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Abstract

This paper investigates the problem of conservation of combinatorial structures in genome rear-
rangement scenarios. We characterize a class of signed permutations for which one can compute in
polynomial time a reversal scenario that conserves all common intervals, and that is parsimonious
among such scenarios. Figeac and Varré (WABI 2004) announced that the general problem is NP-
hard. More precisely, we show that there exists a class of permutations for which this computation
can be done in linear time with a very simple algorithm, and, for a larger class of signed permu-
tations, the computation can be achieved in subquadratic time. We apply these methods to the
computation of rearrangement scenarios between permutations obtained from 16 synteny blocks
of the X chromosomes of the human, mouse and rat. For permutations of this size (n = 16), the
computation of such scenarios can easily be done by hand.

Résumé

Cet article étudie le problème de la conservation de la structure combinatoire lors de réarrange-
ments génomiques. Nous caractérisons une famille de permutations signées pour lesquelles il est
possible de calculer en temps polynomial un scénario de tri par renversement qui conserve tous les
intervalles communs. De plus ce scénario reste parcimonieux parmi les scénario parfaits. Figeac
et Varré (WABI 2004) avaient annoncé que le problème général est NP-difficile. Plus précisément,
nous montrons qu’il existe une classe de permutations pour laquelle ce calcul est effectué par un
algorithme linéaire très simple. Plus une plus large classe de permutations signées, ce calcul a un
coût sous-quadratique. Nous appliquons ces méthodes au calcul de scénario entre des permuta-
tions issues de 16 blocs de synténie du chromosome X de l’humain, la souris et le rat. Pour des
permutations de cette taille, le calcul de tels scénario peut être effectué à la main.
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1 Introduction

The reconstruction of evolution scenarios based on genome rearrangements has proven to be a
powerful tool in understanding the evolution of close species. For example, in the last two years,
several evolution scenarios have been proposed between mammalian genomes [8, 14], using the
MGR and GRIMM softwares [7, 24], or between microbial genomes [12].

The computation of such evolution scenarios relies on the problem of sorting signed permutations
by reversals: given two chromosomes, represented as sequences of genomic segments – called synteny
blocks in [8] –, find a parsimonious sequence of reversals that transforms a chromosome into the
other one [15]. However, the number of parsimonious sequences of reversals can be exponential
[4]. It is then natural to ask for some additional criteria that can help to select putative scenarios.
We are interested in scenarios that do not break combinatorial structures that are present in both
chromosomes. Indeed, if two genomes share a common feature, it is likely that their common
ancestor did too, which makes evolution scenarios that conserve this feature interesting.

In this work, the combinatorial structures that we consider are common intervals [26, 16]. A
rearrangement scenario is said to be perfect if it does not break any common interval. It was claimed
that computing a parsimonious perfect scenario is difficult [13], but that in some non-trivial cases,
such scenarios can be computed efficiently [2, 19]. In this paper we describe a class of instances
that allow efficient computation of a parsimonious perfect scenario.

In Section 2, we define the links between sorting by reversals and structure conservation, and
we state precisely the problem we address in this paper. In Section 3, we relate common intervals
and perfect scenarios to a basis of common intervals, the strong intervals, that can be represented
with a classical data structure in graph theory, the PQ-trees. These observations are consequences
of deep relationships between common intervals and the modular decomposition of permutation
graphs [10, 18]. This point is central in our approach since we rely strongly, in Section 4, on
the combinatorial structure of strong intervals trees to design algorithms that are both efficient
– subquadratic time, even linear time in some cases – and simple. The comparison of the mouse
and rat X chromosomes, based on the data of [14], yields a tree from which a parsimonious perfect
scenario can be deduced immediately (Fig. 2). We also apply these results to the comparison of
the human and rat (Fig. 3), and human and mouse (Fig. 4) X chromosomes.

2 Sorting by reversals and common intervals

In this section, we introduce the main concepts covered in this paper: signed permutations, rever-
sals, scenarios, commuting reversals, common intervals and perfect scenarios. We illustrate these
definitions in a single example at the end of the section.

A signed permutation on n elements is a permutation on the set of integers {1, 2, . . . , n} in
which each element has a sign, positive or negative. Negative integers are represented by placing
a bar over them. An interval of a signed permutation is a segment of consecutive elements of the
permutation. One can define an interval by giving the set of its unsigned elements, called the
content of the interval. However, not every set of integers corresponds to an interval of a given
permutation P .

The reversal of an interval of a signed permutation reverses the order of the elements of the
interval, while changing their signs. Note that every reversal is an interval of the permutation on
which it is performed, which lead us to often treat reversals as intervals, and to represent a reversal
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by the corresponding interval. If P is a permutation, we denote by P the permutation obtained by
reversing the complete permutation P .

Definition 1 Let P and Q be two signed permutations on n elements. A scenario between P and
Q is a sequence of distinct reversals that transforms P into Q, or P into Q. The length of such
a scenario is the number of reversals it contains. When Q is the identity permutation, a scenario
between P and Q will be simply called a scenario for P .

The fact that the set of scenarios between P and Q contains sequences of reversals that trans-
form P into Q models the fact that, in comparative genomics, permutations are used to represent
chromosomes. Reversing a complete chromosome does not modify its structure.

Given a signed permutation P on n elements, the problem of sorting by reversals, stated by
Sankoff in [20], asks for a scenario for P of minimal length among all possible scenarios, also called
a parsimonious scenario. The first polynomial time algorithm solving this problem was given by
Hannenhalli and Pevzner in [15]. Subsequent improvements were proposed, and currently, the best
known algorithm for this problem runs in O(n3/2 log(n)) worst-case time [23].

Definition 2 Two distinct intervals I and J commute if their contents trivially intersect, that is
either I ⊂ J , or J ⊂ I, or I ∩ J = ∅. If intervals I and J do not commute, they overlap.

Definition 3 Let P be a signed permutation on n elements. A common interval of P is a set of
one or more integers that is an interval in both P and the identity permutation Idn. Note that
any such set is also an interval of P and of Idn. The singletons and the set {1, 2, . . . , n} are always
common intervals, and called trivial common intervals.

The notion of common interval was introduced in [26]. It was studied, among others, in [16], to
model the fact that a group of genes can be rearranged in a genome but still remain connected. It
was also studied, in connection with reversal scenarios, in [2, 19].

Definition 4 Let P be a signed permutation. A scenario S for P is called a perfect scenario if
every reversal of S commutes with every common interval of P . A perfect scenario of minimal
length is called a parsimonious perfect scenario.

Note that, if I is a common interval of P and J is an interval of P that does not commute with
I, then reversing J in P leads to a permutation P ′ such that I is not a common interval of P ′.
Hence, if J belongs to a scenario for P , then the set of common intervals of P is not conserved
during this scenario, which explains the above definition.
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Example 1 Let P = (3 2 5 4 1) be a signed permutation.

1. Reversing the interval (2 5 4 1), or equivalently the set {1, 2, 4, 5}, yields the signed permu-
tation (3 1 4 5 2).

2. The common intervals of P are {2, 3}, {4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5} and the singletons {1},
{2}, {3}, {4} and {5}.

3. ({1, 2, 3, 4, 5}, {2, 3, 4, 5}, {2, 3}, {4, 5}, {1}) is a perfect scenario that transforms P into Id5.

4. ({2, 3, 4, 5}, {2, 3}, {4, 5}, {1}) is a parsimonious perfect scenario for P , transforming P into
the reverse Id5 of the identity.

5. ({1, 4, 5}, {1, 2, 3}) is a parsimonious scenario, but it is not perfect since, for example, the
reversal {1, 4, 5} overlaps the common interval {2, 3, 4, 5}.

As shown in [13], given a signed permutation P , there exists at least one perfect scenario for
P . However, the authors of [13] claim that the construction of parsimonious perfect scenarios
is computationally difficult: they state that computing a parsimonious perfect scenario between
two signed permutations is NP-hard in general. Hence the difficulty of the problem relies in the
parsimonious aspect.

The main goal of this paper is to propose algorithms for computing parsimonious perfect sce-
narios that are efficient for large classes of signed permutations (Section 4). Our results rely on the
strong intervals tree of a signed permutation described in the next section.

3 Strong intervals tree

As the number of common intervals of a permutation P on n elements can be quadratic in n, an
efficient algorithm (i.e. subquadratic time) for computing perfect scenarios should rely on a space
efficient encoding of the set of common intervals. In [18], the author pointed out a correspondence
between common intervals of permutations and the concept, well studied in graph theory, of modules
of graphs. Inspired from the modular decomposition theory2, this section formally states structural
properties of the set of common intervals of a permutation P that are central in the design of the
algorithms in Section 4.

Let us first remark that being a common interval for a set I has nothing to do with the sign
of the elements of I. Therefore all the structural results presented in this section are valid for
both signed and unsigned permutations. For the sake of simplicity, we omit the signs which will be
reintroduced in the next section.

Definition 5 A common interval I of a permutation P is a strong interval of P if it commutes
with every common interval of P .

For example, the strong intervals of permutation P = (1 4 2 5 3 7 8 6 9) are {2, 3, 4, 5}, {7, 8},
{6, 7, 8}, {1, 2, 3, 4, 5, 6, 7, 8, 9} and the singletons {1}, . . . , {9}. The singletons and {1, 2, . . . , 9} are
the trivial strong intervals of P .

2All the results presented in this section can be seen as direct consequences or corollaries of well known graph
theoretical results (see [10] for example).
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4 2 5 3 7 8 961

7, 8, 6

7, 8

1, 4, 2, 5, 7, 8, 6, 9

4, 2, 5, 3

Figure 1: The strong intervals tree Ts(P ) of the permutation P = (1 4 2 5 3 7 8 6 9). Prime
and linear nodes (described later in this section) are distinguished by their shape. There are two
non-trivial linear nodes, the rectangular nodes: (7, 8) is increasing and (7, 8, 6) is decreasing. There
is only one prime node, the round node (4, 2, 3, 5).

It follows from Definition 5 that the inclusion order of the set of strong intervals defines an
n-leaves tree, denoted by Ts(P ), whose leaves are the singletons, and whose root is the interval
containing all elements of the permutation. We call the tree Ts(P ) the strong intervals tree of P
(see Fig. 1), and we identify a node of Ts(P ) with the strong interval it represents.

Since each strong interval with more than one element, or equivalently each internal node of
Ts(P ), has at least two children in Ts(P ), we have immediately:

Proposition 1 A permutation P on n elements has O(n) strong intervals.

Let I be a common interval of a permutation P on n and x ∈ {1, 2, . . . , n} such that x /∈ I. It
follows from the definition of common interval that either x is larger than all elements of I or x
is smaller than all elements of I. Hence, for two disjoint common intervals I and J , we can define
the relation I < J by extending the order relation on integers that belong to I and J .

Definition 6 Let P be a permutation and I = {I1, . . . , Ik} be a partition of the elements of P into
strong intervals. The quotient permutation of P with respect to I, denoted P|I , is the permutation
on k elements such that i precedes j if and only if Ii < Ij.

For example, for the permutation P = (1 4 2 5 3 7 8 6 9) of Fig. 1, I = {{1}, {2, 3, 4, 5}, {7, 8},
{6}, {9}} is a partition of P into strong intervals, and P|I = (1 2 4 3 5).

Theorem 1 Let P be a permutation on n elements and I = {I1, . . . , Ik} be the partition of P into
strong intervals given by the children of the root of TS(P ). Then exactly one of the following is
true:

1. P|I is Idk (the identity permutation on k elements).

2. P|I is Idk (the reverse of the identity permutation on k elements).

3. The only common intervals of P|I are trivial.

6



Proof. Suppose that P|I is neither Idk nor Idk, and that there exists a non-trivial common interval
of P|I . It follows that the strong intervals tree of P|I has at least one internal node, and then there
exists a strong common interval J = {i, . . . , j} of P|I . We will prove that the set K = ∪i≤h≤jIh is
a common interval of P , which contradicts the fact that Ih, for h ∈ J , are children of the root.

The set K = ∪i≤h≤jIh is an interval of P , since the intervals Ih occur consecutively in P . For
any h, i ≤ h ≤ j, an integer x /∈ K is either larger or smaller than all elements of Ih, and such
integers exists since J is a non-trivial common interval of P|I . Suppose that x /∈ K, and that there
exists two distinct integers h and h′ in J such that x is larger than all elements of Ih, and smaller
than all elements of Ih′ . Since I is a partition of P , x belongs to a unique interval I` of I with
` /∈ J , since x /∈ K. It follows that Ih < I` < Ih′ , which implies that, in the quotient permutation
P|I , h < ` < h′, and then contradicts the fact that J is a common interval of P|I . Therefore such
a pair h and h′ does not exist, which implies that for any x /∈ K, x is either larger or smaller than
all elements of K. In other words K is a common interval of P , and as J was a strong interval of
P|I , K is a strong interval of P . �

Theorem 1 induces a classification of the nodes of the strong intervals tree Ts(P ) that is central
in the design of our algorithms: let PI be the quotient permutation defined by the children of an
internal node I of Ts(P ). The node I, or equivalently the strong interval I of P , is either:

1. Increasing linear, if PI is the identity permutation, or

2. Decreasing linear, if PI is the reverse of the identity permutation, or

3. Prime, otherwise.

For example, in Fig. 1, the rectangular nodes are the linear nodes, and the round node (4, 2, 5, 3)
is the unique prime node. The only decreasing linear node in this tree is (7, 8, 6).

An interesting property of linear nodes is the fact that increasing and decreasing nodes alternate
when they are direct descendant of each other. More formally:

Property 1 In a strong intervals tree, a child of an increasing (resp. a decreasing) linear node is
either a prime node or a decreasing (resp. an increasing) linear node.

Finally, we show that the strong intervals tree is a compact representation – it only requires
O(n) space – of the set of all common intervals, which is possibly a set of quadratic size.

Proposition 2 Let P be a signed permutation. An interval I of P is a common interval of P if
and only if it is either a node of TS(P ), or the union of consecutive children of a linear node of
TS(P ).

Proof. Let I be a common interval of P . If I is a strong interval, the statement holds. Otherwise,
by definition of strong intervals, there exists a smallest strong interval J that contains I, and I
commutes with all children of J , which proves that I is the union of a subset of the children of
J . These children have to be consecutive because I is an interval of P . Finally, it follows from
Theorem 1 that I has to be linear. Indeed, if I is prime, the point 3 of Theorem 1 implies that any
subset of the children of I is not a common interval of P .

Conversely, it is immediate to see that every node or set of consecutive children of a linear node
is a common interval of P . �
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This representation for strong intervals was first given implicitly in [16], and explicitly in [17],
where it was shown that Ts(P ) can be related to a data structure widely used in graph theory,
called PQ-tree. It can be computed in O(n) worst-case time using algorithms similar to the ones
given in [16, 17]. A formal link between PQ-trees and conserved structures in signed permutations
was first proposed in [3], in the context of conserved intervals, a subset of common intervals.

4 Computing perfect scenarios

We now turn to the description of our main results, the design of efficient algorithms for computing
parsimonious perfect scenarios for large classes of signed permutations. The central point of this
section is the use strong intervals trees as guides for such computations. We the assume that TS(P )
is given, and we refer to [5] for simple algorithms building this tree. Indeed, given a signed permu-
tation P , TS(P ) encodes all common intervals of P , which allows, in particular, a characterization
of perfect scenarios in terms of TS(P ):

Proposition 3 A scenario S for a permutation P is perfect if and only if each of the reversals of
S is either a node of TS(P ), or the union of children of a prime node of TS(P ).

Proof. Suppose that S is a scenario for permutation P , and that every reversal of S is either a node
of TS(P ), or the union of children of a prime node of TS(P ). Let I be a reversal of S. If I is a node
of TS(P ), I is a strong interval and then commutes with every common interval of P . Now, assume
that I is the union of children of a prime node J . I obviously commutes with any common interval
not contained in J , and with any common interval contained in a child of J . Hence it remains to
show that I commutes with any common interval that is union of children of J , but there are none
by definition of a prime node. It follows that I commutes with every common interval of P , and
then S is a perfect scenario.

Conversely, suppose that S is a perfect scenario, let I be a reversal of S, and consider the
partition I1, I2, . . . Ik of I in which the part containing an element x of I is the largest strong
interval included in I and that contains x. If k ≥ 2, then I1, I2, . . . Ik must all be children of a same
parent J in TS(P ), otherwise I would not commute with the nodes of TS(P ) that are parents of
Ij’s. If J is a linear node, then I must be equal to J , otherwise I would overlap a interval formed
by a leftover child of J and one of the intervals of I, and such an interval is a common interval of
P by the points 1 and 2 of Theorem 1. Therefore, either k = 1 and I is a node of TS(P ), or k > 1
and the node J must be prime. �

Computing a perfect scenario S thus amounts to identify leaves, linear nodes and union of
children of prime nodes of TS(P ) that are the reversals of S. We now show that, even if the general
problem of computing parsimonious perfect scenarios was claimed to be difficult [13], it can be done
efficiently for a large class of signed permutations, defined in terms of the structure of their strong
intervals tree.

A strong intervals tree TS(P ) is unambiguous if every prime node has a linear parent, and definite
if it has no prime nodes. Note that a definite tree is unambiguous. A tree that is not unambiguous
is said to be ambiguous. We will show that, for definite trees, there is essentially a unique perfect
scenario for P (Theorem 2), and for unambiguous trees, we can compute a parsimonious perfect
scenario in subquadratic time (Theorem 3).
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Remark 1 Note that definite strong intervals trees are also known as co-trees in the theory of
modular decomposition of graphs [10].

A signed tree is a tree in which each node has a sign, + or −. If a tree TS(P ) is unambiguous,
we associate to TS(P ) the following signed tree T ′

S(P ):

1. The sign of a leaf x is the sign of the corresponding element in P .

2. The sign of a linear node is +, if the node is increasing, and − if the node is decreasing.

3. The sign of a prime node is the sign of its parent.

Fig. 2, Fig. 3 and Fig. 4 show signed strong intervals trees associated to the permutations
obtained by comparing 16 synteny blocks of the human, mouse and rat X chromosomes [14]3. Note
that, in Fig. 2 the labels of the nodes are given with respect to the order of the blocks of the mouse
chromosome.

Human = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Mouse = 6̄ 5̄ 4 13 14 1̄5 16 1 3̄ 9 1̄0 11 12 7̄ 8 2̄

Rat = 1̄3 4̄ 5 6̄ 1̄2 8̄ 7̄ 2 1 3̄ 9 10 11 14 1̄5 16

Theorem 2 If TS(P ) is definite, then the set of nodes that have a sign different from the sign of
their parent is a parsimonious perfect scenario for P .

Given the tree TS(P ), Theorem 2 implies that computing a parsimonious perfect scenario for P
is almost immediate, when TS(P ) is definite. The comparison of the rat and mouse X chromosomes
yields a definite tree, Fig. 2, and the corresponding scenario can be obtained by comparing the
signs of the O(n) nodes. When such a scenario exists, it is unique up the order of the reversals,
since each of them commutes with all the others.

The proof of Theorem 2 relies on the following lemma that identifies reversals that must belong
to any perfect scenario, thus to any parsimonious perfect scenario.

Lemma 1 (The Parity Lemma) For any unambiguous tree TS(P ), if a node I has a linear
parent and a sign different from the sign of its parent, then I belongs to any perfect scenario.

Proof. Let S be a perfect scenario, and I a node with negative sign, whose linear parent J has a
positive sign, and such that I /∈ S. Since J is linear and I /∈ S, by Proposition 3, any reversal of S
that contains I also contains J .

Let m be the number of reversals of S that contain J . If m is even, and since J has a positive
sign, then S sorts P to Id, by definition of increasing nodes. If I is a leaf, it will still be negative
after an even number of reversals, contradicting the fact that S sorts P to Id. If I is a linear node
with a negative sign, then its first child is greater than its last, and will still be after an even number
of reversals, again contradicting the fact that S sorts P to Id. A symmetric argument holds if m
is odd, or if I has a positive sign, and J a negative sign. �

3The positions of blocks 5 and 6 in our data differs from [14], following a correction of the mouse genome assembly.
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Mouse = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Rat = 4̄ 3̄ 2̄ 1 1̄3 1̄5 14 1̄6 8 9 10 1̄1 12 5 6 7

− − + + + +−

+

4 3 2 1 13 815 14 16

+

9 10 11 12 5 6 7

−

−

++

+

−−

− − + + + +−

4, 3, 2, 1, 13, 15, 14, 16, 8, 9, 10, 11, 12, 5, 6, 7

8, 9, 10, 11, 12 5, 6, 7

13, 15, 14, 16

13, 15, 14, 16, 8, 9, 10, 11, 12, 5, 6, 7

4, 3, 2, 1 15, 14

Figure 2: Comparing the rat and mouse X chromosomes: the set of nodes that have a
sign different from the sign of their parent form a parsimonious perfect scenario that trans-
forms the rat X chromosome into the mouse X chromosome in 11 reversals: (4, 3, 2, 1), (1),
(13, 15, 14, 16, 8, 9, 10, 11, 12, 5, 6, 7), (13, 15, 14, 16), (13), (15, 14), (14), (16), (8, 9, 10, 11, 12), (11),
(5, 6, 7).

Proof.[Theorem 2] If TS(P ) is definite, Proposition 3 implies that a parsimonious perfect scenario
S consists of a set of nodes of the tree TS(P ). From Property 1, all internal nodes have a different
sign than their parent, so they must all belong to S, by the Parity Lemma. The root never belongs
to a parsimonious perfect scenario because it would be a useless reversal, since a perfect scenario
is defined with respect to both Id and Id. Any leaf that has a different sign from its parent must
belong to S, by the Parity Lemma, and any leaf that has the sign of its parent must not, by an
argument similar to the proof of the Parity Lemma. Thus S is uniquely determined. �

We next turn to the more general case of unambiguous trees. Recall that a prime node inherits
its sign from its parent, and that any reversal that is a union of children of a prime node commutes
with all common intervals, thus may belong to a perfect scenario.

Algorithm 1 describes how to obtain a parsimonious perfect scenario in the case of unambiguous
trees. The basic idea is to compute, for each prime node I of the tree, any parsimonious scenario
that sorts the children of node I in increasing or decreasing order, depending on the sign of I.
Then, it suffices to deal with linear nodes whose parent is linear in the same way than for a definite
tree.Fig. 3 shows the signed tree associated to the permutations of the human and rat X chro-
mosomes. This tree is unambiguous: it has one prime node (4, 5, 6, 12, 8, 7, 2, 1, 3, 9, 10, 11) whose
parent is a decreasing linear node. The quotient permutation of this node over its five children is
PI = (2 5 3 1 4), and a parsimonious scenario that sorts PI to Id is given by: {1, 3, 4}, {1, 3}, {1},
{2, 3, 4, 5}, {3, 4, 5}. Note that if the corresponding five reversals are applied to the rat chromosome,
the resulting permutation has a definite tree.

The time complexity of Algorithm 1 depends on the time complexity of the sorting by reversals
algorithm used to compute a reversal scenario that sorts the children of a prime node. Using the
O(n3/2 log n) algorithm described in [23], we have:
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Algorithm 1: Computing a parsimonious perfect scenario for unambiguous TS(P )

S is an empty scenario.

For each prime node I of Ts(P )
PI is the quotient permutation of I over its children

If the sign of I is positive

Then compute any parsimonious scenario T from PI to Id
Else compute any parsimonious scenario T from PI to Id

Deduce the corresponding scenario T ′ on the children of PI

Add the reversals of T ′ to scenario S
Add to S the linear nodes and leaves having a linear parent and a sign different from the

sign of their parent.

Human = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Rat = 1̄3 4̄ 5 6̄ 1̄2 8̄ 7̄ 2 1 3̄ 9 10 11 14 1̄5 16

+ +

13 4 5 6 12 8 7 2 1 3 9 10 11 14 15 16

−

− −+

+

+

−

−

+

4, 5, 6 8, 7 2, 1 9, 10, 11

4, 5, 6, 12, 8, 7, 2, 1, 3, 9, 10, 11

13, 4, 5, 6, 12, 8, 7, 2, 1, 3, 9, 10, 11

+ − − − − + + − + + − +−

2, 1, 3

13, 4, 5, 6, 12, 8, 7, 2, 1, 3, 9, 10, 11, 14, 15, 16

Figure 3: Comparing the human and rat X chromosomes: a parsimonious perfect scenario is
obtained by sorting the five children (4, 5, 6), (12), (8, 7), (2, 1, 3) and (9, 10, 11) in decreasing
order using any parsimonious scenario that sorts the quotient permutation PI = (2 5 3 1 4),
and then reversing the linear nodes and leaves whose linear parent have a different sign:
(13, 4, 5, 6, 12, 8, 7, 2, 1, 3, 9, 10, 11), (4), (6), (2, 1), (2), (1), (3), (15). The length of the scenario
is 13.
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Theorem 3 If TS(P ) is unambiguous, Algorithm 1 computes a parsimonious perfect scenario for
P in subquadratic time.

Proof. The time complexity bound is obtained by observing that the sorting by reversals procedure
will be applied on permutations of size n1, . . . , nk, the number of children of the k prime nodes of
TS(P ) , and that n1 + . . . + nk ≤ n.

We now prove that the sequence of reversals that is computed is a scenario for P . First, it is
immediate that the quotient permutation of a prime node has to be sorted into Id or Id, according
to its sign. This is done during the first phase of the algorithm, that deals with prime nodes. The
argument for the second phase – leaves and linear nodes whose parent is linear – is similar to the
one used in the proof of Theorem 2.

Finally we prove that the computed scenario is parsimonious among prefect scenarios. Given a
parsimonious perfect scenario, the subsequence of reversals that are contained in a prime node I
sorts I in increasing or decreasing order. Suppose that S′ is a parsimonious scenario shorter than
the scenario S produced by Algorithm 1. Then there is at least one prime node I such that the
number of reversals of S′ that are contained in I is less than the number of reversals of S that are
contained in I. Let R and R′ be the subsequences of reversals of S and S′ that are contained in I.
One of R and R′ sorts I in increasing order, and the other in decreasing order. Otherwise, one of
them would not be parsimonious. Suppose that the sign of the parent of I is positive, then R sorts
I in increasing order, and R′ sorts I in decreasing order. By the same argument that was used in
the Parity Lemma, I must belong to S′, and thus to R′, and removing I from S′ produces a shorter
scenario, contradicting the hypothesis that S′ was parsimonious. A similar argument holds if the
sign of the parent of I is negative. �

When TS(P ) is ambiguous, the sign of some prime nodes is undefined. A general algorithm
to compute parsimonious perfect scenario would repeatedly apply Algorithm 1 to all possible sign
assignments to prime nodes that do not have linear parents. As an example, consider Fig. 4 that
shows the signed tree associated to the permutations of the human and mouse X chromosomes.
This tree is ambiguous since its root is a prime node, and we must try to sort this node both to Id
and to Id. In this case, both parsimonious scenarios have the same length. Such an algorithm, that
is a generalization of the algorithms we described in this section for unambiguous trees, and was
described using another formalism in [13]. It has a worst-case time complexity that is exponential
in the number of prime nodes whose parent is prime, and thus is efficient if the number of such
edges is small.

Permutations that arise from the comparison of genomic sequences are not “random”, and
this could partly explain why perfect sorting is not difficult for the permutations we considered.
Constructing permutations that are hard to perfectly sort requires to break almost any structure
in a given permutation. The smallest example of a hard to sort permutation is given in Fig. 5.

5 Conclusion

From the algorithmic point of view, the central aspect of our work is the detailed description of
the link between computing perfect scenarios and the strong intervals tree of a signed permutation.
We gave a new description of the exponential time algorithm of [13] that highlights many of its
properties. In particular, in Section 4, we characterized classes of signed permutations for which
the computation of a parsimonious perfect scenario can be done efficiently.
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Human = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Mouse = 6̄ 5̄ 4 13 14 1̄5 16 1 3̄ 9 1̄0 11 12 7̄ 8 2̄

81191164 13 14 126

−

7

−

10

−

3

−

15

−+ + + + + + + + +

5

−

6, 5, 4

−

13, 14, 15, 16

+

7, 8

+

−

9, 10, 11, 12, 7, 8

9, 10, 11, 12

+

2

−

6, 5, 4, 13, 14, 15, 16, 1, 3, 9, 10, 11, 12, 7, 8, 2

Figure 4: Comparing the human and mouse X chromosomes: the root has no sign but its children
can be sorted to Id or Id in 6 reversals using a parsimonious scenario that sorts the quotient
permutation PI = (4 6 1 3 5 2), A parsimonious perfect scenario would also contain the reversals:
(4), (15), (9, 10, 11, 12), (10), (7, 8), (7). The total length of the scenario is 12.

Identity = 1 2 3 4 5 6 7
P = 2 5̄ 7 4 6̄ 1 3

52 7 4 6

−

3

+ − + + +

1

5, 7, 4, 6

2, 5, 7, 4, 6, 1, 3

+

Figure 5: A hard to sort permutation: if both nodes are sorted in increasing order, or both are
sorted in decreasing order, then the resulting perfect scenarios are not parsimonious.
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In [19], it was shown that when, for a given signed permutation, there exists a parsimonious
scenario that is also a perfect scenario, computing such a scenario can be done in subquadratic
time, extending a previous result of [2]. In the present work, one can, once a parsimonious perfect
scenario has been computed, check whether this scenario is also parsimonious, using for example
one of the linear time algorithm for computing the reversal distance proposed in [1, 6]. However,
the computation of a parsimonious perfect scenario can ask for an exponential time depending on
the strong intervals tree. In order to close the gap between these two approaches in computing
perfect scenarios, it would be interesting to characterize, in terms of strong intervals tree, the class
of signed permutations for which a parsimonious perfect scenario is also parsimonious among all
possible scenarios.

From a practical point of view, it is worth to recall that the interest in computing scenarios that
do not break any common intervals relies on the assumption that genes, or other genomic markers,
cluster in such groups for functional reasons, like co-transcription for example. Of course, it is
possible that clusters of genes exist by “chance”, or are not supported by any functional evidence,
and it would not be relevant to impose that such intervals should not be broken. Note however,
that the algorithms developed in this work apply without any modification: given a set of common
intervals that are believed to be pertinent from the evolutionary point of view, they define a set of
strong intervals, and then a PQ-tree, and one can apply our method on this PQ-tree.

Another interesting point, related to the above remark, is the importance, with respect to the
computation of perfect scenarios, of edges of the strong intervals tree whose two incident vertices are
prime. These edges are the heart of the difficulty of the general computational problem. However,
if it appears that a prime node has not to be broken during the evolution, for functional reasons,
it is likely that the segment of the chromosome corresponding to this interval is framed in the
genome, either upstream, or downstream, or even both, by sequences that coordinates the action of
the group of genes present in this genomic segment. It follows that if one considers these framing
sequences in the signed permutation, they would prevent, in the strong intervals tree, that the
corresponding prime node has for parent a prime node. Recent works that explore the properties
of the chromosomal regions between synteny blocks are of interest with regard to this problematic
[21, 25].

Among other future directions, it would be interesting to consider the median problem, that is
one of the main tools in the computation of reversals scenarios [7]. This problem has been shown
to be NP-hard [9] in the general case, but the question has not been settled if one restricts every
scenario to be perfect. Finally, the most natural extension would be to consider signed sequences
instead of signed permutations. Some work has been done on common intervals of signed sequences
[11, 22], but representations of these that could play the role of strong intervals are yet to be
discovered.
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[13] M. Figeac and J.-S. Varré. Sorting by reversals with common intervals. In Algorithms in
Bioinformatics, 4th International Workshop, WABI 2004, volume 3240 of Lecture Notes in
Bioinformatics, pages 26–37, Springer-Verlag, 2004.

[14] R. A. Gibbs et al. Genome sequence of the brown norway rat yields insights into mammalian
evolution. Nature, 428(6982):493–521, 2004.

[15] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: Polynomial algorithm
for sorting signed permutations by reversals. J. ACM, 46(1):1–27, 1999. (Preliminary version
in STOC’95: Proceedings of the 27th Annual ACM Symposium on Theory of Computing, pages
178–189, ACM Press, 1995.)

15



[16] S. Heber and J. Stoye. Finding all common intervals of k permutations. In Combinatorial
Pattern Matching, 12th Annual Symposium, CPM 2001, volume 2089 of Lecture Notes in
Comput. Sci., pages 207–218, Springer-Verlag, 2001.

[17] G.M. Landau, L. Parida and O. Weimann. Using PQ trees for comparative genomics. In
Combinatorial Pattern Matching, 16th Annual Symposium, CPM 2005, volume 3537 of Lecture
Notes in Comput. Sci., pages 128–143, Springer-Verlag, 2005.
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