search tree algorithm applying Rules
1, 2, 3, 4 in that order decides in O(k2kn3m) time whether
an input graph G on n vertices and m edges can be completed
into an interval graph by adding at most k edges.

Proof. At least one of the rules will apply to any graph
which is not interval. The correctness of Rule 1 is well un-
derstood [17, 2], that of Rules 2 and 3 follow by Observations
3.1 and 5.1 and of Rule 4 by Lemma 5.6. Each branching of
Rules 2, 3 and 4 add a single fill edge and drops k by one.
As already mentioned, also Rule 1 could have added a sin-
gle fill edge in each of its then at most k2 branchings. The
height of the tree is thus no more than k, before k reaches
0 and we can answer “no”. If an interval graph is found we
answer “yes”.
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Let us argue for the runtime. The graph we are working
on never has more than m+k edges. In Rule 1 we decide in
linear time if the graph has a large induced cycle. In Rule 2
we may have to try all triples when searching for an AT with
a small simple AT-witness, taking O(n3(m + k)) time. In
Rule 3 and 4 we need to find a minimal thick AT-witness at
most k+1 times. As observed earlier, the minimal thick AT-
witness is found by first finding an AT {a, b, c}, which can be
done in time O(m + k) since G is a chordal graph [19], then
remove simplicial vertices different from a, b, c to find the
thick AT-witness, and then make it minimal. Using a clique
tree we find in this way a single minimal thick AT-witness
in time O(n3) and at most k of them in time O(n3k). Hence
each rule takes time at most O(n3(m+k)) and has branching
factor at most k2 (e.g. in Rule 1 and also in Rule 3 when
branching on all fill edges between pairs of shallow vertices).
The height of the search tree is at most k and the number
of nodes therefore at most k2k. We can assume k ≤ n ≤ m
since a brute-force algorithm easily solves minimum interval
completion in n2n steps. Thus each rule takes time O(n3m)
for total runtime O(k2kn3m).

6. CONCLUSION
The running time of our algorithm can probably be im-

proved somewhat. Our goal was to show that the k-Interval
Completion problem was FPT. Known techniques did not
seem to work for this case, as interval graphs do not have
a finite set of forbidden subgraphs, and moreover they have
arbitrarily large forbidden subgraphs that could be made in-
terval with the addition of a single edge. Still, we were able
to handle this situation by means of a clever deployment of
the bounded search tree technique.

Could it possibly be the case that for any hereditary
graph class which is recognizable in polynomial time the k-
completion problem for this graph class might be FPT? This
seems too good to be true, but we know of no counterexam-
ples, and leave it as an interesting question for future work.
For example, what about perfect graphs?
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