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Abstract. Mining knowledge from structured data has been extensively addres-
sed in the few past years. However, most proposed approaches are interested in 
flat structures. With the growing popularity of the Web, the number of semi-
structured documents available is rapidly increasing. Structure of these objects 
is irregular and it is judicious to assume that a query on documents structure is 
almost as important as a query on data. Moreover, manipulated data is not static 
because it is constantly being updated. The problem of maintaining such sub-
structures then becomes as much of a priority as researching them because, eve-
ry time data is updated, found sub-structures could become invalid. In this pa-
per we propose a system, called A.U.S.M.S. (Automatic Update Schema Mi-
ning System), which enables us to retrieve data, identify frequent sub-structures 
and keep up-to-date extracted knowledge after the sources have evolved.  

1. Introduction 

The search for knowledge in structured data has been extensively ad-
dressed in the few past years. Most of the proposed approaches concern 
flat or highly structured structures. With the growing popularity of the 
World Wide Web, the number of semi-structured documents produced 
has quickly soared. In contrast to traditional database applications, 
where we first describe the structure itself (e.g. the type or the schema) 
and where we then create instances of these types, within semi-
structured data, data has no predefined schema, and each object holds 
its own structure. In most cases, "on line" documents, such as the 
HTML/XML, Latex, Bibtex, or SGML files are semi-structured. 
Consequently, the structure of the objects is irregular and it is judicious 
to think that a request on the structure of the documents is as significant 
as a request on the data [22]. However in spite of this structural irregu-
larity, structural similarities among semi-structured objects can exist. It 
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is frequently noted that semi-structured objects which describe the 
same type of information have similar structures. The analysis of such 
implicit structures in semi-structured data can then provide significant 
information : to optimize the evaluations of requests, to obtain general 
information on the contents, to facilitate the integration of data resul-
ting from various information sources, to improve storage, to facilitate 
the installation of index or views and to contribute to the classification 
of semi-structured documents. Applications fields are very numerous 
and gather, for example: bio-data processing, Web Content Mining and 
Web Usage Mining. In this last case, frequent substructures discovered 
in various users’ navigations constitute very useful knowledge to dy-
namically optimize the hypertext organization of a server or they can be 
used by a proxy server in order to improve access to pages. 
Recently, new approaches have been defined in this context. Very effi-
cient approaches were proposed to seek such substructures [4, 12, 18, 
21, 24]. Unfortunately, the handled data are not static because new up-
dates are constantly carried out. The problem of keeping such substruc-
tures up to date becomes very significant then because, as updates are 
carried out, the previously found sub-structures can become invalid. 
In this article we are interested in the extraction of such substructures 
with a detailed attention for their evolution. We propose a system, cal-
led AUSMS (Automatic Update Schema Mining System), which allows 
the collection of data, the search for frequent substructures, and the 
maintenance of extracted knowledge during evolution of sources. 
The article is organized in the following way. In section 2 we present 
the problems of searching frequent substructures and data maintenance. 
Section 3 presents the functional architecture of the system by detailing 
the various stages. We also present some experiments undertaken with 
the prototype on real data files from the Web. A short related work on 
the approaches of extracting and maintaining knowledge is proposed in 
paragraph 4. Lastly, in paragraph 5, we conclude by evoking the conti-
nuations from this work. 

2. Problem Statement 

In this section, we give the formal definitions related to the problem of 
searching frequent substructures in semi-structured objects. 



AUSMS: An environment for frequent sub-structures extraction in a semi-structured object 
collection      3 

2.1 Definitions 

The goal of our proposal is to discover structural similarities among a 
set of semi-structured objects. We will consider for the following 
example a tree as an acyclic connected graph and a forest as an acyclic 
graph. In our context a cyclic graph can be transformed into an acyclic 
graph which in itself can be described by a tree while replicating the 
divided sub nodes [22]. A forest is thus a collection of trees where each 
tree is a connected component of the forest. An ordered tree is a rooted 
tree in which the children of each node are ordered. The order is given 
according to the type of application and it follows either the lexicogra-
phical order (set-of), or the imposed order (list-of). To express the dif-
ferences between orders, we will respectively use the notations "{}" to 
represent a "set of" and "< >" to represent a "list of". In the rest of the 
paper, we will assume that we are working with labelised and ordered 
trees with a common root. Dealing with only rooted trees and two types 
of orders enables us to address various types of traditional data set such 
as the data from Web pages. 

Example: Let us consider figure 1, where we have two types of order: 
the first one is lexicographical (address, id) where address has the fol-
lowing child: city, street, zipcode, the second one is imposed by the ap-
plication: name, firstname (denoted by dotted arrows on figure 1). The 
representation of the tree is as follows: [root: {address root: {city, 
street, zipcode}, id: < name, firstname >}]. 

 

Fig. 1. Example of a tree 

Let r be the root of tree T. Let x be a node of T. A node y from the sin-
gle path r to x is named ancestor of x and is written as y ≤k x, where k is 
the y to x path length. If y is an x ancestor, then x is a y successor (each 
node is at the same time his ancestor and his successor). If y ≤1 x, i.e. y 
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is a direct ancestor, then y is named parent of x and x is named child of 
y.  
Let T be a tree such that T = (N, B), where N is the labelised node set 
and B is the edge set. Let a tree S=(Ns, Bs) be an imbricated tree in  T, 
written as S ≤ST T iff : Ns ≤ N and b=(nx, ny) ∈ Bs iff ny ≤1 nx, i.e. nx is 
the ny child in T. If S ≤ST T then T is included in S or S is a T substruc-
ture. 

Example: for example, the tree {address: {city, street, zipcode}, cate-
gory, name} is a subtree of {address: {city, street, zipcode}, category, 
name, nearby: {category, name, price}}. However the tree {address: 
{city, street, zipcode}, category, name, price} is not a subtree because 
the element price is not on the same level in the graph as shown on fi-
gure 2. 

 

 

Fig. 2. Sub tree inclusion 

2.2 Problem 

Let us consider DB a tree database also named structures, i.e. a forest 
where each tree T is composed of an identifier and a structure included 
in the forest. All the trees are sorted either by lexicographical order, or 
by an imposed order. Figure 3 illustrates a database example. Let supp 
(p) be the support value for a structure corresponding to the number of 
occurrences of this structure in the database DB. In other words, the 



AUSMS: An environment for frequent sub-structures extraction in a semi-structured object 
collection      5 

support of a structure p is defined as the percentage of all the trees in 
the database which contain p. A tree of the database contains p iff p is a 
substructure of this tree. In order to decide whether a structure is fre-
quent or not, a value of minimal support is specified by the user (min-
Supp) so a structure is frequent if the condition supp (p)≥minSupp 
holds. 
Being given a tree database dB, the problem of searching for regulari-
ties in semi-structured data thus consists in finding all the maximum 
structures which are in dB and whose support is higher than minSupp. 
 

Trans_id Structure 
t1 
t2 
 

t3 
t4 
t5 
t6 

[person :{identity :{address, name}}] 
[person :{identity : { address : <street , zipcode >, company, director : 
<name, firstname >, name}}] 
[person : {identity : { address : <street, zipcode>, id  }}] 
[person :{identity : { address , company, name}}] 
[person : { identity : {address, name}}] 
[person : {identity : { address : < street , zipcode>, director : <name, firs-
tname >, name }}] 

Fig. 3. A database illustration 

Example: In order to illustrate the problem of mining regularities in 
semi-structured data, let us consider the DB of figure 3. Let us suppose 
that the support value specified by the user is 50%, i.e. to be frequent; a 
substructure must appear in at least three trees. The only frequent struc-
tures in dB are the following ones: [identity: {address, name}] and 
[identity: {address: < street, zipcode >}]. The first one appears in t1 as 
well as in t4 and t5. On the other hand, the structure [identity: {address: 
< street, zipcode >, director: < name, firstname >, name} ] are checked 
by t2 and t6 but is not frequent since the number of trees which hold this 
structure is lower than the minimal support. 
Let us now consider the evolution of the data sources. That is to say db 
the database increment where new information is added or removed. 
Let U=DB ∪ db, be the updated database holding all structures from 
DB and db. Let LDB be the frequent substructures set in DB. The prob-
lem of keeping of up to date discovered knowledge is to seek the fre-
quent substructures in U, noted LU, by respecting the same support 
value. Moreover, maintenance must take previously extracted knowl-
edge into account so as to avoid restarting retrieval algorithms from 
scratch when the data are updated. 

5 
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 3. The A.U.S.M.S. System 

The aim of A.U.S.M.S. (Automatic Update Schema Mining System) is 
to propose an environment of discovery and knowledge extraction for 
semi-structured data from the recovery of information until the update 
of extracted knowledge. These general principles illustrated by figure 4 
are rather similar to those of a process of knowledge extraction. The 
process can be broken into three principal phases. First of all starting 
from rough semi-structured data files, a preprocessing is necessary to 
eliminate the irrelevant data and to ensure their transformation. In the 
second phase, a knowledge extraction algorithm is used to find the fre-
quent substructures. So as to allow the maintenance of extracted kno-
wledge, the information obtained at the knowledge discovery phase is 
kept in a database. Lastly, the exploitation by the user of the results ob-
tained is facilitated by a frequent substructures visualization tool. 

 

Fig. 4. General Architecture 

The various introduced phases are detailed in the following paragraphs. 

3.2 Data Pre-processing 

From the sources, a process of extraction and transformation is carried 
out and the extracted data are stored in a database. Within the frame-
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work of Web data a process of filtering is carried out so as to eliminate 
the data which are not useful for the analysis: image, sounds, video.... 
Moreover, according to the user point of view, the substructures which 
are not of interest are also removed. For each extracted tree, we asso-
ciate an identifier which will be used as a primary key. Each extracted 
structure is transformed before being stored. So as to preserve the le-
vels of overlaps of the various trees, the transformation is carried out in 
the following way: 

• Taking into account depth of overlap and complex type: each ex-
tracted element is considered separately, and an integer describing 
the depth of overlap of this element in the complex structure, is 
added to the element. 

• Creation of simple elements sets lists: when two elements are on 
the same level and if the first is directly followed by the second, 
we gather them in the same set otherwise they are included in two 
separate sets. The notion of order in "list-of", on the other hand, is 
taken into account by creating new sets between elements. The 
composite transaction, which results from the union of these sets 
which have been created from the initial transactions, describes a 
sequence of modified simple elements and the order of this se-
quence can then be perceived like a navigation in a "depth-first 
manner" of the transactions.  

At the end of this phase, the various structures are stored in a database. 

Example: To illustrate the transformation phase, let us consider the 
two following trees: t1 = {a, {c, {d, f}}} and t2 = {a, <e, {b,f},d,<,h 
g>>,c}. For the illustration, each element is preceded respectively by 
the letter S for "set-of" and the letter L for "list-of". In the first tree, 
since all the simple elements appear in a set of values, the S symbol is 
assigned to them. Concerning the transaction level of overlap, we as-
sign to each simple element its level compared to the highest set of the 
hierarchy. The simple elements a, b, c, d and f are then transformed in 
the following way: Sa1, Sc2, Sd3, Sf3.  By affecting each simple element 
in a new set and by traversing in-depth first manner the structure t1, we 
obtain the following transformation: t1 = (Sa1) (Sc2) (Sd3 Sf3). By ap-
plying the same principle for t2, we obtain: t2 = (Sa1) (Le2) (Sb3 Sf3) 
(Ld2) (Lh3) (Lg3) (Sc1). We can note that the modification of t2 respects 
the in-depth first order of course. Let us examine in detail the part "list-

7 
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of" < g, h> of t2. As the elements g and h are ordered because of the 
value "set-of", we consider that even if they interpose on the same le-
vel, and even if g follows h directly, they cannot be gathered in the 
same set. 

3.2 Knowledge Extraction 

We showed in [11] that there was a bijection between the problems of 
searching substructures such as we defined it and that of searching se-
quential patterns defined in [2]. To find the frequent structures in the 
database obtained from the previous phase, we use an algorithm largely 
inspired by those defined for the sequential patterns research and whose 
general principles are explained below: 

Extraction Algorithm 
Input: minimal support (minSupp), a data base DB 
Output: the set L of the maximum frequent structures which 

check the  
minimal support constraint and a graph G constituting the nega-

tive border 
k = 1 ; 
C1 = {{i}/ i ∈ set of atomic elements transformed by the prece-

ding phase} 
while (Ck ≠ ∅ ) do 

for each d ∈ D do VerifyCandidate (d,k) ; 
Lk = { c ∈Ck/support (c) ≥  minSupp} ; 
k += 1 ; 
GeneratingCandidate (k) ; 
GenerateBN(G,k) ; 

return LDB where LDB is the union of j=0 at k of Lj  

In a general way, the algorithm carries out a DB traverse to determine 
which elements play a part frequently enough to be retained. From 
these size 1 structures, which check the support, we generate size 2 
structures which are named candidate structures. A new traverse on the 
database makes it possible to retain all the candidate structures of size 2 
of which the number of occurrences is higher than the minimal support. 
Then, the algorithm continues in the following way: with each stage k, 
the database is traversed to count the support of the candidates (Veri-
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fyCandidate procedure). From the candidates of which the number of 
occurrences is higher than the minimal support, the set of the frequent 
structures is built: Lk. From this set, new candidates can be built (Gene-
ratingCandidate procedure). The algorithm stops when the generation 
of the candidates procedure provides an empty set or that the Verify-
Candidate procedure turns over a set that does not contain frequent 
substructures. 
With an aim of improving the candidate generating procedure as well 
as the management of candidate elements, we use a bitmap representa-
tion inspired by [3]. This structure offers the advantage of considerably 
reducing the storage space and the ability to generate candidates easily. 
Moreover it is particularly adapted in the search of long structures. At 
the time of the search for candidates we also generate the negative bor-
der [17]. This is made up of all the structures which are not frequent but 
whose substructures are frequent. This negative border will be used in 
the following phase to take into account the data sources evolutions. 

Example: Let us consider figure 5 representing the lattice associated 
with the sample database. For a minimal support of 50 %, on level 1, 
only the A1, A2 and B3 elements are frequent and can be used to create 
more complex structures. We thus store in the negative border, the B2, 
C3 and D2 elements. On level 2, only (A1) (A2), (A1) (B2), (A2 B2) are 
frequent, we preserve in the negative border those of the preceding le-
vel elements which were frequent. 
  

 

9 
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Fig. 5. Example of negative border 

3.3 Taking into account of data sources evolutions 

The negative border obtained in the previous stage enables us to take 
into account the updates and to maintain extracted knowledge. Indeed, 
to avoid applying the preceding algorithm again at the time of each up-
date, we store in the negative border the minimal information required 
to quickly compute the frequent substructures. The taking into account 
of data sources evolutions follows the general principles which are ex-
plained below: 

Update algorithm 
Input: S Set of data sources, BN the negative border, BNLimit, 

LDB the set  
of frequent structures, minSupp the minimal support specified 

by the user 
Output: the updated sources S, BN updated and LDB updated 
while t ∈ delay do 
foreach s ∈ S do  
if snew ≠sold then 

      updateDeltaRelation (∆s, opmaj, t) 
enddo 

∆S ←  
 

if Validate(∆S, BNLimit)  then 
      Update (LDB) 

From a time specified by the user (delay), the data sources are compa-
red (sold represents the initial data sources, i.e. during the last analysis 
and snew represents the data being analyzed). This operation is carried 
out in the AUSMS system by an agent which acts either in a temporal 
way (fixed time difference since last update), or in a direct way (user 
activation). The agent is in charge of comparing the data sources and 
propagating the modifications. Thus, if the data source was modified, 
the updates are stored as a ∆s set which manages the history of the mo-
difications (UpdateDeltaRelation procedure). This procedure, inspired 
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from the delta relations of the active rules, makes it possible to reflect 
the side effects of the modifications of the structure, i.e. it contains only 
the side effect resulting from the modifications [7]. 

 From the information contained as ∆s set, a comparison is carried out, 
by the procedure Validate (∆S, BNLimit), with the elements contained in 
the negative border which are likely to change quickly, i.e. those which 
can become frequent or not, up to one element. This procedure also ta-
kes into account the addition or the suppression of new sources which 
generate of course a modification of the support value. If one of the 
conditions is then verified the modifications are brought directly into 
the negative border to update the set of the frequent structures (proce-
dure Update (LDB)). Due to a lack of space, we do not detail this algo-
rithm here (the interested reader can refer to [13]) but we give the gene-
ral principles of them below. 
 The first stage consists in deferring the modifications in the negative 
border as soon as structures are added or removed. Indeed, such an ope-
ration causes the calculation of the support value to be modified for the 
whole base. For each structure, we thus examine the value in the nega-
tive border and if this one is lower than the support, the branches of the 
tree resulting from this structure are pruned. Otherwise the other ele-
ments are re-examined and the negative border is updated according to 
their frequency. When the operations consist of the addition or the re-
moval of elements in existing structures, we analyze the negative bor-
der while starting with level 1 so as to verify how frequently the ele-
ments appear. If elements become frequent the various levels of the 
lattice are built recursively with those which were already frequent. If 
frequent elements become infrequent, the various branches of the latti-
ces resulting from the substructure are pruned. At the end of this phase, 
the frequent elements are extracted and LDB is updated. 

3.4 Visualization 

Whereas previous modules are charged to provide and maintain fre-
quent substructures, this module makes it possible to visualize these 
structures and offers a formalism to describe them. For that, we use, 
initially, GraphXML [10] which is a graph description language in 
XML especially designed for drawing and display systems. Graph-
XML, in addition to providing a language of description makes it pos-

11 
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sible for the user to add much information with the handled graphs: 
date, color of the arcs, semi-structured information (for an arc, graph, 
node). In the second place, so as to visualize at the same time the ex-
tracted structures but also their appearance in the data sources, we use 
"Graph Visualization Framework" [14] which proposes a set of java 
classes to visualize and handle the structures. This system, via an appli-
cation nameded Royère, allows the display of the structures described 
by the GraphXML format. 
 

 

Fig. 6. Examples of extracted structures 

Let us consider figure 6 which represents screenshots of visualized 
structures. We find at the left a frequent structure resulting from the 
frequent substructures search with at least 85% of a history of ships da-
tabase displayed via Royère. On the right-hand side we have the same 
description within the GraphXML format. 

3.4 Illustration 

To present the usefulness of our approach, we illustrate below an appli-
cation on the search for frequent substructures in a set of semi-
structured documents. The data used result from a Canadian database 
located at the address 
http://daryl.chin.gc.ca:8001/basisbwdocs/sid/title1f.html. This database 
was created to meet the needs of the managers of the cultural resources 
in charge of information on archaeological wrecks. It contains informa-
tion on ships which were registered in Canada or which navigate in Ca-
nadian water. It is divided into five sub-databases: Ships, Captains, 
Owners, Naval manufacturers, Travels. For each one of these databa-
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ses, different structures exist. In a general way, the information contai-
ned in the database has a depth varying from 2 to 10. In the database, 
much of the information is incomplete, i.e. many of the fields are left 
empty. 
To integrate this base into our prototype we initially wrote capable ana-
lyzers, after sources recovering, to convert this one into a database 
structure to which we can apply the principles presented in section 3. 
Thus, for a support of 85 %, we found 5 maximum size frequent subs-
tructures (one frequent sub-structure is presented in figure 6). For a 
support of 100% on this same database there is only one maximum size 
frequent substructure: [Navire :{ClasseNavire ,Construction : {Nu-
mEnr}, DescriptionNavire{TypePoupe} 
,NumCoque,NumMarineMilitaire}]. This schema represents informa-
tion available for the totality of the ships. We learn for example that for 
the captains, only information relating to the name is available for the 
totality of those. It is only for one support of 60% that we will obtain 
two different maximum frequent sub-structures: [Capitaine :{ Nom, 
Pays}] and [Capitaine : {Nom, NumeroCertificat}]. The totality of in-
formation is indicated only for a support of 25%. To test the update of 
knowledge according to the modifications of the data sources, we simu-
lated the addition with certain sources of new information such as for 
example the knowledge of the countries of origin of the captains. After 
update of the negative border elements, we found only one new maxi-
mum frequent substructure for a support of 60%: [Capitaine :{ Nom, 
Pays, NumeroCertificat }]. 

4. Related work 

To the best of our knowledge, there is little research concerning the 
structural regularities in large data bases. Nevertheless, our approach is 
very close to that proposed in [20, 21] for the search for structural asso-
ciation in semi-structured data. The authors propose a very effective 
approach and solutions based on a new representation of the search 
space. Moreover, by proposing the optimizations based on strategies of 
prunings, they improve considerably the stage of generation of the can-
didates. In the same manner, the approach suggested in [18] is rather 
similar to the previous approach and uses a particular tree called tag 
tree patterns. In [4], the authors propose an algorithm called Find-Freq-

13 
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Trees which also uses an approach based on a search by level as in the 
algorithm Apriori [1] and extends the proposal by improving the tech-
nique of enumeration defined in [5] so as to discovering substructures 
in long sequences. Finally in [24], the author proposes two algorithms 
TreeMinerH and TreeMinerV for the search for frequent trees in a fo-
rest. TreeMinerH takes again the principle of the course in width of A-
priori by improving the generation and counting of the candidates using 
the classes of equivalences, of a structure of prefixed tree and "scope 
list". Whereas in TreeMinerV, it proposes to see a tree like a vertical 
structure and associates this vision with a method of very effective in-
depth course for the search for long sequences. In these two algorithms, 
the generation and the counting of the candidates are carried out by set 
operations on the "scope list", the prefixed structure makes it possible 
to reduce the number of transactions to be traversed in the database. In 
addition to the taking into account of the evolutions, our approach has 
however some differences. We are interested in the search for all the 
structures included in the base whereas they are interested only in 
search of tree-expression which are defined like trees going from the 
root to a final leaf of the tree. With this definition, they cannot find re-
gularities of the form [identity : {address : <street, zipcode>}] which 
would be frequent but would be included in a longer transaction which 
is, itself,  not frequent. The search algorithm for substructure used is 
based on a representation by vectors of bits which also enable us to 
work on long structures. Other search methods for structures of tree or 
graphs are also proposed but are not directly applicable to the excava-
tion of semi-structured data. Thus, the authors of [23] propose an algo-
rithm of discovery of approximate common structures and apply it to 
genomic applications discoveries. Dehaspe and al.[9] present an effec-
tive algorithm to solve the problem of frequent substructures discove-
ries in labellized graphs. Their approach is based on the use of ILP. In 
[15], an algorithm is also proposed to extract patterns from a directed 
graph. 
With regard to the maintenance of the extracted frequent substructures, 
there does not exist, to our knowledge, works in this field. We showed 
that the search for substructures could approach that of sequential pat-
terns. In the continuation of our work, we will thus examine the work 
carried out around this field. Near to the sequential patterns and the ba-
sis of many approaches, [8] proposes an algorithm called FUP, for an 
excavation of incremental data in the case of the rules of associations. 
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However, the problems of incremental updates within the framework of 
the sequential patterns are much more complex than that of the rules of 
associations insofar as the search space, i.e. the number of combina-
tions is much larger. In [19], the authors propose an algorithm called 
ISM (Incremental Sequence Mining) which allows an update of the 
frequent sequences when new customers and new transactions are ad-
ded to the data base. The suggested approach builds a lattice of se-
quence which contains all the frequent and negative border elements 
[17]. When new information arrives, they are added to this lattice. The 
problem of this approach is obviously the increasing size of the nega-
tive border which in our case is minimized, because based on vectors of 
bits. In [16], the ISE (Incremental Sequence Extraction) algorithm was 
proposed for the search for frequent patterns, it generates candidates in 
the entire database by attaching the sequences of the incremental data-
base to those of the original base. This approach avoids keeping the se-
quences contained in the negative border and the recalculation of these 
sequences when the initial data base has been updated. However, by not 
preserving the negative border, it is necessary to more often traverse 
the base to seek the candidates. In [25] the algorithm proposed uses at 
the same time the concepts of negative border of the original data base 
and the concepts of suffixes and prefixes in the contrary of ISE. To 
control the size of this negative border, they introduce a minimum sup-
port for these elements thus reducing its size. Moreover this algorithm 
realizes an extension by prefix and suffix (using the negative border). 
The problem of this algorithm lies in the choice of the value of the mi-
nimum support for the negative border. 

5. Conclusion 

In this article, we proposed a functional architecture, AUSMS, of a sys-
tem of extraction and maintenance of knowledge in bases of semi-
structured objects. The originality of the approach lies in the implemen-
tation of effective algorithms to extract the frequent substructures in the 
base from semi-structured objects but also in the taking into account of 
the handled data. The use of bit vectors for the extraction and the ma-
nagement of the negative border also enable us to optimize the storage 
and the search of the structures. The tests which we carried out on ba-
ses resulting from the Web showed that the adopted approach was very 

15 
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useful to help the end-user in the analysis of the various handled ele-
ments and offered solutions for the search for general information on 
the data sources, to contribute to the interrogation of bases containing 
semi-structured data and to help build views and indexes. 
We are currently studying the application of AUSMS in data manage-
ment resulting from Web servers (Web Mining Use) where we wish to 
analyze the complete behavior of the users. Even if currently, an input 
in a file "access log" is automatically added each time a request for a 
source reaches the server, it does not record certain behaviors of the 
user such as a frequent return or the recharging of a page when the pa-
ges are hidden by the navigator or Proxy. For example, the fact that a 
user is obliged to go back regularly can indicate poor design of the na-
vigation of the server and such information is significant to improve the 
design of a site. For that, we developed a local user application which 
stores the user’s behavior to transmit it to a database. The idea thus 
consists in coupling the information obtained in the file log of the navi-
gator with the data base to be used as input with the process of 
AUSMS. Another research orientation that we are currently carrying 
out relates to the parallelization of the algorithms of extraction so as to 
optimize the search of the frequent substructures. 
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