A constraint-based approach for multi-modal robot control

Joris De Schutter
KU Leuven
Department of Mechanical Engineering
Division of Production Engineering,
Machine Design and Automation (PMA)

See and Touch: 1st Workshop on multimodal sensor-based robot control for HRI and soft manipulation, *IROS 2015, Hamburg, September 28th, 2015*
Outline

• Brief overview of previous work @KU Leuven

• Constraint-based approach

• Task modeling and constraint specification

• Control and estimation

• Recent applications

• Discussion
Brief overview previous work @KU Leuven

These videos and many more @

- youtube channel: “kuleuven robotics and mechatronics”
- my home page: http://people.mech.kuleuven.be/~jdeschut/

Overview of relevant papers at these webpages.
Brief overview previous work @KU Leuven

- 1978: (Jos Simons)
 - first force control results
 - close-tolerance peg-in-hole assembly
 - custom-built 5-axis robot
 - force/torque measurements based on motor currents

- ~ 1984
 - several experiments (peg-in-hole, 2D/3D contour following, palletizing, opening/closing a door)
 - bulky hydraulic Cincinnati-T3 robot
 - custom-built 6 axis force/torque sensor (Rik (Henri) Beliën)
 - task frame at robot end effector
 - velocity-resolved control
Brief overview previous work @KU Leuven

• Early nineties
 o add model-based feedforward (Herman Bruyninckx)
 o 2D contour tracking – peg-on-hole
 o extend to cooperating robots

• ~ 2000
 o combination of force control with vision
 o multiple ‘task frames’

• 2000-2003
 o identification of contact geometry (Tine Lefebvre)

• 2005
 o human-robot interaction
 o multi-modal sensing
 o multiple task frames
Lessons learnt

- similarities between different types of ‘geometric’ sensors
- soft contacts can be modeled as geometric deformations using compliance model (hard contacts are modeled by hard constraints)
- task defined by various ‘constraints’, specified in different spaces (“frames”)
- feedback is always too late:
 - (task execution speed) ~ (control bandwidth) x (geometric task execution error)
 - for contact: (geometric error) = (force error) x (compliance)
 - proportionality in this eq. depends on error in geometric model:
 - task execution speed and accuracy are improved by feedforward control based on geometric models
- contact geometry can be identified by observing motion (and contact forces) during task execution or active sensing motions
Constraint-based control

• Consider every robot system as a set of degrees of freedom
• Formulate every robot task as an optimization problem
• Optimization variables
 o velocity, acceleration or torque for each actuated dof at every time instant
• Objective function
 o conflicting constraints: minimize constraint violations
 o task redundancy: e.g. minimize kinetic energy
 o local (instantaneous) vs. global (over time), e.g. minimum time, minimum energy
Constraint-based control

- **Constraints** (not exhaustive...)
 - **task-related**
 - follow predefined trajectory in some direction
 - track object in some direction based on sensor information (e.g. vision, force, distance)
 - apply force or torque in some direction
 - impose impedance or admittance in some direction
 - **robot system-related**
 - avoid joint limits: position, velocity, acceleration, torque
 - avoid self-collision
 - **environment-related**
 - avoid collisions, define forbidden regions
 - **human interaction-related**
 - impose impedance or admittance in some direction
 - provide haptic feedback for teleoperation
Constraint-based control

- Roots
 - Ambler, Popplestone (Artificial Intelligence 75)
 - specifying the goal position in assembly tasks using geometric relations between objects
 - O. Khatib (IJRR87)
 - operational space formulation
 - Y. Nakamura (IJRR86, Book91)
 - optimization and redundancy resolution
 - Samson, Le Borgne, Espiau (Book91)
 - task function approach
 - ...
Constraint-based control

• Other, parallel developments:
 o ‘Stack-of-Tasks’
 • Inspired by/applied to whole-body manipulation for humanoid robots
 • CNRS-LAAS, CNRS-LIRMM, CNRS-AIST JRL
 • Mansard, Lamiraux, Stasse, Kheddar, Khatib, Chaumette et al.
 o Architecture for whole-body manipulation for humanoid robots
 • Khatib, Sentis, Park (Stanford University), e.g. ICRA2006
Constraint-based control

- basic approach (De Schutter et al. IJRR2007)

\[P: \text{`plant': robot + environment}; \quad C: \text{controller}; \quad M+E: \text{model update + estimator} \]

control input \(u \): desired joint velocities

system output \(y \): controlled variables

\(\Rightarrow \text{Task specification = Imposing constraints} \ y_d \ \text{on} \ y \)

measurements \(z \): observe the plant.

geometric disturbances, \(\chi_u \)

control input \(u \): may also be desired accelerations or torques
Task modeling and constraint specification

- systematic approach for deriving expressions for the task constraints
 - → low-level constraint controllers are derived automatically
 - → location of frames is updated automatically
Task modeling and constraint specification

Laser-plane feature:

\[\chi_{fI}^a = (x^a, y^a)^T, \quad (2) \]
\[\chi_{fII}^a = (\phi^a, \theta^a, \psi^a)^T \quad (3) \]
\[\chi_{fIII}^a = (z^a). \quad (4) \]
Task modeling and constraint specification

- systematic approach for modelling geometric uncertainty
 - → estimators for off-line calibration or on-line adaptation are derived automatically

\[q \quad o_1' \xrightarrow{X_u I} \quad o_1 \xrightarrow{X_f I} \quad f_1' \xrightarrow{X_u II} \quad f_1 \]

\[w \quad o_2' \xleftarrow{X_u IV} \quad o_2 \xleftarrow{X_f III} \quad f_2' \xleftarrow{X_u III} \quad f_2 \]

- \(w \): world
- \(o \): object
- \(f \): feature
- \(q \): robot coordinates
- \(X_u \): uncertainty coordinates (e.g. calibration values)
- \(X_f \): feature coordinates

J. De Schutter, A constraint-based approach for multi-modal robot control
Control and estimation

- **lowel-level control: velocity-resolved (IJRR2007)**
 - constraint controller:
 \[
 \dot{y}_d^\circ = \dot{y}_d + K_p (y_d - y)
 \]
 where \(y \) is measured or estimated and \(d \) refers to ‘desired’
 - task controller (‘generalized inverse kinematics’):
 \[
 A \dot{q}_d = \dot{y}_d^\circ + B \dot{X}_u
 \]
 where \(A(q,X_f,X_u) \), \(B(q,X_f,X_u) \), and \(X_u \) is estimated
 - generalized inverse yields desired joint velocities:
 - conflicting constraints are handled by constraint priorities or constraint weights
 - kinematic redundancy is solved by using weights in joint space
Control and estimation

• lowel-level control: acceleration-resolved
 (De Laet et al., KU Leuven internal report as addendum to IJRR2007)
 - constraint controller:
 \[\ddot{y}_d = \dot{y}_d + K_v (\dot{y}_d - \dot{y}) + K_p (y_d - y) \]
 - task controller: generalized inverse kinematics is now solved at acceleration level yielding desired joint accelerations
 - using the desired joint accelerations and the dynamic model of the robot platform control inputs \(u \) are obtained at torque level
 - solution both for soft contact and hard contact
Control and estimation

• extension: dealing with inequality constraints
 (... example solution...)
 o define ‘safety zone’ before the true constraint
 o if the safety zone is entered, start a constraint controller with \(y_d \) equal to the border of the safety zone
 o increase the weight of the constraint (e.g. exponentially) if the distance to the true constraint becomes smaller
Control and estimation

• medium-level task controller
 o finite state machine
 • activates/deactivates constraints
 • assigns constraint priorities and/or constraint weights
 • sets desired constraint values
 • monitors the task execution based on the sensor readings and the measured or estimated task coordinates
Control and estimation

- estimator
 - updates all feature coordinates X_f and estimates all constraint values y and uncertainty coordinates X_u (+ time derivatives)
 - process model for the estimator follows from the task modeling, e.g. for the velocity-resolved case and for geometric uncertainties at position/velocity/acceleration level:

$$\frac{d}{dt} \begin{pmatrix} q \\ \dot{X}_f \\ X_u \\ \dot{X}_u \\ \ddot{X}_u \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -J_f^{-1}J_u & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} q \\ \dot{X}_f \\ X_u \\ \dot{X}_u \\ \ddot{X}_u \end{pmatrix}$$

$$+ \begin{pmatrix} 1 \\ -J_f^{-1} J_q \\ 0 \\ 0 \\ 0 \end{pmatrix} \dot{q}_d.$$
Recent applications

• 2007
 o simultaneous visual servoing of multiple objects
 o adding robot and collision constraints

• 2008
 o multi-modal sensor-based control: force sensor, laser sensor, camera, laser scanner

• 2011
 o human-robot co-manipulation using PR2
 o > 30 constraints
 o force controller without force sensor
Recent applications

• 2015
 • quadrotor with shared control:
 • remotely controlled (forward/backward) with visual feedback to operator
 • local collision control (US and infrared sensors)
 • addition of local yaw control to point camera to target

• 2015
 • exoskeleton with compliant actuators
 • bilateral-lower limb exoskeleton to assist sit-to-stand
Recent applications

- Constraint-based approach is applied in several projects:
 - ROBOHOW.COG. EU-FP7-288533
 - Factory-in-a-Day EU-FP7-609206
 - MIRAD, sponsored by IWT (Flanders)
Discussion

- limitations of the approach in IJRR2007
 - constraint specification is uniquely based on (full 6D) kinematic loop equations
 - coordinate singularities if minimal coordinates are used
 - more general task modeling approach allowing general expressions and based on expression graphs and automatic differentiation is presented in Aertbeliën et al. (IROS2014)
 - low-level task controller is velocity-resolved
 - acceleration-resolved and torque-based approach was presented in De Laet et al. (internal report)
- limitations of existing software implementations
 - see e.g. Aertbeliën et al. (IROS2014) for a comparison
Discussion

- challenges for (general-purpose) software implementations
 - large variety of systems and tasks (‘skills’)
 - robot platforms (topology, #dofs, kinematics, dynamics)
 - sensor systems
 - environments (e.g. soft/hard contact)
 - tasks (constraints, objectives, priorities, etc.)
 - low-level control approaches
 - need for flexible software environments to
 - formulate (different types of) constrained optimization problems
 - choose appropriate solvers: numerical + symbolic (reasoning)
 - monitor task execution using finite state machine
 - compose complex systems (incl. ‘skills’) from subsystems
 - make Domain Specific Languages with well-defined and simple semantics for coherent sets of applications to avoid the need for (re)writing code for every application
Thanks ...

- KU Leuven GOA/10/11-project: *Global real-time optimal control of robots and mechatronic systems*
- Many colleagues and collaborators: Herman Bruyninckx, Erwin Aertbeliën, Wilm Decré, Nick Vanthienen, Gianni Borghesan, Enea Scioni, Tine Lefebvre, Ruben Smits, Tinne De Laet, Johan Rutgeerts, Rik Beliën, et al.