Abstracts
- Introduction
(Ch. Retoré) SLIDES
- Sylvain Salvati
(INRIA & LABRI - Bordeaux)
Simple account of basic lexical
semantics
We propose a model-based approach to
lexical semantics that allows for a simple account of faithful
and unfaithful co-predications. Back
- Tim van de Cruys
(CNRS - IRIT - Toulouse)
Word vectors, distributional similarity
and applications
In the course of the last two decades, significant
progress has been made with regard to the automatic
extraction of word meaning from large-scale text corpora.
The most successful models of word meaning are based on
distributional similarity, calculating the meaning of
words according to the contexts in which those words
appear. The first part of his talk provides a general
overview of the algorithms and notions of context used to
calculate semantic similarity. We will also look in some
detail at dimensionality reduction, a technique that is
able to reduce a large number of contexts to a limited
number of latent semantic dimensions. The second part of
this talk will then focus on a number of applications that
make use of distributional similarity, such as the
extraction of selectional preferences and word sense
discrimination.
Back
- Veronika Lux
(CNRS - ATILF - Nancy)
Introducing the French Lexical Network SLIDES
We
present the French Lexical Network or FLN [2, 1], a
lexical resource that is currently being built at
ATILF-CNRS by a team of lexicographers, along the
principles of the Explanatory Combinatorial Lexicography
[4, 3].
We first present the macrostructure of the FLN: like
WordNet and FrameNet, FLN is a network or, formally, a
lexical graph but its structuring is mainly based on the
system of Lexical Functions, which is part of the
Meaning-Text theory [5].
We then provide some information about our lexicographic
methodology and tools : FLN builds on experience gathered
along the Explanatory Combinatorial Dictionaries, the DiCo
and Dicouebe databases, the Lexique Actif du Français
dictionary and the DicoPop web pages [6].
Last, we detail the microstructure of the FLN, ie. the
structure of the de- scription attached to each linguistic
unit which is a node in the network. There are six
sections in this description. We focus on the section
”Lexical Functions”.
[1] Nabil Gader, Veronika Lux-Pogodalla, and Alain
Polguère. Hand-Crafting a Lexical Network With a
Knowledge-Based Graph Editor. In Proceedings or the 3rd
workshop on Cognitive Aspects of the Lexicon (CogALex-III)
- COLING 2012, pages 109–126, Mumbai, 2012.
[2] Veronika Lux-Pogodalla and Alain Polguère.
Construction of a French Lexical Network : Methodological
Issues. In Proceedings or the International Workshop on
Lexical Resources (WoLeR 2011), ESSLLI, Ljubl- jana, 2011.
[3] I. Mel’ˇcuk. Explanatory Combinatorial Dictionary. In
Giandomenico Sica, editor, Open Problems in Linguistics
and Lexicography, pages 225– 355. Polimetrica, Monza,
2006.
[4] I. Mel’ˇcuk, A. Clas, and A. Polguère. Introduction `a
la lexicologie explicative et combinatoire. Duculot,
Paris/Louvain-la-Neuve, 1995.
[5] Igor Mel’ˇcuk. Lexical Functions: A Tool for the
Description of Lexical Relations in the Lexicon. In Leo
Wanner, editor, Lexical Functions in Lexicography and
Natural Language Processing, volume 31 of Language
Companion Series, pages 37–102. Benjamins,
Amsterdam/Philadelphia, 1996.
[6] Alain Polguère. Like a Lexicographer Weaving Her
Lexical Network. In
Proceedings or the 3rd workshop on Cognitive Aspects of
the Lexicon (CogALex-III) - COLING 2012, pages 1–4,
Mumbai, 2012.Back
- Mathieu
Lafourcade & Manel Zarrouk (U. Montpellier 2 - LIRMM)
Deductive and inductive inferences from
JeuxDeMots, a game-acquired lexicon SLIDES
(the talk will be in english) La
construction et la validation des réseaux lexicaux sémantiques
est un enjeu majeur en TAL. Indépendamment des stratégies de
construction utilisées, inférer automatiquement de nouvelles
relations à partir de celles déjà existantes est une approche
possible pour améliorer la couverture et la qualité globale de
la ressource. Dans ce contexte, un moteur d'inférences a pour
objet de formuler de nouvelles conclusions (c'est-à-dire des
relations entre les termes) à partir de prémisses (des
relations préexistantes). Dans cette présentation, nous
présentons un moteur d'inférences pour le réseau lexical
JeuxDeMots qui contient des termes et des relations typées
pondérées entre ces termes. Dans le projet JeuxDeMots, le
réseau
lexical est construit à l'aide d'un \emph{GWAP} (Game With A
Purpose) et quelques milliers de joueurs. Les termes
polysémiques peuvent être potentiellement raffinés en divers
usages (le terme figure peut faire référence à
figure>géométrie ou figure>visage). Mais étant donné que
le réseau est indéfiniment en construction certains sens
peuvent être manquants. L'approche que nous proposons est
fondée sur une méthode de triangulation impliquant la
transitivité sémantique avec un mécanisme de blocage pour
éviter de proposer des relations douteuses. Les relations
inférées par déduction (du général vers les spécifiques) et
par indiction (des spécifiques vers le général) sont proposées
aux contributeurs pour être validées. Dans le cas
d'invalidation, une stratégie de réconciliation est engagée
pour identifier la cause de l'inférence erronée : une
exception, une erreur dans les prémisses, ou une confusion
d'usage causée par la polysémie. Back
- Mickael Zock
(CNRS - LIF - Marseille)
How to help authors to overcome the
Tip-Of-the-Tongue problem :
lexical graphs (or associative networks) and some
inherent problems SLIDES
One of the most vexing problems in speaking
or writing is failing to access a particular word eventhough
it is clearly stored in the user's brain. This kind of search
failure known as dysnomia or Tip of the Tongue-problem (TOT),1
occurs not only in language, but also in other activities of
everyday life. It is basically a search- and index-problem
which we are reminded of when we look for something that
exists in real world or in our mind (keys, glasses, people's
names), but which we are unable to locate, access or retrieve
in time. [The TOT-problem is
characterized by the fact that the author (speaker/writer)
has only partial access to the word s/he is looking for. The
typically lacking parts are phonological (syllables,
phonemes). Since all information except this last one seems
to be available, and since this is the one preceding
articulation, we say: the word is stuck on the tip of the
tongue. ]
Word finding problems are generally dealt with via a lexicon.
Our concern here is language production, a task still too much
neglected in lexicographical work. When speaking or writing,
authors typically start from meanings (set of concepts). This
is the normal route and it works in most cases, yet sometimes
it does not, in which case we may resort to alternative
strategies: we start from a word in a foreign language
(translation), we perform topic-based search (thesaurus), or
we rely on associations, i.e. lexical (synonyms, antonyms,
...) or conceptual relations. These latter two strategies are
illustrated via lexical graphs —(for example, WordNet [4],
JeuxDeMots [2], BabelNet [5], etc.)— which are very precious
resources. Yet, given their size and complexity
(multi-dimensional space) they also pose certain problems.
Hence, in order to be truly useful for authors (allowing them
to stay on top of the data, i.e. words), care must be taken to
minimize noise (drowning the user with
irrelevant data) and to set sign-posts, i.e. lables or
orientational clues, as otherwise the user does not know which
direction to go: every node (word) having a great number of
outgoing links and nodes (associated terms). These just
mentionned probems arise whenever a word is connected to a
large number of words (or associated terms), which is usually
the case, and whenever the target word is not an immediate
neighbour of the query- or source-word (a quite frequent
case). Since this talk will be preceded and followed by two
related presentations, I will sketch a framework allowing to
integrate and situate all this work. In particular, I will try
to answer the question whether the mental lexicon [1, 5] can
be used as a blueprint for the dictionaries of tomorrow.
1. Aitchison, J. (2003). (2003). Words in the Mind: an
Introduction to the Mental Lexicon. Oxford, Blackwell
2. Lafourcade, M. (2007). Making people play for Lexical
Acquisition with the JeuxDeMots prototype. In 7th
International Symposium on Natural Language Processing,
Pattaya, Chonburi, Thailand.
3. Levelt W., Roelofs A. et Meyer, A. (1999). A theory of
lexical access in speech production. Behavioral and Brain
Sciences, 22, 1-75
4. Miller, G. (ed.) (1990). WordNet: An On-Line Lexical
Data-base. International Journal of Lexicography, 3(4), 235-
312.
5. Navigli R. and S. P Ponzetto. 2012. BabelNet: The Automatic
Construction, Evaluation and Application of a Wide- Coverage
Multilingual Semantic Network. Artificial Intelligence, 193,
Elsevier, pp. 217-250.
Back
- Bruno Gaume (CNRS
- CLLE - Toulouse)
A robust metrology of lexical networks
based on random walks in lexical relations
(the talk will be in English) Les
grands réseaux de terrains sont les réseaux
que l'on trouve en pratique, ils sont construits à partir
de données issues de différents domaines d'études : La
sociologie comme le réseau d'amis de Facebook, la
linguistique comme les réseaux de synonymie, la webologie
comme le réseau des pages web. Plusieurs études montrent
un fait remarquable qui est que tous ces réseaux,
pourtant d'origines si diverses, possèdent des propriétés
identiques bien particulières et font partie de la classe
des Réseaux Petits Mondes Hiérarchiques (RPMH). Un autre
fait tout aussi remarquable est que cette classe des RPMH
est très petite au regard de l'ensemble des réseaux
possibles : la probabilité de tirer au hasard parmi
l'ensemble des réseaux possibles un RPMH est très
proche de zéro. C'est-à-dire que les réseaux
auxquels nous avons à faire dans la vraie vie se
ressemblent tous par leurs structures communes, bien
qu'intrinsèquement cette structure soit très rare du point
de vue de la théorie de la mesure.
L'étude des RPMH mobilisent un grand nombre de chercheurs
dans le monde, en effet l'étude et la modélisation des
RPMH restent un champ de recherche ouvert et très
prometteur pour une meilleure compréhension des phénomènes
sous-jacents et pour une meilleure exploitation des
données dans de nombreux domaines.
Dans cet exposé je commencerais par présenter les quatre
propriétés fondamentales omniprésentes dans les réseaux
lexicaux.
Je présenterai ensuite la dynamique des trajets d'un
marcheur qui se déplace aléatoirement sur les sommets d'un
réseau lexical à travers les relations lexicales. Nous
verrons que l'étude de ces dynamiques permet de définir
des outils de métrologie lexicale.
je présenterais ensuite cinq applications de ces
métrologies :
1) R2SW : Une modélisation réaliste des
RPMH qui permet générer artificiellement à partir de
réseaux aléatoires, des réseaux possédant les mêmes
propriétés que les réseaux lexicaux [1]
2) SMAC : Une méthode pour comparer la
structure de deux réseaux lexicaux [6]
3) WISIGOTH : une méthode
d'enrichissement endogène des réseaux lexicaux [2]
4) SLAM : un modèle de Solution
Lexicale Automatique de Métaphores analogique [3]
http://erss.irit.fr/demetweb/Metaphors/slam.php
5) APPROX : Une modélisation de la
dynamique d'acquisition du lexique par les jeunes enfants
[4], [5]
[1] Gaume B, Mathieu F, Navarro E (2010) Building
Real-World Complex Networks by Wandering on Random Graphs.
In I3 Information Interaction Intelligence, 2010, Vol 10,
Num 1
[2] Sajous F, Navarro E, Gaume B, Prévot L,Chudy Y (2010)
Semi-automatic Endogenous Enrichment of Collaboratively
Constructed Lexical Resources: Piggybacking onto
Wiktionary. In Advances in Natural Language Processing,
Lecture Notes in Computer Science vol. 6233, pp. 332--344
[3] Desalle, Y , Gaume B, Duvignau K. (2009) SLAM :
Solution Lexicale Automatique pour Métaphore. In revue TAL
2009 vol 50 num1.
[4] Gaume B., Duvignau K., Prevot L., Desalle Y. (2008)
Toward a cognitive organization for electronic
dictionaries, the case for semantic proxemy. In GOGALEX
Cognitive Aspects of the Lexicon COLLING, Manchester 2008
[5] Desalle Y, Hsieh S-K, Gaume B, and Cheung H (2010)
Towards an Automatic Measurement of Verbal Lexicon
Acquisition: The Case for a Young Children-versus-Adults
Classification in French and Mandarin. In Proceedings of
the 2010 PACLIC 24 : Workshop on Model and Measurement of
Meaning (M3) pp. 809-818, Tohoku University, Sendai, Japan
[6] Emmanuel Navarro, Bruno Gaume, Henri Prade (2012)
"Comparing and Fusing Terrain Network Information", In
Scalable Uncertainty Management - 6th International
Conference, SUM 2012, Marburg, Germany (Eyke Hüllermeier,
Sebastian Link, Thomas Fober, Bernhard Seeger, eds.),
Springer, vol. 7520, pp. 459-472, 2012. Back
- Nathalie
Aussenac-Gilles (CNRS - IRIT - Toulouse)
Ontologies, texts and the lexicon SLIDES
Back
- Alain Lecomte (U.
Paris 8 & SFL)
Ludics and the lexicon
Ludics
provides a game-theoretic approach to language, based on the
interaction of processes (also called « designs »). In this
talk, we are viewing lexical items as such processes (the
actions of which are semes). Admissible combinations of items
lead to convergent interactions between these processes. The
framework allows to recast notions previously introduced in
Structural Semantics (Pottier, Greimas, Rastier) and it
provides flexible tools suitable for the description of
metaphor and the influence of context. Back
- Christophe
Fouqueré (U. Paris 13 & LIPN)
About Coherence Use in Natural Language
SLIDES
What does a linguistic concept denote? What
kind of coherence is there between such denotations? What are
the consequences of using types/formulas? Lecomte and
Quatrini's works on the use of Ludics in Natural Language shed
new light on that subject. We reconsider the previous
questions studying how and in which extent coherence defined
in Linear Logic (coherence spaces, Ludics) may be helpful.
Back
- Robin Cooper (U.
Göteborg)
Types, judgements and lexical meaning SLIDES
The classical (model-theoretic) view of
lexical meaning is based on truth and normally makes the
simplifying assumption that the meaningof a word is fixed in
the lexicon. We will propose that lexical meaning is
based on judgement (in something like the type-theoretical
sense) and that word meaning is in a constant state of flux as
we communicate with each other.
We will start by considering predicates of personal taste like
'delicious' and argue that statements such as 'this soup is
delicious' are based on a notion of judgement by an agent
rather than on an objective fact such as 'this soup' is in the
extension of 'delicious'. This is not to rule out cases
where judgements are related to objective facts such as 'the
temperature of this soup is 40 degrees'. Some judgements
correspond to objective facts and some do
not.
What I call 'delicious' you may call 'mediocre' or even
'disgusting'. Does this mean that you and I have different
meanings for the word 'delicious' or merely that we like
different food? This is a variant of the classical question of
where to draw the boundaries between lexical meaning and
encyclopaedic or world knowledge. I will argue that
there is no way to draw a clear boundary and that a type
theoretic approach combined with a theory of semantic
coordination between speakers suggests that we should not try. Back
- Nicholas Asher
(CNRS - IRIT - Toulouse)
Word meaning in context: semantic
approaches based on type theory Back
- Zhaohui Luo
(Royal Holloway College, U. of London)
Modern Type Theories and Montague
Semantics: Comparisons and Beyond SLIDES
Back
- Christian Retoré
(U. Bordeaux 1 & IRIT - Toulouse)
Quantifiers in a type theoretical model of compositional
semantics and lexical pragmatics SLIDES
We shall firstly present a type theoretical model for
handling the adaptation of word meaning to the context. This
model resembles the ones proposed by Asher and Luo, the main
difference being that terms, rather than types, trigger
meaning adaptation. Secondly, we shall present a treatment of
quantifiers and generalised quantifiers in such a richly typed
model. Our solution is an adaptation of Hilbert operators to
type theory, which seem better suited than usual approaches to
quantification, both from a syntactical and a lexical
viewpoint. Back
- Tim van de Cruys
(CNRS - IRIT - Toulouse)
On the convergence between
compositional semantics and distributional semantics:
A
Tensor-based Factorization Model of Semantic
Compositionality
In this presentation, a novel method for the computation
of compositionality within a distributional framework is
presented. The key idea is that compositionality is
modeled as a multi-way interaction between latent factors,
which are automatically constructed from corpus data. The
method is used for the composition of subject-verb-object
combinations. First, a latent factor model for both nouns
and verbs is computed from standard co-occurrence data.
Next, the latent factors are used to induce a latent model
of three-way subject-verb-object interactions. The model
has been evaluated on a similarity task for transitive
phrases, in which it exceeds the state of the art.
Back
- Laurence Danlos
(U. Paris 7 & INRIA)
Problems at the syntax-semantics
interface with adverbial connectives SLIDES
We will put forward some cases where the
host syntactic sentence of an adverbial connective is not
identical to its second semantic argument. Such cases raise
problem for the syntax-semantics interface. The extension of
such a problematic phenomenon will be discussed. Back
- Richard
Moot (CNRS - LaBRI - Bordeaux)
Wide-coverage semantics applied to temporal ordering and
presupposition SLIDES
Back
- Reinhard Muskens
(U. Tilburg)
Names
SLIDES
In
this talk I will propose a theory of ordinary names that
does not run into substitutivity problems but does retain
Saul Kripke's intuition that names denote rigidly, i.e. have
the same extension in any world where they denote. Names in
this theory are /predicates/ as in Quine (1948),
Quine (1960), Burge (1973), Muskens (1995), Matushansky
(2006), and Fara (2011). Since the theory is based on a
truly intensional logic, codesignating names like 'Cicero'
and 'Tully' can have equal extensions in all possible worlds
without having the same meaning. So, while the theory
accepts that names denote rigidly, it rejects Millianism,
the idea that the meaning of a name is just its bearer. Back