 
	
  
 
	
  
BOREAL team
Knowledge Representation and Rule-based Languages for Reasoning on Data
BOREAL : Knowledge Representation and Rule-based Languages for Reasoning on Data
Current information systems are grounded on the exploitation of data coming from an increasing number of heterogeneous sources. Coping with the variety of data requires paradigms for effectively accessing and querying information that adapt to the different types of sources, as well as declarative high-level languages to drive the data processing and data quality tasks. The BOREAL team focuses on the study of foundational and applied issues of reasoning, in a context of data variety. The team builds upon its expertise in knowledge representation and automated reasoning to devise novel techniques for heterogeneous and federated data management which leverage in particular on expressive rule languages.
The team focuses on a set of issues related to knowledge-based data management which include:
- Foundations of rule languages (Existential Rules, Description Logics).
- Algorithms and optimizations for reasoning on data.
- Architectures and rule languages for heterogeneous data integration.
- Inconsistency handling in query answering.
- Quality of knowledge-based data integration systems.
- Explanation of reasoning 
  Staff
    
    Michel Leclere, Maître de conférences, UM
      
    Marie-Laure Mugnier, Professeur des universités, UM
         David Carral Martinez, Chargé de recherche, INRIA
      
    Nofar Carmeli, Chargé de recherche, INRIA
      
    Federico Ulliana, Chargé de recherche, INRIA
      
    Jean-François Baget, Chargé de recherche, INRIA
          
  Associates and Students 
    
    Akira Charoensit, INRIA
          
  Regular Co-workers
        Michel Chein, Invité longue durée Eméritat, UM
              
               Title:   Génération de scénarios de test pour les systèmes de contrôle-commande : une application pour les centrales nucléaires dEDF
               PhD defendant:   Mohamed Aziz Sfar Gandoura
               Defense date:  2025-05-20 
 
               Thesis director:     
                
                    		  		  Madalina Croitoru  
	        
               Title:   Gestion de données dans le cadre des règles existentielles: traduction de requêtes et de contraintes
               PhD defendant:   Guillaume Perution Kihli
               Defense date:  2023-12-18 
 
               Thesis director:     
                
                    		  		  Marie-Laure Mugnier  
	        
               Title:   Raisonner sur des données en agroécologie : application à la sélection despèces végétales de service
               PhD defendant:   Elie Najm
               Defense date:  2022-12-13 
 
               Thesis director:     
                
                    		  		  Marie-Laure Mugnier  
	        
               Title:   Une approche basée sur les préférences pour l’éthique des machines dans le contexte de la planification automatique
               PhD defendant:   Martin Jedwabny
               Defense date:  2022-12-02 
 
               Thesis director:     
                
                    		  		  Madalina Croitoru  
	        
InteGraal is a Java tool dedicated to reasoning about heterogeneous and federated data. It incorporates algorithms and techniques developed at the intersection of knowledge representation, reasoning and data management.
Modular in design, InteGraal encourages software reuse and extension, making it easy to experiment with new scenarios and evaluate new approaches, particularly by combining several algorithms. InteGraal’s main current features are its data integration capabilities for exploiting heterogeneous sources federated via mappings (making it possible to target SQL, RDF systems or even Web APIs) and its numerous query response algorithms based on query rewriting and data materialisation.






